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1 ARIMA Forecasting

Forecasting for a future observation, xn+m, is done using the best linear predictor of Xn+m in terms of
X1, . . . , Xn. The coefficients of the best linear predictor involve the parameters of the ARIMA model
used for x1, . . . , xn. These paramters are estimated from data.

We have already seen how the best linear predictor of a random variable Y in terms of W1, . . . ,Wm

is calculated.

Suppose that all the random variables Y,W1, . . . ,Wm have mean zero. Then the best linear predictor
is a1W1 + · · ·+ amWm where a0, . . . , am are characterized by the set of equations:

cov(Y − a1W1 − · · · − amWm,Wi) = 0 for i = 1, . . . ,m.

The above gives m equations in the m unknowns a1, . . . , am. The equations can be written in a compact
form as ∆a = ζ where ∆(i, j) = cov(Wi,Wj) and ζi = cov(Y,Wi).

If the random variables Y,W1, . . . ,Wm have different means: EY = µY and EWi = µi, then the best
linear predictor of Y −µY in terms of W1−µ1, . . . ,Wm−µm is given by a1(W1−µ1)+ · · ·+am(Wm−µm)
where a1, . . . , am are given by the same equation ∆a = ζ. Thus, in these non-zero mean case, the best
linear predictor of Y in terms of W1, . . . ,Wm is

µY + a1(W1 − µ1) + · · ·+ am(Wm − µm).

The prediction error is measured by

E (Y − µY − a1(W1 − µ1)− · · · − am(Wm − µm))
2
.

For ARMA models, there exist iterative algorithms for quickly calculating the best linear predictors
of Xn+m based on X1, . . . , Xn and the corresponding prediction errors recursively over n and m e.g.,
Durbin-Levinson and Innovations. These do not explicit inversion of the matrix ∆.

2 Time Series Data Analysis

1. Exploratory analysis.

2. Decide if it makes sense to transform the data (either for better interpretation or for stabilizing the
variance).

3. Deal with trend or seasonality. Either by fitting deterministic models or by smoothing or differenc-
ing.
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4. Fit an ARMA model to the residuals obtained after trend and seasonality are removed.

5. Check if the fitted ARMA model is adequate (Model Diagnostics).

6. Forecast.

3 Model Diagnostics

After fitting an ARIMA model to data, one can form the residuals: xi− x̂i−1
i by looking at the difference

between the ith observation and the best linear prediction of the ith observation based on the previous
observations x1, . . . , xi−1. One usually standardizes this residual by dividing by the square-root of the
corresponding prediction error.

If the model fits well, the standardized residuals should behave as an iid sequence with mean zero
and variance one. One can check this by looking at the plot of the residuals and their correlogram.
Departures from gaussianity also need to be assessed (this is done by looking at the Q-Q plot).

Let re(h) denote the sample acf of the residuals from an ARMA fit. For the fit to be good, the
residuals have to be iid with mean zero and variance one which implies that re(h) for h = 1, 2, . . . have
to be i.i.d with mean 0 and variance 1/n.

In addition to plotting re(h), there is a formal test that takes into account the magnitudes of re(h)
together. This is the Ljung-Box-Pierce test that is based on the so-called Q-statistic:

Q := n(n+ 2)

H∑
h=1

r2e(h)

n− h
.

Under the null hypothesis of model adequacy, the distribution of Q is asymptotically χ2 with degrees of
freedom H − p− q. The maximum lag H is chosen arbitrarily (typically 20). Thus, one would reject the
null at level α if the observed value of Q exceeds the (1−α) quantile of the χ2 distribution with H−p−q
degrees of freedom.

4 Seasonal ARIMA Models

These provide models that have non-zero autocorrelations for small lags (say, 0 and 1) and also at some
seasonal lag (say, 12) and zero autocorrelation for all other lags.

Consider the MA model: Xt = Zt + ΘZt−12 = (1 + ΘB12)Zt. This can be thought of as an MA(12)
model with θ1 = · · · = θ11 = 0 and θ12 = Θ. This is a stationary model whose autocovariance function
is non-zero only at lags 0 and 12. It is therefore called a seasonal MA(1) model with seasonal period 12.

Generalizing, a seasonal MA(Q) model with seasonal period s is defined by

Xt = Zt + Θ1Zt−s + Θ2Zt−2s + · · ·+ ΘQZt−Qs.

This stationary model has autocorrelation that is non-zero only at lags 0, s, 2s, . . . , Qs. Note that this is
just a MA(Qs) model with the MA polynomial 1 + Θ1z

s + Θ2z
2s + · · ·+ ΘQz

Qs.

For the co2 dataset, we need a stationary model with non-zero autocorrelations at lags 1, 11, 12 and
13 (and zero autocorrelation at all other lags). An example of such a model is given by:

Xt = Zt + θZt−1 + ΘZt−12 + θΘZt−13.
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More compactly, this model can be written as

Xt = (1 + θB + ΘB12 + θΘB13)Zt = (1 + θB)(1 + ΘB12)Zt.

This is just a MA(12) model with the MA polynomial (1 + θz)(1 + Θz12).

It is easy to check that for this model:

γX(h) = (1 + θ2)(1 + Θ2)σ2
Z ,

ρx(1) =
θ

1 + θ2
and ρX(12) =

Θ

1 + Θ2

and

ρX(11) = ρX(13) =
θΘ

(1 + θ2)(1 + Θ2)
.

At every other lag, the autocorrelation ρX(h) equals zero.

More generally, we can consider ARMA models with AR polynomial φ(z)Φ(z) and MA polynomial
θ(z)Θ(z) where

φ(z) = 1− φ1z − φ2z2 − · · · − φpzp,

Φ(z) = 1− Φ1z
s − Φ2z

2s − · · · − Φpz
Ps

and
θ(z) = 1 + θ1z + θ2z

2 + · · ·+ θqz
q,

Θ(z) = 1 + Θ1z
s + Θ2z

2s + · · ·+ ΘQz
Qs.

This is called the multiplicative seasonal ARMA(p, q)× (P,Q)s model with seasonal period s.

In the co2 example, we wanted to use such a model to the first and seasonal differenced data.
Specifically, we want to use the model ARMA(0, 1) × (0, 1)12 to the seasonal and first differenced data:
∇∇12Xt. A sequence {Yt} is said to be a multiplicative seasonal ARIMA model with nonseasonal
orders p, d, q, seasonal orders P,D,Q and seasonal period s if the differenced series ∇d∇d

sYt satisfies an
ARMA(p, q)× (P,Q)s model with seasonal period s.

Therefore, we want to fit the multiplicative seasonal ARIMA model with nonseasonal orders 0, 1, 1
and seasonal orders 0, 1, 1 with seasonal period 12 to the co2 dataset. This model can be fit to the data
using the function arima() with the seasonal argument.

5 Overfitting as a Diagnostic Tool

After fitting an adequate model to the data, fit a slightly more general model. For example, if an AR(2)
model seems appropriate, overfit with an AR(3) model. The original AR(2) model can be confirmed if
while fitting the AR(3) model:

1. The estimate of the additional φ3 parameter is not significantly different from zero.

2. The estimates of the common parameters, φ1 and φ2, do not change significantly from their original
estimates.

How does one choose this general model to overfit? While fitting a more general model, one should not
increase the order of both the AR and MA models. Because it leads to lack of identifiability issues. For
example: consider the MA(1) model: Xt = (1+θB)Zt. Then by multiplying by the polynomial 1−φz on
both sides: we see that Xt also satisfies the ARMA(1, 2) model: Xt−φXt−1 = Zt+(θ−φ)Zt−1+φθZt−2.
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But note that the parameter φ is not unique and thus if we fit an ARMA(1, 2) model to a dataset that
is from MA(1), we might just get an arbitrary estimate for φ.

In general, it is a good idea to find the general overfitting model based on the analysis of the residuals.
For example, if after fitting an MA(1) model, a not too small correlation remains at lag 2 in the residuals,
then overfit with an MA(2) and not ARMA(1, 1) model.
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