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1 Plan

1. In the last class, we looked at two ways of dealing with trend in time series
data sets - Fitting parametric curves and smoothing.

2. Today, we will finish the story on trend by looking at Filtering (Section
2.5.2) and Differencing (Section 2.5.3).

3. A very common feature of weekly/monthly/quarterly time series data is
seasonality. Seasonality is dealt with in the same way as trend (Section
2.6):

(a) Fitting parametric seasonal functions (sines and cosines).
(b) Smoothing.
(c) Differencing.

2 More General Filtering for Trend Estimation

The smoothing method described in the last class (19 Jan) for estimating the
trend function mt is a special case of linear filtering. A linear filter converts the
observed time series Xt into an estimate of the trend m̂t via the linear operation:

m̂t =
s∑

j=−q

ajXt+j .

The numbers a−q, a−q+1, . . . , a−1, a0, a1, . . . , as are called the weights of the
filter. The Smoothing method is clearly a special instance of filtering with s = q
and aj = 1/(2q + 1) for |j| ≤ q and 0 otherwise.

One can think of the filter as a (linear) system which takes the observed
series Xt as input and produces the estimate of trend, m̂t as output.
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In addition to the choice aj = 1/(2q + 1) for |j| ≤ q, there are other choice
of filters that people commonly use.

(1) Binomial Weights: Based on the following idea. When we are esti-
mating the value of the trend mt at t, it makes sense to give a higher weight to
Xt compared to Xt±1 and a higher weight to Xt±1 compared to Xt±2 and so
on. An example of such weights are:

aj = 2−q

(
q

q/2 + j

)
for j = −q/2,−q/2 + 1, . . . ,−1, 0, 1, . . . , q/2.

As in usual smoothing, choice of q is an issue here.

(2) Spencer’s 15 point moving average: We have seen that simple mov-
ing average filter leaves linear functions untouched. Is it possible to design a
filter which leaves higher order polynomials untouched? For example, can we
come up with a filter which leaves all quadratic polynomials untouched. Yes!

For a filter with weights aj to leave all quadratic polynomials untouched, we
need the following to be satisfied for every quadratic polynomial mt:∑

j

ajmt+j = mt for all t

In other words, if mt = αt2 + βt+ γ, we need∑
j

aj

(
α(t+ j)2 + β(t+ j) + γ

)
= αt2 + βt+ γ for all t.

Simplify to get

αt2 +βt+ γ = (αt2 +βt+ γ)
∑

j

aj + (2αt+β)
∑

j

jaj +α
∑

j

j2aj for all t.

This will clearly be satisfied if∑
j

aj = 1
∑

j

jaj = 0
∑

j

j2aj = 0. (1)

An example of such a filter is Spencer’s 15 point moving average defined by

a0 =
74
320

, a1 =
67
320

, a2 =
46
320

, a3 =
21
320

, a4 =
3

320
, a5 =

−5
320

, a6 =
−6
320

, a7 =
−3
320

and aj = 0 for j > 7. Also the filter is symmetric in the sense that a−1 =
a1, a−2 = a2 and so on. Check that this filter satisfies the condition (1).

Because this is a symmetric filter, it can be checked that it allows all cubic
polynomials to pass unscathed as well.
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(3) Exponential Smoothing: Quite a popular method of smoothing
(wikipedia has a big page on this). It is also used as a forecasting technique.

To obtain m̂t in this method, one uses only the previous observations
Xt−1, Xt−2, Xt−3, . . . . The weights assigned to these observations exponentially
decrease the further one goes back in time. Specifically,

m̂t := αXt−1+α(1−α)Xt−2+α(1−α)2Xt−3+· · ·+α(1−α)t−2X1+(1−α)t−1X0.

Check that the weights add up to 1. α is a parameter that determines the
amount of smoothing (α here is analogous to q in smoothing). If α is close to
1, there is very little smoothing and vice versa.

3 Differencing for Trend Elimination

The residuals obtained after fitting the trend function mt in the model Xt =
mt +Wt are studied to see if they are purely random or have some dependence
structure that can be exploited for prediction.

Differencing is a much simpler technique which produces such de-trended
residuals.

One just looks at Yt = Xt − Xt−1, t = 2, . . . , n. If the trend mt in Xt =
mt +Wt is linear, then this operation simply removes it because if mt = αt+ b,
then mt −mt−1 = α so that Yt = α+Wt −Wt−1.

Suppose that the first differenced series Yt appears purely random. What
then would be a reasonable forecast for the original series: Xn+1? Because Yt is
purely random, we forecast Yn+1 by the sample mean Ȳ := (Y2+· · ·+Yn)/(n−1).
But since Yn+1 = Xn+1 −Xn, this results in the forecast Xn + Ȳ for Xn+1.

Sometimes, even after differencing, one can notice a trend in the data. In that
case, just difference again. It is useful to follow the notation ∇ for differencing:

∇Xt = Xt −Xt−1 for t = 2, . . . , n

and second differencing corresponds to

∇2Xt = ∇(∇Xt) = ∇Xt −∇Xt−1 = Xt − 2Xt−1 +Xt−2 for t = 3, . . . , n.

It can be shown that quadratic trends simply disappear with the operation
∇2. Suppose the data ∇2Xt appear purely random, how would you obtain a
forecast for Xn+1?

Differencing is a quick and easy way to produce detrended residuals and is
a key component in the ARIMA forecasting models (later). A problem however
is that it does not result in any estimate for the trend function mt.
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4 Seasonality

In this section, we shall discuss fitting models of the form Xt = st +Wt to the
data where st is a periodic function of a known period d i.e., st+d = st for all t.
Such a function s models seasonality. These models are appropriate to monthly
or quarterly data sets that have a seasonal pattern to them.

This model, however, will not be applicable for datasets having both trend
and seasonality which is the more realistic situation. These will be focussed a
little later.

Just like the trend case, there are three different approaches to dealing with
seasonality: fitting parametric functions, smoothing and differencing.

4.1 Fitting a parametric seasonality function

The simplest periodic functions of period d are: a cos(2πft/d) and a sin(2πft/d).
Here f is a positive integer that is called frequency. The higher f is, the more
rapid the oscillations in the function are. More generally,

st = a0 +
k∑

f=1

(aj cos(2πft/d) + bj sin(2πft/d))

is a periodic function.

Choose a value of k (not too large) and fit this to the data.

4.2 Smoothing

Because of periodicity, the function st only depends on the d values s1, s2, . . . , sd.
Clearly s1 can be estimated by the average of X1, X1+d, X1+2d, . . . . For exam-
ple, for monthly data, this corresponds to estimating the mean term for January
by averaging all January observations. Thus

ŝi := average of Xi, Xi+d, Xi+2d, . . .

Note that here, we are fitting 12 parameters (one each for s1, . . . , sd) from n
observations. If n is not that big, fitting 12 parameters might lead to overfitting.

4.3 Differencing

How can we obtain residuals adjusted for seasonality from the data without
explicitly fitting a seasonality function? Recall that a function s is a periodic
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function of period d if st+d = st for all t. The model that we have in mind here
is: Xt = st +Wt.

Clearly Xt − Xt−d = st − st−d + Wt − Wt−d = Wt − Wt−d. Therefore,
the lad-d differenced data Xt − Xt−d do not display any seasonal trend. This
method of producing deseasonalized residuals is called Seasonal Differencing.

5 Next Class

1. Dealing with both trend and seasonality (Section 2.6).

2. Transformations (Section 2.4)
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