Statistics 153 (Introduction to Time Series) Homework Four

Due on 24 April, 2013

14 April, 2013

1. **DFT and Convolution**: For two datasets $x_0, x_1, \ldots, x_{n-1}$ and $y_0, y_1, \ldots, y_{n-1}$, their convolution is the dataset $z_0, z_1, \ldots, z_{n-1}$ defined by

$$z_i = \sum_{j=0}^{n-1} x_{i-j} y_j$$
 for $i = 0, \dots, n-1$

where $x_{-k} = x_{-k+n}$. Find the DFT of z_0, \ldots, z_{n-1} in terms of the DFTs of x_0, \ldots, x_{n-1} and y_0, \ldots, y_{n-1} .

2. Chirps:

- (a) Consider the data $x_t = \sin(\pi t^2/256)$ for $t = 0, 1, \dots, 127$. Plot the data. Also plot the magnitude (absolute) of the DFT coefficients b_1, \dots, b_{64} . Comment on the two plots.
- (b) Repeat the previous exercise for $y_t = \sin(\pi t^2/512)$ and $z_t = \sin(\pi t^2/1024)$. Comment on the differences between the plots.
- 3. Leakage Reduction with a Different Window: Consider the data, $x_t = 10\sin(2\pi f_0 t) + 3\cos(2\pi f_0 t)$ for t = 0, ..., n-1 with n = 100 and $f_0 = 0.062$ that we looked at in class. We have seen that the Leakage in the DFT is substantially reduced if we multiply the data (Hanning) by:

$$h_t = 1 - \cos(2\pi t/n)$$
 for $t = 0, 1, \dots, n-1$.

As suggested in Bloomfield's book (Page 69), consider instead the following window function:

$$w_t = w_p\left(\frac{2t+1}{2n}\right),$$

where

$$w_p(x) = 1 - \cos(2\pi x/p) \quad \text{for } 0 \le x < p/2$$

= 1 for $p/2 \le x < 1 - p/2$
= 1 - $\cos(2\pi (1-x)/p)$ for $1 - p/2 \le x \le 1$.

Multiply the data x_t by this window w_t for p = 0.1 and plot the magnitudes of the DFT terms b_1, \ldots, b_{50} of the resulting data. How much has the leakage reduced compared to Hanning? How much has the leakage reduced compared to the DFT of the raw data? Repeat the exercise for p = 0.2 and p = 0.5. Comment on how the plot changes as p is increased.

4. Consider the sequence of random variables:

$$X_t = A\cos\left(\frac{9}{2}\pi t\right) + B\sin\left(\frac{9}{2}\pi t\right) + Z_t$$
 for $t = ..., -2, -1, 0, 1, 2, ...$

where A and B are uncorrelated random variables with mean 0 and variance σ^2 and $\{Z_t\}$ is white noise with mean 0 and variance σ_Z^2 . Also assume that A and B are uncorrelated with the white noise $\{Z_t\}$.

- (a) Show that $\{X_t\}$ is stationary and find its autocovariance function.
- (b) Find the spectral distribution function of $\{X_t\}$.
- (c) Does $\{X_t\}$ have a spectral density? Explain with reason.