
Fall 2013 Statistics 151 (Linear Models) : Lecture Five

Aditya Guntuboyina

12 September 2013

1 Least Squares Estimate of β in the linear model

The linear model is
Y = Xβ + e with Ee = 0 and Cov(e) = σ2In

where Y is n× 1 vector containing all the values of the response, X is n× (p+ 1) matrix containing all
the values of the explanatory variables (the first column of X is all ones) and β = (β0, β1, . . . , βp)T (β0
is the intercept).

As we have seen last time, β is estimated by minimizing S(β) = ||Y −Xβ||2. Taking derivatives with
respect to β and equating to zero, one obtains the normal equations

XTXβ = XTY.

If XTX is invertible (this is equivalent to the rank of X being equal to p + 1), then the solution to the
normal equations is unique and is given by

β̂ := (XTX)−1XTY

This is the least squares estimate of β.

2 Special Case: Simple Linear Regression

Suppose there is only one explanatory variable x. The matrix X would then of size n × 2 where the
first column of X consists of all ones and the second column of X equals the values of the explanatory
variable x1, . . . , xn. Therefore

Y =


y1
y2
...
yn

 , X =


1 x1
1 x2
...

...
1 xn

 β =


β0
β1
...
βp

 .

Check that

XTX =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

)
=

(
n nx̄
nx̄

∑n
i=1 x

2
i

)
where x̄ =

∑
i xi/n. Also let ȳ =

∑
i yi/n. Because(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
,
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we get

(XTX)−1 =
1

n
∑n

i=1(xi − x̄)2

( ∑n
i=1 x

2
i −nx̄

−nx̄ n

)
.

Also

XTY =

(
nȳ∑n

i=1 xiyi

)
Therefore

β̂ =

(
β̂0
β̂1

)
=

1

n
∑n

i=1(xi − x̄)2

( ∑
i x

2
i −nx̄

−nx̄ n

)(
nȳ∑n

i=1 xiyi

)
.

Simplify to obtain

β̂ =

(
β̂0
β̂1

)
=

1∑n
i=1(xi − x̄)2

(
ȳ
∑n

i=1 x
2
i − x̄

∑n
i=1 xiyi∑n

i=1 xiyi − nx̄ȳ

)
.

Thus

β̂1 =

∑n
i=1 xiyi − nx̄ȳ∑n
i=1(xi − x̄)2

=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

and

β̂0 =
ȳ
∑n

i=1 x
2
i − x̄

∑n
i=1 xiyi∑n

i=1(xi − x̄)2
= ȳ − β̂1x̄

If we get a new subject whose explanatory variable value is x, our prediction for its response is

y = β̂0 + β̂1x. (1)

If the predictions given by the above are plotted on a graph (with x plotted on the x-axis), then one gets
a line called the Regression Line.

The Regression Line has a much nicer expression than (1). To see this, note that

y = β̂0 + β̂1x = ȳ − x̄β̂1 + β̂1x = ȳ + β̂1(x− x̄)

This can be written as

y − ȳ = β̂1(x− x̄) =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(x− x̄) (2)

Using the notation

r :=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
, sx :=

√√√√ 1

n

n∑
i=1

(xi − x̄)2, sy :=

√√√√ 1

n

n∑
i=1

(yi − ȳ)2,

we can rewrite the prediction equation (2) as

y − ȳ
sy

= r
x− x̄
sx

. (3)

r is the correlation between x and y which is always between -1 and 1.

As an implication, note that if (x − x̄)/sx = 1 i.e., if the explanatory variable value of the subject
is one standard deviation above the sample mean, then its response variable is predicted to be only r
standard deviations above its mean. Francis Galton termed this regression to mediocrity which is
where the name regression comes from.
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3 Basic Mean and Covariance Formulae for Random Vectors

We next want to explore properties of β̂ = (XTX)−1XTY as an estimator of β in the linear model. For
this we need a few facts about means and covariances.

Let Z = (Z1, . . . , Zk)T be a random vector. Its expectation EZ is defined as a vector whose ith entry
is the expectation of Zi i.e., EZ = (EZ1,EZ2, . . . ,EZk)T .

The covariance matrix of Z, denoted by Cov(Z), is a k×k matrix whose (i, j)th entry is the covariance
between Zi and Zj .

If W = (W1, . . . ,Wm)T is another random vector, the covariance matrix between Z and W , denoted
by Cov(Z,W ), is a k ×m matrix whose (i, j)th entry is the covariance between Zi and Wj . Note then
that, Cov(Z,Z) = Cov(Z).

The following formulae are very important:

1. E(AZ + c) = AE(Z) + c for any constant matrix A and any constant vector c.

2. Cov(AZ + c) = ACov(Z)AT for any constant matrix A and any constant vector c.

3. Cov(AZ + c,BW + d) = ACov(Z,W )B for any pair of constant matrices A and B and any pair of
constant vectors c and d.

The linear model is

Y = Xβ + e with Ee = 0 and Cov(e) = σ2In.

Because of the above formulae (remember that X and β are fixed),

EY = Xβ and Cov(Y ) = σ2In.

4 Properties of the Least Squares Estimator

Assume that XTX is invertible (equivalently, that X has rank p + 1) and consider the least squares
estimator

β̂ = (XTX)−1XTY.

What properties does β̂ have as an estimator of β?

4.1 Linearity

An estimator of β is said to be linear if it can be written as AY for some matrix A. Clearly β̂ =
(XTX)−1XTY is of this form and hence it is a linear estimator of β.

4.2 Unbiasedness

An estimator for a parameter is said to be unbiased if its expectation equals the parameter (for all values
of the parameter).

The expectation of the least squares estimator is (using the formula for expectation: EAZ = AEZ)

Eβ̂ = E((XTX)−1XTY ) = (XTX)−1XTEY = (XTX)−1XTXβ = β
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In particular, this means that Eβ̂i = βi for each i which implies that each β̂i is an unbiased estimator
of βi. More generally, for every vector λ, the quantity λT β̂ is an unbiased estimator of λTβ.

4.3 Covariance Matrix

The Covariance matrix of the estimator β̂ can be easily calculated using the formula: Cov(AZ) =
ACov(Z)AT :

Cov(β̂) = Cov((XTX)−1XTY ) = (XTX)−1XTCov(Y )X(XTX)−1 = σ2(XTX)−1

In particular, the variance of β̂i equals σ2 multiplied by the ith diagonal element of (XTX)−1. Once we

learn how to estimate σ, we can use this to obtain standard errors for β̂i.

4.4 Optimality - The Gauss-Markov Theorem

The Gauss-Markov Theorem states that β̂ is BLUE (Best Linear Unbiased Estimator). This means that

β̂ is the “best” estimator among all linear and unbiased estimators of β. Here, “best” is in terms of
variance. This implies that β̂i has the smallest variance among all linear and unbiased estimators of
βi.
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