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1 Recap

1.1 The Regression Problem

There is a response variable y and p explanatory variables x1, . . . , xp. The goal is understand the rela-
tionship between y and x1, . . . , xp.

There are n subjects and data is collected on the variables from these subjects.

Data on the response variable is y1, . . . , yn and is represented by the column vector Y = (y1, . . . , yn)T

(the T here stands for transpose).

Data on the jth explanatory variable xj is x1j , x2j , . . . , xnj . This data is represented by the n × p
matrix X whose (i, j)th entry is xij . In other words, the ith row of X has data collected from the ith
subject and the jth column of X has data for the jth variable.

1.2 The Linear Model

1. y1, . . . , yn are assumed to be random variables but xij are assumed to be non-random.

2. It is assumed that

yi = β1xi1 + β2xi2 + · · ·+ βpxip + ei for i = 1, . . . , n

where e1, . . . , en are uncorrelated random variables with mean zero and variance σ2.

In matrix notation, the second assumption above can be written as

Y = Xβ + e with Ee = 0 and Cov(e) = σ2In

where In denotes the n× n identity matrix. β = (β1, . . . , βp)T and e = (e1, . . . , en)T .

If Z1, . . . , Zn are random variables with Z = (Z1, . . . , Zn)T , then Cov(Z) denotes the n × n matrix
whose (i, j)th entry denotes the covariance between Zi and Zj . In particular, the ith diagonal entry of
Cov(Z) would denote the variance of the random variable Zi. Therefore, Cov(e) = σ2In is a succinct
way of saying that the covariance between ei and ej would equal 0 when i 6= j and σ2 when i = j.
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2 The Intercept Term

Among other things, the linear model stipulates that

Eyi = β1xi1 + · · ·+ βpxip

for i = 1, . . . , n. This implies that when the values of the explanatory variables xi1, . . . , xip are all equal
to 0, then Eyi = 0. This is of course not always a reasonable assumption. One therefore modifies the
linear model slightly by stipulating that

Eyi = β0 + β1xi1 + · · ·+ βpxip. (1)

Now Eyi does not have to be zero when all the explanatory variables take on the value zero. The term
β0 above is known as the intercept term. Usually, in linear models, one always includes the intercept
term by default.

If we let x0 denote the “variable” which always takes the value 1, then (1) can be written as

Eyi = β0xi0 + β1xi1 + · · ·+ βpxip.

Therefore this model with the intercept term is just the same as the previous linear model with this
additional variable along with the p explanatory variables.

With the intercept term, one can write the linear model in matrix form as

Y = Xβ + e with Ee = 0 and Cov(e) = σ2In

where X denotes the n×(p+1) matrix whose first column consists of all ones and the rest of the columns
correspond to the values of the p explanatory variables and β = (β0, . . . , βp)T .

When p = 1 i.e., when there is only one explanatory variable, this linear model (with the intercept
term) is called the simple linear regression model : yi = β0 + β1xi + εi.

From now on, we will always consider linear models with the intercept term which means that the
first column of X (which is an n× (p+ 1) matrix) is always the vector of ones and β is a vector of length
p+ 1.

3 Estimation in the Linear Model

The quantities β = (β0, β1, . . . , βp) and σ2 > 0 are parameters in the linear model. These need to be
estimated from the data. The process of estimating the parameters is also referred to as fitting the linear
model to data.

Let us first focus on the estimation of β.

The idea behind the linear model is that one tries to explain the response value yi via the linear
combination β0 + β1xi1 + · · ·+ βpxip. It makes sense, therefore, to estimate β by the minimizer of the
sum of squares

S(β) :=

n∑
i=1

(yi − β0 − β1xi1 − β2xi2 − · · · − βpxip)
2
.

Using matrix notation, this can be written as

S(β) = ||Y −Xβ||2.
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The norm ||x|| of a vector x = (x1, . . . , xn)T is defined as ||x|| :=
√
x21 + · · ·+ x2n. Note the equality

||x||2 = xTx. Using this, we can write

S(β) = (Y −Xβ)T (Y −Xβ) = Y TY − 2βTXTY + βTXTXβ.

This can be minimized via calculus. Take partial derivatives with respect to βi for i = 0, 1, . . . , p and
equate them to 0. It is easy to check that

∇S(β) = 2XTXβ − 2XTY.

where

∇S(β) =

(
∂S(β)

∂β1
, . . . ,

∂S(β)

∂βp

)
.

denotes the gradient of S(β) with respect to β = (β1, . . . , βp)T . It follows therefore that the minimizer
of S(β) satisfies the equality

XTXβ = XTY. (2)

This gives p linear equations for the p unknowns β1, . . . , βp. This important set of equations are called

normal equations. Their solution, denoted by β̂ = (β̂1, . . . , β̂p) gives an estimate of β called the least
squares estimate. If the values of the p explanatory variables for a subject are λ1, . . . , λp, then the

estimate of his mean response is given by β̂0 + λ1β̂1 + · · ·+ λpβ̂p.

Two important questions arise are: (1) Does there exist a solution to the normal equations
and (2) If yes, then is the solution unique?

The answer to the first question is yes. The normal equations always have a solution. The reason is
the following: XTY lies in the column space of XT . Further, the column spaces of XT and XTX are
identical and thus XTY can always be written as XTXu for some vector u.

The answer to the second question is yes if XTX is invertible and no if XTX is not invertible.

Do the normal equations (2) admit a unique solution? Answer: No in general. Yes if XTX is
invertible.

If XTX is invertible, then the solution to the normal equations is given by β̂ = (XTX)−1XTY . The
estimate of the linear function λTβ for a vector λ = (λ1, . . . , λp)T is then given by λT (XTX)−1XTY .

If XTX is not invertible, then the normal equations have many solutions. In this case, how does one
estimate β? Here, it actually turns out that the vector β cannot be estimated. This is explained next.

4 When XTX is not necessarily invertible

The vector β cannot be estimated in this case.

Observe first that XTX being invertible is equivalent to the rank of X being equal to p + 1. Thus
when XTX is not invertible, the rank of X is strictly smaller than p + 1. In other words, some column
of X is a linear combination of the rest of the columns of X i.e., at least one of explanatory variables is
redundant in the sense that it can be written as a linear combination of the other explanatory variables.

Let us consider an example here. Suppose p = 2 and that the two explanatory variables x1 and x2
are actually the same i.e., xi1 = xi2 for each i = 1, . . . , n. It should be clear then that the rank of X is
at most 2. The linear model can then be written as

yi = β0 + (β1 + β2)xi1 + εi

for i = 1, . . . , n. It should be clear that from these observations, the parameters β1 and β2 cannot be
estimated. On the other hand, β1 + β2 can be estimated.
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Thus when XTX is not invertible, the parameter vector β cannot be estimated while certain special
linear combinations can be estimated.

It can be shown that a linear combination λTβ can be estimated if and only if λ lies in
the column space of XT . This is equivalent to saying that λ lies in the column space of XTX
because the column spaces of XT and XTX are always equal.

In the example just discussed, the vector (0, 1, 1)T is in the column space of XT which implies that
β1 + β2 is estimable. On the other hand, the vector (0, 1, 0)T is not in the column space of XT which
implies that β1 is not estimable.

When XTX is invertible, then the column space of XT contains all (p + 1) dimensional vectors and
then every linear combination of β is estimable.

5 Least Squares Estimates

Consider the normal equations XTXβ = XTY . Let β̂ls denote any solution (it is unique only if XTX is
invertible).

Let λTβ be estimable (i.e., λ lies in the column space of XT or equivalently the column space of

XTX). Then estimate λTβ by λT β̂ls. This is called the least squares estimate of λTβ.

Result 5.1. If λTβ is estimable, then λT β̂ls is the same for every solution β̂ls of the normal equations.
In other words, the least squares estimate of λTβ is unique.

Proof. Since λTβ is estimable, the vector λ lies in the column space of XTX and hence λ = XTXu for
some vector u. Therefore,

λT β̂ls = uTXTXβ̂ls = uTXTY

where the last equality follows from the fact that β̂ls satisfies the normal equations. Since u only depends
on λ, this proves that λT β̂ls does not depend on the particular choice of the solution β̂ls of the normal
equations.

Thus when λTβ is estimable, it is estimated by the least squares estimate λT β̂ls (which is uniquely
defined). When λTβ is not estimable, it of course does not make sense to try to estimate it.
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