The shell




The shell: Why we (1?) teach it

Many of the students in my classes know the computer as a Desktop
and a handful of applications (a browser, Word, Excel, maybe R); to
introduce the shell means having a discussion about the structure
of the computer, about operating systems, about filesystems, about
history

The shell offers programmatic access to a computer’s constituent
parts, allow students to “do” data analysis on directories, on
processes, on their network (and | realize that the “data analysis”
metaphor is getting stretched a bit thin)

Given that there are so many flavors of shell, it is also the first time we
can talk about choosing tools (that the choice is theirs to make!),
about evaluating which shell is best for them, and about the shifting
terrain of software development (maybe a point best left for the
graduate students)




The shell: Why we teach it

As a practical matter, shell tools are an indispensable part of my own
practice, for data “cleaning,” for preliminary data processing, for
exploratory analysis; by design, they let you deal with data on a scale
that can be difficult from within R

The shell also becomes important as they start to make use of shared
course resources (data, software, hardware)




The shell: How | teach it

First, all the students in the class need access to a shell; as we
mentioned yesterday, this means having to download something like
Cygwin for students with Windows machines (next page)

In my case, lectures can take place in a lab with uniform hardware and
software (iMacs); when I'm not in the lab, easily 50% of the students
bring their laptops to class and (after preparing them in discussion or
lab session), we can have a “find a buddy” interactive session

The tools are taught in the context of some data task (although by
this point in our workshop the first couple of data sets that | use have
been discussed numerous times and the sense of “discovery” is gone)




Cygwin Information and Installation

“ \ > ¢ i+ ‘C hitp: / /www.cygwin.com/ |a(Q~ Google

[0 Bank Deals ..s and Deals Google Maps Wikipedia News (378) v

GNU + Cygnus

+ Windows =

Cygwin Home What Is Cygwin? C
Cygwin/X Home Cygwin is a Linux-like environment for Windows. It consists of two parts: insal
Red Hat Cvewin e A DLL (cygwinl.dll) which acts as a Linux API emulation layer providing substantial e
Product Linux API functionality.

¢ A collection of tools which provide Linux look and feel.

ommuni

* Beporting Problems The Cygwin DLL currently works with all recent, commercially released x86 32 bit and 64 ‘

e Mailing Lists m Pl
ot bit versions of Windows, with the exception of Windows CE. e

® Newsgroups

Note that the official support for Windows 95, Windows 98, and Windows Me will be

e discontinued with the next major version (1.7.0) of Cygwin.

e Donations

Do menion What Isn't Cygwin?

o User's Guide e Cygwin is not a way to run native linux apps on Windows. You have to
o APIReference rebuild your application from source if you want it to run on Windows.

¢ Aoy e Cygwin is not a way to magically make native Windows apps aware of
Wﬁ UNIX ® functionality, like signals, ptys, etc. Again, you need to build your
® Snaps 018

apps from source if you want to take advantage of Cygwin functionality.

e Source in CVS
e Cygwin Packages

Sofioan Help, contact, web page, other info...
e Setup Package Search
¢ Related Sites
e Licensing Terms l find where a
- gethelpon package or file lives
SOUrceware.org lnslu]l‘;c:tu'pcn.c or using setup.exe. or in the Cygwin

(using setup.exe) release.

Latest Cygwin DLL release version is 1.5.25-14 3




The shell: What | teach

The next few slides are samples of what
| teach; | hadn’t intended to teach the
material here, but instead review the
kinds of things | talk about

In a couple places, we’ll have an
opportunity to look at some data and i’ll
point you to that; we’'ll slow down for
those less standard parts of what |
cover

They are a work in progress and each
year | encounter things that would make
them smoother...

Oh and this GAP icon will indicate
where my lecture notes have been
diced up to focus on just the shell...




For the rest of the session

We will look at the Unix operating system, the philosophy underlying
its design and some basic tools

We will use as our case study the last week of traffic across the
department’s website www.stat.ucla.edu

You will have a chance to kick the tires on these tools and address
some simple web site usage statistics




Operating systems

Most devices that contain a computer of some
kind will have an OS; they tend to emerge when
the appliance will have to deal with new
applications, complex user-input and possibly
changing requirements on its function

Your Tivo, Treo and (soon)
Peugeot will all have operating
systems




symbian

Operating systems

An operating system is a piece of software

Microsgft'
(code) that organizes and controls hardware and L' U Wlndows

other software so your computer behaves in a .
flexible but predictable way / / Automotive

For home computers, Windows, MacOS and
Linux are among the most commonly used
operating systems

POWERED




Some history

In 1964, Bell Labs partnered with MIT and GE to create Multics (for Multiplexed
Information and Computing Service)

“Such systems must run continuously and reliably 7 days a week, 24 hours a
day in a way similar to telephone or power systems, and must be capable of
meeting wide service demands: from multiple man-machine interaction to the
sequential processing of absentee-user jobs; from the use of the system with

dedicated languages and subsystems to the programming of the system
itself”




Some history

Bell Labs pulled out of the Multics project in 1969, a group of
researchers at Bell Labs started work on Unics (Uniplexed
information and computing system) because initially it could
only support one user; as the system matured, it was
renamed Unix, which isn’t an acronym for anything

Richie simply says that Unix is a “somewhat
treacherous pun on Multics”




The Unix filesystem

In Multics, we find the first notion of a hierarchical file system; files
were arranged in a tree structure allowing users to have control of their
own areas

Unix began (more or less) as a file system and then an interactive
shell emerged to let you examine its contents and perform basic
operations




The kernel and the shell

The Unix kernel is the part of the operating system that carries out
basic functions like accessing files, handling communication, and other
functions will discuss shortly

The Unix shell is a user interface to the kernel (keep in mind that Unix
was designed by computer scientists for computer scientists and the
interface is not optimized for novices)




Unix shells

A shell is a type of program called an interpreter; think of it as a text-
based interface to the kernel

It operates in a simple loop: It accepts a command, interprets it,
executes the command and waits for another

The shell displays a prompt to tell you that it is ready to accept a
command




OO O

N Xterm

|[fad-gadget ~]1 I

* A boring slide, but full of potential!




Unix shells

The shell is itself a program that the Unix operating system runs for
you (a program is referred to as a process when it is running)

The kernel manages many processes at once, many of which are the
result of user commands (others provide services that keep the
computer running)

Some commands are built into the shell, others have been added by
users

Either way, the shell waits until the command is executed




Name of the command

How much memory is

being used
How hard the computer
Process ID e .
is thinking about it
‘/ \' '/ \' '/ \I \ xterm
Processes: 80 total, 4 running, 76 sleeping... 193 threads 0:33:46
Load Avgy 1,10, 1,27, 1,24 CPU usage: 46,32 user, 13,8% sys, 39,42 idle
SharedLibs: num = 128, resident = 71,2M code, 4,76M data, 19,5M LinkEdit
MemRegioris: num = 18958, resident = B634M + 19,4M private, 353M shared
thysHem: | 382M wired, | 349H active, 3,62G inactive, 4,33G used, 171H free
WM 9.04U}+ 105M 14Q7?3(0) pageins, 10242(0) pageouts
PID COMMAND ZCPU  TIME  #TH #PRTS #MREGS RPRVT RSHRD RSIZE VSIZE
6420 top 21,82 0302,18 1 16 26 456K+ 492K 840K+ 27,1M
6334 R.bin 0,02 0:01,02 1 13 66 14.4M 2,224 20,0M 44,54
6302 tcsh 0,02 0:00,08 1 12 27 576K 788K 1,09M 22,24
6301 xterm 0,02 0:00,11 1 11 63 556K 2,57M 5,65M 30,2M
6295 tcsh 0,02 0:00,04 1 12 20 248K 784K B92K 22,1M
6288 quartz-um 0,02 0:00,03 2 31 46 432Kk 3,21M 5,60M  173M
6286 Xquartz 2,38 0:16,49 4 177 164 3,07M 20,6M 22,5M  234M
6285 ¥11 0,02 0:00,04 1 19 23 232Kk 1,594 1,84M 28,1M
6260 Keynote 0,08 4:11,95 3 93 910 186M 44,.4M 181M  428M
6236 perl 0,02 1:38,06 1 13 45 3,11 1.53M 4,36M 30,1M
5026 Grab 1,52 0:19,63 3 174 201 4,55M 22,5M 24,9 237M
5005 Preview 0,08 0:29,61 4 95 232 4.50M 22,1M 11,14 23EM
5001 Microsoft 0,72 8:34,85 1 67 218 9,81M 43,7M 21,7M  265M
4987 tcsh 0,02 0:00,15 1 13 27 564K 836K 1,07M 22,24
4936 login 0,02 0:00,02 1 13 38 124K 500K 504K 26,9M
4978 tcsh 0,02 0:00,17 1 13 28 584K 896K 1,08M 22,24 | ~

The result of typing in the command

top; a printout of all the processes
running on your computer




Operating systems

Processor management
Schedules jobs (formally referred to as processes) to be executed
by the computer

Memory and storage management

Allocate space required for each running process in main memory
(RAM) or in some other temporary location if space is tight; and
supervise the storage of data onto disk




Operating systems

Device management

A program called a driver translates data (files from the filesystem)
into signals that devices like printers can understand; an operating
system manages the communication between devices and the
CPU, for example

Application interface

An API (application programming interface) let programmers use
functions of the computer and the operating system without having
to know how something is done

User interface

Finally, the operating system turns and looks at you; the Ul is a
program that defines how users interact with the computer -- some
are graphical (Windows is a GUI) and some are text-based (your
Unix shell)




Unix shell(s)

There are, in fact, many different kinds
of Unix shells

The table on the right lists a few of the
most popular; your default shell is tcsh

Bourne shell /bin/sh
The oldest and most standardized shell. Widely used for
system startup files (scripts run during system startup).
Installed in Mac OS X.

Bash (Bourne Again SHell) /bin/bash
Bash is an improved version of sh. Combines features from
csh, sh, and ksh. Very widely used, especially on Linux
systems. Installed in Mac OS X.
http://www.gnu.org/manual/bash/

C shell /bin/csh
Provides scripting features that have a syntax similar to that
of the C programming language (originally written by Bill
Joy). Installed in Mac OS X.

Korn shell /bin/ksh
Developed at AT&T by David Korn in the early 1980s. Ksh is
widely used for programming. It is now open-source
software, although you must agree to AT&T's license to
install it. http://www.kornshell.com

TC Shell /bin/tcsh
An improved version of csh. The t in tcsh comes from the
TENEX and TOPS-20 operating systems, which provided a
command-completion feature that the creator (Ken Greer) of
tcsh included in his new shell. Wilfredo Sanchez, formerly
lead engineer on Mac OS X for Apple, worked on tcsh in the
early 1990s at the Massachusetts Institute of Technology.

Z shell /bin/zsh
Created in 1990, zsh combines features from tcsh, bash,
and ksh, and adds many of its own. Installed in Mac OS X.
http://zsh.sourceforge.net




‘safIsioAlun je Ajuewnd ‘Ayunwiwod

Jasn able| e sey |Jad “Yme pue [|ays pauiquiod uey} Jepadg
swopad pue a|qejieae Ajoauy; si |Jad asneodag ‘ebenbue)
a|buls e ojul Yme pue ||ays 8y} Jo sanjigeded sy} auiquiod
0} Jdwayne ue si ‘spge L-piw Y} Ul [lepn Alie Aq padojanap
‘abenbue| Jad ay] Me Jo UOHEIOAU| YOBS Ul PaWNSUOD
awil} 8y} Jo asnesaq mojs Buiaq jo abejueapesip ay) pey
siy} ‘suoneoldde Auew Jo4 "suoneoldde 1duos ajum 0} yme
pUE [|8Ys 8y} dUIqUIOD 0} UOWWOD AJSA BWEDda( )| "SaInjes)
l1I8ys awos payoe| ing ‘ebenbue| bunduos asodind-jesausb
aJow e sem s0g6| Alea ay) ul padojaaap yme uoljesauab
-puooas Yy ‘abenbue| uonelauab Lodal e se salojeloge]
|leg jo Jabiaquiap) Jajed pue ‘ueybiuiay ueug ‘oyy

IV A9 S0/61 @1e| 8y} ul padojaAap SEM PUBLILIOD dME Y|

"USY JO UOISIOA 886 | 9U} UM d|qiiedwod pJemyoeq sl

)l ‘suondaoxe ma} UNAA 'spaepuels [1ays D31/0SI Pue XISOd
8y} JO }9s1adns e S Ydlym Ysy| JO UOISIOA B S| USH JO UOISION
€661 UL "US¥ JO UOISIOA 8861 dU) PUE ||BUS A\ Walshs
XINN @y} uo paseq sem ey} abenbue| ||oys e aquIsap
spJepue)s 9say| ‘palijel 91om SpIepue)ls sall|iin pue

IIeYS 2-S%66 O31/OSI PUB Z°€00L XISOd 3331 8Y ‘2661 Ul

"ysy yum ajqnedwod

S| Jayyau ‘Aj@jeunyojun "ysy Jo uoisiaA uiewop aiqnd

e ‘ysypd pue ‘uoiepuno- aiemyos aal4 ayl Aq ‘,||ays uiebe
aulnog_ . ayj ‘yseq Jo uoneald dyj 0} Pa| SeyY SIY] "ulewop
211gnd 8y} Ul Jou SI 821n0s yYsy ‘Alljiqejieae apim s) Jo a)ds uj

daib pue pas ul

punoy Buiyojew uoissaidxa Jejnbai ay} Jo jeyy 0} a|qesedwod
aq 0} ysy jo Aljigedes Buiyojew uiaped ay) papusixa
‘UBHLM SI SIY} Bt} 8} Je painquisip Ajapim jsow auo

8y} ‘ysy JO UOISIBA 8gG L dY] 'suoneald ssadold jo Jaquinu
ay} @onpal 0} sanijiqedes Buijpuey Buuys aiow palinbal sasn
Jama| "uonoalipal /] Bulpuey pue sassasoid dn Buies 1oy
Alewud pasn isiiy sem ysy ‘||ays |eulblo ayy a1 juasedde
aweoaq Ajljeuonouny aiow Joj paau ay} ‘Maib ysy Jo asn sy

‘ooe L9l
Jeuiwla) 8y} jo Wed se Bunips papiroid jeyy sweishs

uo pajgesip aq p|nod Aay} jey} os |euondo apew pue ysy

ojul pajelBejul alem sepow Buiipa aull Ylog ‘uoos uaddey

0} Aj93I| 10U SEM SIU} Jey} Jes|o aweoaq Ji Usym JOASMOH
"JOALP [eulIB) 8Y} OJul dA0W pinom Bunipa aul| ey} adoy ey
Ul pajoafas sem ysy o} Bunipa aul| puewwod Buippe jo espl
ay} AjleulBlQ “Joypa auljul aAoadsal Jiay) pey ysy i Ajuo ysy
asn 0} pajuem jey} suoneziueblo uj alem Yjog pue ‘sainjes)
9Say} ppe 0} [[9ys aulnog ay} payipow Ajpuspuadapul

pey yoe3 "yoeap ayIN Aq apow Bunips aul| soews ay}

pue ‘ueAl|ns yed Aq apow Bunipa aul| 1A 8y} ‘salojeloqe]
|1og 1e siadojanap a1emyos Agq pajeald alom ysy
10 (9powl soewa pue IA) sainjesy Buiips auljul Jeindod ay |

"xejuAs Jayyie 1deooe o} ysy payipow

| ‘Angnedwos piemyoeq aasasald pue |jays A WalsAs

ay} yum Ayjignedwod ulejuiew oy Japlo uj 'ysy Jo Jey} wouly
JUBIaYIP SBM SUOIULSP UONOUN JO) XBJUAS A WB)SAS By}
‘A|@jeuniiojun ‘pappe Sem SUONOUN [[BYS 9Sn pue aulep o}
AJljige 8y} pue ‘Spuewwod Ul-)jing apew alam pmd pue oydoa
‘D Y'®H O} POHUSAUOD SBM |[Bys A WBISAS XINN dU} ‘2861 Ul

‘|o53u0d qol pue ‘saselje ‘AIoisiy

Se yons ||ays O 8y} WoJj saInjesy [njasn pappe pue ‘apod
oly109ds-wIo0) 8y} JO swos parowal | ‘ebenbue| Bunduos
wJoy} 8y} yym Buie)s “sauojeloge] ||og je uonisod yoseasal
© 0} PSAOW | J8)Je UOOS US| JO UOISISA }Sil) 8U) pajeal |

‘Aj3oa.1100ul passjus pey Asyy

1ey) spuewwod adAjai 0} aAeY LUpIp SJasnh jeyy os ‘Aljioe;
Bunips ue pue jsi| AI0}SIy e JO Bapl 8y} PAONPOJIUI }| "8BSI
puBWWOD J8)}aq B sem uoinguiuod Asewud sy ‘Ayjioey
oljoWY}IIe ue pue ‘sajgeleA ||8ys ‘S}onJjsuod [04JuU0d MOj}
pauleluo ||ays 9 ayl 9jIypn -ebenbue| Buiwwelbolid e jou
“a)a1dis)ul puewwod e se pajuswsa|dwi sem i ‘[|ays Aaysep
|y} &1 “|18ys O 8} pa|[ed ||ays mau e Jayyebol ind Aor |Iig
‘Aojaxuag je elulojied Jo AJIsiaAlun By} Je ‘awi) swes sy} 3y

'sseo0.d

a)jeledas e se UsjluM 8q p|nN0D aseqelep sy} passadde

pue ejep paisjus-1asn 8y} passad0.d Jey} puBlWIWOD

8y} Jey} os ss8201dod B Se puewwod e uni o} Ajijigeded

e pappe am ‘Ajjleuld "souewlopad pasoidwi JO} SPUBLIWIOD
ul-jing 3s8} pue ‘pmd ‘0yds pappe pue ‘SpUuBLIWOD Ul-}ing

JO uonoaIIPaI O/| POMOJ[BSIP JBY} UONOLIISDI 8U} POAOWSI

3\ "D JO UOISISA Y9 PJEPUE]S 8IJ0W B 0} I JO UOISISA JNO
PSBJBAUOD M ‘D) JO JuelIeA 8)1|-|0D]y Ue Ul UM Sem [[Bys
aulnog sy} aouIS "awi} Jeyy je s}duos ||ays jsow ueyy Jable)
aq 0} papus} s}duds ||9Ys JNO S2UIS ‘9P0J Jejnpow )M O}
J3ISES }| 9)eW O} PSpPE 8I9M SUOOUNY [[BYS "US3IOS 8y} U0
BJEp JO SUWN|OD |puey 0} pappe sem Ajljioe} Aelse uy "XejuAs
uoissaidxa abenbue| 9 ay) Jo 19sqgns |jews e Buisn onawyiLe
Op 0} }9| PSWEeU Ul-}iNg B PSPPE OS[E S\ HSEW W0}

e ybnouyy ss|gelea [jays indino o} ul-}jing e pue ‘sajqeleA
|Ioys a1eaud pue sajiy uonduosap ajejdwa) wlioy peal o} ul
-1ling e pappe apA siduos [jays se papod sem uoneoldde ay |
‘Alessadau se spuewwod ul-}jing Buippe ‘||dys auinog ay)
BuiAyipow Ag waysAs Aiyua wuoy e }ing am ‘abenbue| jduos
mau e Buijuaaul Jo pesjsu| “wloy yoes Joy weiboud sjesedas
e Bunum uey) Jayjed ‘Ja1aidisiul wloy B pling 0} paploap apA
‘wa)sAs Aljus wioy e papasu ley) sauojeloge |jag 1e 109foud
B UO PayJoM | ,SIBM ||BYS__ Pa||B2-0S 8say) JO awl} 8y} Iy

‘plepue)s ay} se
llIoys aulnog ay} asoyo }| ‘||ays pJepue)s e asooyo o} dn 1as
SEM 99)JILUWIOD Y/ "JBYJ0 8y} Ul 8|gejieAe Alljeuoiiouny ay) aaey
0} ||Iays J1ay} paoueyus yoes ‘sbunesw usamiag ‘sbunesw
dnoub Jasn X|NN 2AISS820NS 9a4y) Je Sased aAloadsal Jiay)
panbie Aayse|\ uyor pue auinog aAa)S °||ldys pJepuels ay)
awWo02aq p|Noys Ydiym o} se UoIsIAIp e o} Buipes| ‘ajqnedwod
JOU 1M S||ays oM} 8y] ‘salojeloqeT ||ag ulyim sBuimoloy
a|geZIs pey s||dys asay) Jo yoes s/l diel ey Ag

‘auljadid e jo ped se s)duos ||ays asn

0} ajqissodui 31 Bujew ‘yndur paepuels wouy Jndul peal |jdys
8y} Jo suoisianA Jale] 'siduos |jays pue sweiboid usamiaq
uonoulsip sy} sjeujwid o} padiay i jeu} sl ||oys auinog

8y} JO SUOIINQUIUOD PAYOOIBA0 USYO 8y} Jo duQ "1duos

By} ojul Ajjoalip pauasul ale 3|l e Jo Sjusjuod ay} Agaiaym
Juswnoop-aiay, 8y} paonposul suinog ‘puewwod ojob

© 10} PadU OU SEM 88y} ‘SaAljiwLd |0JjUOD MO} Yol Y} JO
asneoag "aaJ) 8y} Bunenjeas uay) pue aal} asied e Buipjing
Aq spuewwo2 passaooud ||ays ayj ‘abenbue| ay jo yed sem
saAwd |0J3UOD MOJ} PaINIONJIS JO }8S Yo Y "Sanbiuyosy
abenbue| Buiwweiboid papnjoul Ydiym [|dYs 8y} JO UOISIaA
B 9)0JM S8lI0jeIOqeT ||9g B auinog aA8)S ‘awl} swes a8y} Iy

'sa|gelleA ||ays pappe os|e pue ‘eoueuwllopad

panoidwi Joj sul-}jing 0306 pue JI se yons spuewwod apew
oH "ebenbue| buiwwelboid aaiiwd e se pasn ag p|noo

J1 Jey) os spuewwod Buippe Aq ||ays uosdwoy] 8y} papuaixa
seuojeloge ||og ¥e ASUSeN uyor ‘sp/6L-piw 8} U] "s|lays
panoidwi JO UOISS822NS B 0} P3| YoIym ‘Jasn Aue Aq pajeald
a( p|NoI s||ays mau jeyy jueaw siy| ‘sabajiaud |eroads

Aue aney jou pip jey} weiboud [aAs]-1asn e sem abenbue)
puewwod ||ays uosdwoy ] ay} ‘Swa)sAs Jaj|lea jsow ayljun

‘0j06

Juiq/ Aq 10s uoneso| 8y} wouy INdul pJEPUB)S WO dUl| IXaU
oy} peau } ‘0306/u1q/ BujoAUl WO pauUIN}al [[BYS By} USUYAA
'uoed0| Jey) Je uolsod ¥o9s sy} 18s pue ‘[age| usAlb auy

1oy paxoo]| ‘Indul pJepue)s s) woJj 1dids ay) peal puewwod
0j06/u1q/ 8y "Bul] 8y} JO JopulBwWal By} PAJNJaXa ‘ani} i ‘pue
awnbue 1siy S} pajen|eAs pUBWIWOD Ji/ulg/ 8Y] “SPUBWIWOD
ojesedas se pajeald atom 0}06/uig/ PUe Ji/uig/ SPUBWIWOD

8] ‘POOBLNS |04)UOD MO|} SWOS JOJ PBSBU BY} UBYAN “Suoljouny
pue ‘sa|geleA ‘[0Jjuod MOj4 Se yans saljijioe} abenbue)
JleuonipeJ; Joj woddns ou sem a1ay) ‘1duUOS [|ByYsS e a)eald

9’| ‘Way} unJ pue |} B Ul SpuBWWOD Jo 3duanbas e nd
pInod auo ajiypn “obenbue) Buiwwesboud e jou ‘Jayaidisiul
puewwod e se paubisap sem ||ays uosdwoy] ay|
‘pUBWIWOD IX8U 8y} Joj Indul swodaq pue adid e pajjed i
|e1oads e ybnoly} ssed puewwod auo Jo indino ay} Buiney
Aq Jay}abo} spuewIWIOD J08UU0D O} IO ‘Spuewwod a|buls
9)OAUI 0} Jasnh 8y} pamoj[e }| ‘walsAs Bunesado X|NN Mau a8y}
0} 90BJB)UI BY) Sk ‘saliojelogeT ||og Je uosdwoy ] uay Aq
uapm welboud sjdwis e sem [jays walsAs XINN |eulblio ay |

From "ksh - An Extensible High Level Language" by David G. Korn




Why the choices?

A shell program was originally meant to take commands,
interpret them and then execute some operation

Inevitably, one wants to collect a number of these
operations into programs that execute compound tasks;
at the same time you want to make interaction on the
command line as easy as possible (a history mechanism,
editing capabilities and so on)

The original Bourne shell is ideal for programming; the C-
shell and its variants are good for interactive use; the
Korn shell is a combination of both

Steve Bourne, creator of sh, in 2005




And while we are at it...

Unix itself comes in different flavors; the 1980s saw an incredible
proliferation of Unix versions, somewhere around 100 (System V, AlX,
Berkeley BSD, SunOS, Linux, ...)

Vendors provided (diverging) version of Unix, optimized for their own
computer architectures and supporting different features

Despite the diversity, it was still easier to “port” applications between
versions of Unix than it was between different proprietary OS

In the 90s, some consolidation took place; today Linux dominates the
low-end market, while Solaris, AIX and HP-UX are leaders in the mid-
to-high end




A few common commands

First, commands to explore your file system; walk through directories and
list files

pwd, ls, cd

mkdir, rmdir

cp, mv, rm




0N N

X xXterm

[fad-gadget ] pwd
| /Users/cocteau
E[Fad-gadget “] cd stat202
|[fad-gadget “/stat202] pud
E/Users/cocteau/stat202
|[fad-gadget “/stat202] 1s
|access_2005-12-23_log  lecturel.key lectured key
|lecB.key lecture2 lectured key
|lecturel lecture2, key mtd.key

|[fad-gadget “/stat202]
{[fad-gadget “/stat202] 1s -1
|total 5197144

1122
374
2324

|-ru-r--r-- 1 cocteau staff 2660935374
H|druxr-xr-x 33 cocteau staff
|druxr-xr-x 11 cocteau staff
|druxr-xr-x 86 cocteau staff
|druxr-xr-x 5 cocteau staff
druxr-xr-x 43 cocteau staff
|druxr-xr-x 35 cocteau staff
fdruxr-xr-x 30 cocteau staff
|druxr-xr-x 152 cocteau staff

|[fad-gadget “/stat202] i

4 Oct 08:46
2 Oct 15:15
2 Oct 15:49
2 Oct 15:57
4 Oct 10:33
4 Oct 10:43
4 Oct 08:44
4 Oct 10:10
2 Oct 15:08

access_2005-12-23_log

lecE.key
lecturel
lecturel, key
lecture2
lecture2, key
lecture3, key
lectured key
mtd,key




@ Network
g Fad Gadget
quiet plastic b...

n noisy metal box

n lonesome sou...

[HIE Desktop
¥ adoit3.pdf

i phlal0.pdf
{4 cocteau
A Applications
g’ resp.pdf
D Downloads
h Documents
[ Movies

& Music

statcomputing

3

summer

3

stat202

-

stat257

)

J

§

stead.doc

@ Network

279 items, 5.3 GB 2 Fad Gadget

Another view of the
filesystem; here,
your Mac will display
directories as folders

and you navigate by
clicking rather than
typing commands

quiet plastic b...
n noisy metal box
1] tonesome sou...

» »

»

{HIE Desktop
@ adoit3.pdf

i" phlal0.pdf
ﬂ} cocteau

A Applications
i resp.pdf
g Downloads
h Documents
[ Movies

6 Music

Qrlocal disks

3

stat202.2004

-

stat260

3

students

Qpr local disks

access_2005-12-23_log

N

T

lecturel.key

AN

T

lecture3.key

5

lec6.key lecturel
= N
lecture2 lecture2.key
'y T
lecture4.key mtd.key




An example

[fad-gadget ~/stat202] 1s -1

total 5197144

drwxr-xr-x 11 cocteau staff
drwx——-——-—- 315 cocteau staff
-rw-r--r-—- 1 cocteau staff
drwxr-xr-x 33 cocteau staff
drwxr-xr-x 11 cocteau staff
drwxr-xr-x 86 cocteau staff
drwxr-xr-x 4 cocteau staff
drwxr-xr-x 32 cocteau staff
drwxr-xr-x 35 cocteau staff
drwxr-xr-x 152 cocteau staff

Your user name

The group you belong to
that owns the file

Shorthand for your present
working directory (where

you're at)
Shorthand for the directory
one level above
374 4 Oct 10:10 .
10710 4 Oct 08:59 ..
2660935974 4 Oct 08:46 access__ 2005...
1122 2 Oct 15:15 lecé6.key
374 2 Oct 15:49 lecturel
2924 2 Oct 15:57 lecturel.key
136 4 Oct 09:41 lecture2
1088 4 Oct 10:10 lecture2.key
1190 4 Oct 08:44 lecture3.key
5168 2 Oct 15:08 mtd.key
The file’s size
in bytes
The file’s

creation date

The file’'s name




Kinds of files

What you'll notice right away is that there are different types of files
having different permissions

Unix filesystem conventions places (shared, commonly used)
executable files in places like /usr/bin or /usr/local/bin

Different files are opened by different kinds of programs; in OSX, there
is a beautiful command called open that decides which program to use




Kinds of files

Filenames which contain special characters like * and ~ are candidates
for filename substitution

~ refers to your home directory and * is a wildcard for any number of
characters

Other special characters like {, [ and ? can also be expanded, but we’'ll
get to them when we learn a bit more about regular expressions




Unix shells

There are many flavors of Unix Shells; that is, there are many kinds of
programs that operate as shells

sh, csh, tcsh, bash, ksh

They are all programs and can be found on the file system

which sh




An example: HTTP access logs

www.stat.ucla.edu

The department runs an Apache Web server running on
taia.stat.ucla.edu

Each request, each click by a user out on the Internet browsing our
site, is logged

There are standards for these files, but in general, they can be a bit
hairy to “parse”




Data

The students (if I'm in the lab) will have a data set

(access log.txt) pre-loaded for them; otherwise | point them
to the location of the data and we (inevitably) have to talk about
downloading, etc.

http://www.stat.ucla.edu/~cocteau/stat202a/data




HTTP access logs

A bit of digging...

Commands

pwd, ls, cd

more/less, tail, wc

cut, sort, uniq




% head access_log.

134.226.32.
134.226.32.
134.226.32.
134.226.32.

74.6.28.138 - -

164.67.132.
164.67.132.
134.226.32.
134.226.32.
134.226.32.

57 - - [20/Sep/2007:07:54:29 -0700] "GET /~sczhu/icons/daught.gif HTTP/1.0" 200 1898 "http://www.stat.ucla.edu/~sczhu/" "Mozilla/
57 - - [20/Sep/2007:07:54:29 -0700] "GET /~sczhu/icons/bio.gif HTTP/1.0" 200 1681 "http://www.stat.ucla.edu/~sczhu/" "Mozilla/5.0
57 - - [20/Sep/2007:07:54:30 -0700] "GET /~sczhu/Zhu LA sm.gif HTTP/1.0" 200 39313 "http://www.stat.ucla.edu/~sczhu/" "Mozilla/5.
57 - - [20/Sep/2007:07:54:30 -0700] "GET /favicon.ico HTTP/1.0" 200 318 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:l
[20/Sep/2007:07:54:50 -0700] "GET /~nchristo/statisticsl00B/syllabusl00b.pdf HTTP/1.0" 200 47206 "-" "Mozilla/5.0 (compatibl
219 - - [20/Sep/2007:07:54:55 -0700] "GET /robots.txt HTTP/1.0" 200 559 "-" "gsa-crawler%20%28gsal%2C%20contact%3A%20jhuang%40ais
219 - - [20/Sep/2007:07:54:55 -0700] "GET /rss/feed.php?unit=uclastat HTTP/1.0" 200 1739 "-" "gsa-crawler%20%28gsal%2C%20contact?
57 - - [20/Sep/2007:07:55:03 -0700] "GET /%7Esczhu/talks.html HTTP/1.0" 200 9489 "http://www.stat.ucla.edu/~sczhu/" "Mozilla/5.0
57 - - [20/Sep/2007:07:55:03 -0700] "GET /%7Esczhu/icons/back2.gif HTTP/1.0" 200 17061 "http://www.stat.ucla.edu/%$7Esczhu/talks.h
57 - - [20/Sep/2007:07:55:03 -0700] "GET /%7Esczhu/icons/bio.gif HTTP/1.0" 200 1681 "http://www.stat.ucla.edu/%7Esczhu/talks.html

txt

% wc access_log.txt

200000 3890201 46321543 access.txt

% tail access_log.

76.169.68.146 -
76.168.75.194 -
217.212.224.159

68.180.251.
68.180.251.
74.6.24.11

216.125.49.
216.125.49.
216.125.49.
216.125.49.

16 -
16 -
252
252
252
252

[26/Sep/2007:19:32:27 -0700]

txt

[26/Sep/2007:19:31:57 -0700]
[26/Sep/2007:19:31:58 -0700]

- [26/Sep/2007:19:31:58 -0700] "GET /~dinov/courses_students.dir/PIC20_Summer00.dir/docs/appenda/?M=D HTTP/1.0" 200 814 "-

[26/Sep/2007:19:32:12 -0700]
[26/Sep/2007:19:32:12 -0700]

[26/Sep/2007:19:32:39 -0700]
[26/Sep/2007:19:32:39 -0700]
[26/Sep/2007:19:32:39 -0700]
[26/Sep/2007:19:32:39 -0700]

"GET /~ktranbar/deptphotos-Pages/Image35.html HTTP/1.0" 200 480 "-" "Mozilla/5.0 (compatible; Ya

"GET /graphics/rss20.gif HTTP/1.1" 200 219 "http://www.stat.ucla.edu/" "Mozilla/4.0 (compatib
"GET /favicon.ico HTTP/1.1" 304 - "-" "Mozilla/5.0 (X1l1l; U; Linux i686; en-US; rv:1.8.0.12) G

"GET /~dinov/courses_students.dir/Applets.dir/Normal T Chi2_ F Tables.htm HTTP/1.0" 200 11205
"GET /index.php HTTP/1.0" 200 17447 "-" "Wget/1.10.2 (Red Hat modified)"

"GET / HTTP/1.1" 200 17335 "http://www.mhhe.com/biosci/cellmicro/lewisd4e/student/casehist.mh
"GET /index.css HTTP/1.1" 200 5869 "http://www.stat.ucla.edu/" "Mozilla/4.0 (compatible; MSI
"GET /css/uclastat/site.css HTTP/1.1" 200 4822 "http://www.stat.ucla.edu/" "Mozilla/4.0 (com
"GET /graphics/rss20.gif HTTP/1.1" 200 219 "http://www.stat.ucla.edu/" "Mozilla/4.0 (compati




Combined log format

IP address
|dentity
Userid
date
Request
Status
Bytes
Referrer

Agent




Unix pipes

Programs usually take some kind of input and generate some kind of
output

Unix tools often take input from the user and print the output to the
screen

“Redirection” of data to and from files or programs is controlled by
pipes




Redirecting output with “|”

Takes output from one command and submits it as input to the next
command

Examples
cut -d” “ -f1,10 access_ log.txt

cut -d” “ -f9 access log.txt




$ cut -d” “ -f9 access log.txt | head

200
200
200
200
302
200
304
200
200
200
200
200
200
200
200
200
200
200
302
200
200
200
200
200 ...




In general...

cut -d” “ -f1,5,9 select the first, fifth and ninth
cut -d” “ -f1-5 select the first through the fifth
cut -d” “ -f1 select just the first




Sending output to a file with “>”

With this form of redirection, we take a stream of processed data and
store it in a file

Example

cut -d” “ -fl1 access log.txt > ips.txt




Taking input from a file with “<”
With this form of redirection, we create an input stream from a file

Example

wc < access_ log.txt




The pipeline

As the name might imply, you can connect pipes and have data stream
from process to process

Example
cut -d”
cut -d”
cut -d”

“ -fl1 access log.txt | sort | uniqg -c | sort -rn

“ -f9 access log.txt | sort | uniqg -c

“ -fl access log.txt | sort | uniq | wc




% cut -d “ “ -f1 access log.txt | sort | uniq | wc

17128 17128 238213

$ cut -d” “ -f9 access log.txt | sort | uniqg -c | sort -rn

o

158760 200
16161 304
9690 206
6794 404
6043 301
1652 403
836 302
25 401

19 405

12 500

4 400

3 501

1 416




What are these numbers?

A fast Google search gives us a list of possible
errors

Note that Error 200 actually means a success

Error 206 means that only part of the file was
delivered; the user cancelled the request before
it could be delivered

Error 304 is “not modified”; sometimes clients
perform conditional GET requests

HTTP Error 101
Switching Protocols. Again, not really an "error", this HTTP Status
Code means everything is working fine.

HTTP Error 200

Success. This HTTP Status Code means everything is working fine.
However, if you receive this message on screen, obviously something
is not right... Please contact the server's administrator if this problem
persists. Typically, this status code (as well as most other 200 Range
codes) will only be written to your server logs.

HTTP Error 201
Created. A new resource has been created successfully on the
server.

HTTP Error 202
Accepted. Request accepted but not completed yet, it will continue
asynchronously.

HTTP Error 203
Non-Authoritative Information. Request probably completed
successfully but can't tell from original server.

HTTP Error 204
No Content. The requested completed successfully but the resource
requested is empty (has zero length).

HTTP Error 205
Reset Content. The requested completed successfully but the client
should clear down any cached information as it may now be invalid.

HTTP Error 206

Partial Content. The request was canceled before it could be fulfilled.
Typically the user gave up waiting for data and went to another page.
Some download accelerator programs produce this error as they
submit multiple requests to download a file at the same time.

HTTP Error 300
Multiple Choices. The request is ambiguous and needs clarification
as to which resource was requested.

HTTP Error 301
Moved Permanently. The resource has permanently moved
elsewhere, the response indicates where it has gone to.

HTTP Error 302
Moved Temporarily. The resource has temporarily moved elsewhere,
the response indicates where it is at present.

HTTP Error 303
See Other/Redirect. A preferred alternative source should be used at
present.




$ cut -d” “ -fl access log.txt | sort | uniqg -c | sort -rn

13050
8086
4227
2304
1661
1360
1161
1081
1064

956
808
763
757
720
668
569
548
518
513
505
503
497
496
487
478
473

70.184.223.117
164.67.132.219
164.67.132.220
128.97.86.248
128.97.55.194
66.249.73.99
128.97.55.208
208.68.136.250
207.46.98.57
76.167.214.187
207.46.98.56
87.237.114.11
207.46.98.58
63.241.61.68
61.149.63.50
164.67.134.26
69.12.181.75
196.1.114.240
65.55.209.79
76.167.183.169
65.55.209.83
217.212.224.159
76.168.72.146
65.55.209.82
65.55.209.78
65.55.209.80

more




The pipeline

In 1972, pipes appear in Unix, and with them a philosophy, albeit after
some struggle for the syntax; should it be

more(sort(cut)))

[Remember this; S/R has this kind of functional syntax]

The development of pipes led to the concept of tools -- software
programs that would be in a tool box, available when you need them

“And that’s, | think, when we started to think consciously
about tools, because then you could compose things
together... compose them at the keyboard and get them
right every time.”

from an interview with Doug Mcllroy




Read the man pages!

If the command unigq is unfamiliar, you can look up its usage

Example

man uniq
man host




OO0 N Xterm

UNIQ(L) BSD General Commands Manual UNID(1)

NAHE
uniq - report or filter out repeated lines in a file

SYNOPSIS
wiq [¢ | -d | —u] [-F fields] [—s chars] [input file [output file]]

DESCRIPTION
The uniq utility reads the standard input comparing adjacent lines, and
writes a copy of each unique input line to the standard output, The sec-
ond and succeeding copies of identical adjacent input lines are not writ-
ten, Repeated lines in the input will not be detected if they are not
adjacent, so it may be necessary to sort the files first,

The following options are available:

- Precede each output line with the count of the number of times
the line occurred in the input, followed by a single space,

- Don't output lines that are not repeated in the input,
—+ fields

-4+
 —




% host 70.184.223.117
117.223.184.70.in-addr.arpa domain name pointer
wsip-70-184-223-117.om.om.cox.net.

% host 164.67.132.219
219.132.67.164.in-addr.arpa domain name pointer
gsal.ais.ucla.edu.

% host 66.249.73.99
99.73.249.66.in-addr.arpa domain name pointer
crawl-66-249-73-99.googlebot.com..




whois 70.184.223.117

Cox Communications Inc. NETBLK-COX-ATLANTA-10 (NET-70-160-0-0-1)
70.160.0.0 - 70.191.255.255

Cox Communications NETBLK-OM-CBS-70-184-208-0 (NET-70-184-208-0-1)
70.184.208.0 - 70.184.223.255

# ARIN WHOIS database, last updated 2007-09-26 19:10
# Enter ? for additional hints on searching ARIN's WHOIS database.
blowtorch:~ cocteau$ whois 66.249.73.99

OrgName: Google Inc.

OrgID: GOGL

Address: 1600 Amphitheatre Parkway
City: Mountain View

StateProv: CA
PostalCode: 94043
Country: us

NetRange: 66.249.64.0 - 66.249.95.255

CIDR: 66.249.64.0/19
NetName: GOOGLE

NetHandle: NET-66-249-64-0-1
Parent: NET-66-0-0-0-0
NetType: Direct Allocation

NameServer: NS1.GOOGLE.COM
NameServer: NS2.GOOGLE.COM
NameServer: NS3.GOOGLE.COM
NameServer: NS4.GOOGLE.COM

Comment :
RegDate: 2004-03-05
Updated: 2007-04-10

OrgTechHandle: ZG39-ARIN
OrgTechName: Google Inc.
OrgTechPhone: +1-650-318-0200

OrgTechEmail: arin-contact@google.com

# ARIN WHOIS database, last updated 2007-09-26 19:10
# Enter ? for additional hints on searching ARIN's WHOIS database.




But what are we really after?

Rather than splitting up the data in access_log.txt by day, we might
consider dividing it by IP

Once we have such a thing, we can use the command wc to tell us
about the number of accesses from each user

We can also start to “fit” user-level models that can be used to predict
navigation




Rudimentary pattern matching

grep can be used to skim lines from a file that have (or don’t have) a
particular pattern

Patterns are specified via regular expressions, something we will learn
more about later

The name comes from an editing operation on Unix: g/re/p
Example

grep 85.249.135.15 access log.txt
grep /~dinov access log.txt




% grep 70.184.223.117 access_log.txt| more

70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.
70.184.223.

117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117
117

20/Sep/2007:13:10:16
20/Sep/2007:13:10:20
20/Sep/2007:13:10:21
20/Sep/2007:13:10:21
20/Sep/2007:13:10:22
20/Sep/2007:13:10:23
20/Sep/2007:13:10:24
20/Sep/2007:13:10:27
[20/Sep/2007:13:10:27
[20/Sep/2007:13:10:27
[20/Sep/2007:13:10:28
[20/Sep/2007:13:10:28
[20/Sep/2007:13:10:29
[20/Sep/2007:13:10:30
[20/Sep/2007:13:10:30
[20/Sep/2007:13:10:31
[20/Sep/2007:13:10:31
[20/Sep/2007:13:10:31
[
[
[
[
[
[
[
[

[
[
[
[
[
[
[
[

20/Sep/2007:13:10:32
20/Sep/2007:13:10:33
20/Sep/2007:13:10:33
20/Sep/2007:13:10:33
20/Sep/2007:13:10:34
20/Sep/2007:13:10:35
20/Sep/2007:13:10:35
20/Sep/2007:13:10:35
[20/Sep/2007:13:10:36
[20/Sep/2007:13:10:37
[20/Sep/2007:13:10:37
[20/Sep/2007:13:10:37
[20/Sep/2007:13:10:38
[20/Sep/2007:13:10:39

% grep 70.184.223.117 access_log.txt | grep -v

/ HTTP/1.1" 200 16974 "-" "Mozilla/4.0 (compatible)"

/graphics/rss20.gif HTTP/1.1" 200 219 "-" "Mozilla/4.0 (compatible)"
/index.css HTTP/1.1" 200 5869 "-" "Mozilla/4.0 (compatible)"
/css/uclastat/site.css HTTP/1.1" 200 4822 "-" "Mozilla/4.0 (compatible)"

/rss/feed.php?unit=uclastat HTTP/1.1" 200 1751 "-" "Mozilla/4.0 (compatible)"
/centers HTTP/1.1" 301 323 "-" "Mozilla/4.0 (compatible)"
/centers/ HTTP/1.1" 200 6509 "-" "Mozilla/4.0 (compatible)"

/program/faqg.php HTTP/1.1" 200 18662 "-" "Mozilla/4.0 (compatible)"

/graphics/point.gif HTTP/1.1" 200 2397 "-" "Mozilla/4.0 (compatible)"
/research HTTP/1.1" 301 324 "-" "Mozilla/4.0 (compatible)"

/research/ HTTP/1.1" 200 552 "-" "Mozilla/4.0 (compatible)"
/research/index_head.php HTTP/1.1" 200 690 "-" "Mozilla/4.0 (compatible)"
/research/index_body.php HTTP/1.1" 200 3712 "-" "Mozilla/4.0 (compatible)"
/visitors HTTP/1.1" 301 324 "-" "Mozilla/4.0 (compatible)"

/visitors/ HTTP/1.1" 200 2016 "-" "Mozilla/4.0 (compatible)"

/library HTTP/1.1" 301 323 "-" "Mozilla/4.0 (compatible)"

/library/ HTTP/1.1" 200 550 "-" "Mozilla/4.0 (compatible)"
/library/index_head.php HTTP/1.1" 200 927 "-" "Mozilla/4.0 (compatible)"
/library/index_body.php HTTP/1.1" 200 3261 "-" "Mozilla/4.0 (compatible)"
/noteworthy HTTP/1.1" 301 326 "-" "Mozilla/4.0 (compatible)"

/noteworthy/ HTTP/1.1" 200 556 "-" "Mozilla/4.0 (compatible)"
/noteworthy/index head.php HTTP/1.1" 200 659 "-" "Mozilla/4.0 (compatible)"
/noteworthy/index_body.php HTTP/1.1" 200 3336 "-" "Mozilla/4.0 (compatible)"
/alumni HTTP/1.1" 301 322 "-" "Mozilla/4.0 (compatible)"

/alumni/ HTTP/1.1" 200 548 "-" "Mozilla/4.0 (compatible)"

/alumni/index head.php HTTP/1.1" 200 870 "-" "Mozilla/4.0 (compatible)"
/alumni/index body.php HTTP/1.1" 200 2369 "-" "Mozilla/4.0 (compatible)"
/cases HTTP/1.1" 301 321 "-" "Mozilla/4.0 (compatible)"

/cases/ HTTP/1.1" 200 546 "-" "Mozilla/4.0 (compatible)"
/cases/index_head.php HTTP/1.1" 200 639 "-" "Mozilla/4.0 (compatible)"
/cases/index body.php HTTP/1.1" 200 4366 "-" "Mozilla/4.0 (compatible)"
/data HTTP/1.1" 301 320 "-" "Mozilla/4.0 (compatible)"

library




NEED WEBSITE TRAFFIC?

Starting Now From.

Quien es mas macho?

In online marketing, hits rule the roost; ./ﬂ)

the more raw traffic you attract, the

greater your opportunities for making a < I m m e n Se HITS
sale

a

Alright, so it's not as simple as that, but Blazing Traffic
let’'s see what we can learn about Real Visitors for Your Website
centers Of activity on our Website Delivered 24 hours a day - GUARANTEED!




Quien es mas macho?

Compute the number of hits to the portions of the site owned by
Song-Chun Zhu, Vivian Lew, Brian Kriegler, Debbie Barrera and
Ivo Dinov

Who received the most hits last week?

What can you say about the kinds of files that were
downloaded?

What was the most popular portion of each site?




Then...

Pull back a little and tell me about the site and the habits of its visitors;
specifically, think about

When is the site active? When is it quiet?

Do the visitors stay for very long? Do they download any of our
papers or software? What applications do they run?

On the balance, is our traffic “real” or mostly the result of robots or
automated processes?




A second data set

We have assembled a list of all the bylines associated with articles
appearing in the New York Times in 1950

Some of this was entered by hand when the archive was scanned into
digital form, but that doesn’t mean the data are clean!

We have a simple task: Provide me with a list of journalists and the
number of items they wrote in 1950




% head 1950.txt

By PAUL CROWELL

The New York Times (by Edward Hausner)

By LEE E.COOPER

By JOHN D. MORRIS Special to THE NEW YORK TIMES.
By KALMAN SEIGEL

By HAROLD FABER

The New York Times

By FELIX BELAIR Jr. Special to THE NEW YORK TIMES.

By LI

NDESAY PARROTT Special to THE NEW YORK TIMES.

Special to THE NEW YORK TIMES.

% weC

53203

1950.txt

317055 1703966 1950.txt

% sort 1950.txt | unig -c¢ | sort -rn | head

26194
1452
392
369
263
258
223
203
202
199
188
188
187
183
178
172
169

Special to THE NEW YORK TIMES.

The New York Times

By The Associated Press.

Special to THE NEW YORK TIMES

By THOMAS F. BRADY Special to THE NEW YORK TIMES.
By ARTHUR DALEY

Bradford Bachrach

By LINDESAY PARROTT Special to THE NEW YORK TIMES.
The New York Times Studio

The New York Times (Washington Bureau)

By RAYMOND R. CAMP

By ORVILLE PRESCOTT

By ARTHUR KROCK
By WILLIAM S. WHITE Special to THE NEW YORK TIMES.
By BOSLEY CROWTHER
By DREW MIDDLETON Special to THE NEW YORK TIMES.
By HAROLD CALLENDER Special to THE NEW YORK TIMES.




NYT Data set

We have a simple task: Provide me with a list of journalists and the
number of items they wrote in 1950

For this week, simply have a look at the data and anticipate
complications that you might encounter when taking on the somewhat
simply-stated accounting operation







From machine to machine

Before we get on with today’s lecture, there are a couple dangling
topics we should mention

In your other courses (and in the bootcamp a week ago) you will run/
ran R on the computer on your desk

The Statistics Department has a number of computers available to you
that are more powerful (memory, speed) than those on your desk

You can navigate between machines by invoking ssh and move files
using scp (example shortly)




000 N xterm

[fad-gadget “] ssh otter,berkeley,edu
Passwords
Linux Debian/Ubuntu 2,6,12-1-amd64-k8-smp #1 SHP lled Sep 28 CEST 2005 x86_64

Commands and programs that run under Solaris may not be available
or may behave differently under GNU/Linux,

You have new mail,
Last login: Mon Oct 9 09:54:42 2006 from 169,232,148.1

Please visit http://www,stat,berkeley,edu/trouble when reporting problems,
NOTICE: The SCF modems are temporarily out of service,
>> SYSTEM DOWNTIME: The server will be rebooted at noon on Monday, Oct 9,
otter,berkeley,edu 1> 1s *, txt
abstractraphael ,txt dj.txt fri,txt infl,txt resp,txt trace,txt

cmu,abs, txt fl,txt ignorable,txt list,txt source,txt tt,txt
otter,berkeley,edu 2> i

% ssh otter.berkeley.edu




Running jobs

Last time we discussed some basic facts about operating systems; a
large part of their functioning is devoted to managing jobs (or
programs) run by different users

We used the top command to give a dynamic display of what was
running, how much of the computer’s resources it was using up, etc.




S M M
ANANA

N Xterm

Processes:
Load Avg:

52 total, 2 running, 50 sleeping,,, 161 threads 09:25:40
0,00, 0,00, 0,00 CPU usage: 0,9% user, 3,6% sys, 95,5% idle

SharedLibs: num = 146, resident = 27,9M code, 3.59M data, 8.14M LinkEdit
MemRegions: num = 9586, resident = 130M + 5,73M private, 45,4M shared

Phystem?

201M wired, 82,1M active, 161M inactive, 445M used, 2,07G free

YM: 4,080 + 91,4M  31653(0) pageins, 0(0) pageouts
PID COMMAND ZCPU  TIME  #TH #PRTS #MREGS RPRYT RSHRD RSIZE WYSIZE

27487 top 9,28 0:02,50 1 13 22 424k 3,91M 2,29M 26,9M
27482 tcsh 0,08 0:00,16 1 15 22 580K 4,16M 1,09M 31,1M
27481 sshd 0,08 0:00,00 1 11 40 108Kk 4,784 496K 29,39M
27477 sshd 0,08 0:00,13 1 18 40 108Kk 4,78 1,19M 30,0M
26416 tcsh 0,08 0:00,32 1 15 22 580K 4,16M 1,10M 31,1M
26415 sshd 0,08 0:00,42 1 11 40 112k 4,784 496K 29,39M
26409 sshd 0,08 0:00,13 1 18 40 100k 4,78 1,15M 30,0M
13378 httpd 0,02 000,01 1 12 139 256K 16,3M 1,454 62,3M
19328 httpd 0,08 0:00,010 1 12 196 388K 16,3M 1.62M 62,3M
18444 check_afp 0,02 0:00,01 2 24 21 160K 4,2IM 1,98M 27,1M
382 AppleVNCSe 0,0 3:18,57 7 2> 49 1.27M 4,324 2,15M  159M
381 ARDAgent 0,08 0:02,732 6 95 78 984K 4,85M 2,16M  192M
377 Securityhg 0,02 0:06,17 1 71 115 3,054 12,6M 10,1M  216M
376 authorizat 0,02 0:00,68 1 22 24 260K 4,35M 968K 27.3M
379 mexd 0,08 2:24,04 1 43 55 17,0M 5,71 17.6M  179M
371 WindowServ 0,02 3:32,31 3 103 108 1,35M 11.4M 6,914 195H || ~

Running top on lab-compute.stat.ucla.edu
How many processes are running?

How much RAM is available?




S M M
ANANA

\ cocteau@taia.stat.ucla.edu

Processes: 163 total, 1 zombie, 2 running, 1 stuck, 159 sleeping,., 3 09:30:47
Load Avg: 0,15, 0,05, 0,01 CPU usage: 3.2% user, 7,3% sys, 89.5% idle
SharedLibs: num = 123, resident = 30,6M code, 2,02M data, 9,75M LinkEdit
MemRegions: num = 19151, resident = 25B6M + 5,95M private, 31,8M shared
PhysMem:  187M wired, 6392M active, 1,06G inactive, 1,92C used, 83,4M free

YM: 6,826 + 100M  4B013057(0) pageins, 913985(0) pageouts

PID COMMAND #CPU  TIME  #TH #PRTS #MREGS RPRVT RSHRD RSIZE VSIZE

29028 rotatelogs 0,0 0:00,01 1 11 15 80K 376K 280K 17.6M
25342 httpd 0,08 8:51,55 1 10 503 27,0M 8,61M 29,24 86.7M
25335 httpd 0,08 8:28,11 1 10 468 22,24 11.4M 27,24 86.7M
25333 httpd 0,08 9:12,30 1 10 477 27,1M 8,61M 30,24 86.7M
25331 httpd 0,08 8:53,57 1 10 417 24,0M 8,61M 21,24 86.7M
25330 rotatelogs 0,02 0:02,83 1 12 16 108K 380K 316K 17.6M
25329 rotatelogs 0,02 0:00,83 1 12 16 104K 380K 312K 17.6M
25328 rotatelogs 0,02 0:00,03 1 12 16 104K 380K 312K 17.6M
25327 rotatelogs  0,0% 0:00,03 1 12 16 104K 380K 312K 17.6M
25326 rotatelogs 0,02 0:00,22 1 12 16 104K 380K 312K 17.6M
25325 rotatelogs 0,02 0:00,00 1 12 16 104K 380K 312K 17.6M
25324 rotatelogs 0,02 0:00,03 1 11 15 80K 376K 280K 17,.6M
25323 rotatelogs  0,0% 0:00,45 1 12 16 104K 380K 312K 17.6M
25322 rotatelogs  0,0¢ 0:00,03 1 12 16 104K 380K 312K 17.6M
25321 rotatelogs  0,0Z 0:00,01 1 12 16 104K 380K 312K 17.6M
25320 rotatelogs  0,0Z 0:00,03 1 11 15 80K 376K 280K 17.6M | ~

Running top on taia.stat.ucla.edu

How many processes are running?
How much RAM is available?

What do you reckon this computer does?




Another way to get at processes

While top gives you a dynamic, um constantly updating, view of what

the processor is doing, you can use the command ps to give you a
snapshot

The command ps has lots and lots of options; it lets you look at all
users, just a specific user and control the format of the output

Just typing ps will give you the processes that you started (or were
started on your behalf); we can also see what others are up to (ah, the
joys of a multi-user system)




USER
cocteau
daemon
nobody
chea
rosario
rosario
rrojas
arno
arno

Wil

Wil

Wil

Wil

Wil

zzsi
arno
erickson
erickson
cocteau

PID ZCPU ZMEM

557
121
197
13976
8132
8134
23080
21414
21415
10870
11227
11228
11527
16196
10625
27118
1388
1283
558

[login:™] cocteau

1.1

0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
21

*

0
0
0
0
0
0
0
0
1
_1.
1
1
1
0
0
0
0
0

-0,0

+*

*

*

*

*

*

*

*

*

*

*

*

+*

*

*

*

PPRPOPRPMNOAONNONNPRP,P SO oo o

*

Y52
30740
18084
268364
28420
30740
22684
30740
30740
22684
72164
72164
70076
72164
72164
58120
34884
30740
22684
22684

N\ cocteau@login

[login:™] cocteau? ps -aux | grep -v root | grep -v postfix

RSS TT STAT STARTED

464
444
1036
504
296
816
116
440
1036

??
??
??

S
Ss
Ss

pi- S

??
po
??
??
po
??
??
??
??
??
??
P8
9

S
Ss+
S

S
S
S
S
S
S
S
S
S
S

Ss+
Ss

9:29AM
BAuglB
BAugOB
115ep06
205ep0b
205ep0b
235ep0b
ThullAM
ThullAM
Sat04AM
Sat05AM
Sat05AM
Sat05AM
Sat10AM
12:53PH
6:19AM
9:23AM
9:23AM
9:29AM

TIME COMMAND

00,09 Ausr/sbin/sshd -i
1,07 portmap

1,11 Ausr/sbin/mDNSResponder

65.55 ssh cvs,programmers,ucla,edu -1 chea cvs server
0,99 Ausr/sbin/sshd -i

0,50 -tcsh

0,01 Ausr/sbin/sshd -i

0,12 Ausr/sbin/sshd -i

0,21 -tcsh

6,93 Ausr/sbin/httpd

1,04 Ausrisbin/httpd

5,80 usrisbin/httpd

1,38 Ausr/sbin/httpd

2,20 Zusrisbin/httpd

3
0
0,
0,
0,

02
02
9:
02
02
02
02
02
02
43
43
43
43
32
2:23,36 Xusr/sbin/smbd -0
02

02

02

03

Running “ps -aux”on login.stat.ucla.edu

What can we see?

Who are the users?

* the option -a gives you information on all users, -u gives you a popular view (fields)
of the processes, and -x gives you processes that aren’t necessarily associated
with a terminal -- this output has been edited slightly with some “grep -v”’s




Job control

Unix allows you to run several processes at once; each process is
given a number which you can use to change the status of the process

Because many jobs are running on the computer, the amount of
“attention” they get from the central processing unit is controlled by
their priorities (-20 to 20, with the higher the number meaning the
lower the priority)

nice and renice lets you lower the priority on a job that you know
will run for a long time, freeing system resources for others; kill can
be used to end processes (politely or with a greater sense of urgency)




000 N XxXterm

[fad-gadget “] R

)

+ Copyright 2004, The R Foundation for Statistical Computing
Yersion 1,9,1 (2004-06-21), ISBN 3-300051-00-3

R is free software and comes with ABSOLUTELY NO WARRAMTY,
You are welcome to redistribute it under certain conditions,
Type 'license()' or 'licence()' for distribution details,

R iz a collaborative project with many contributors,
Type 'contributors()' for more information and
‘citation()' on how to cite R in publications,

Type 'demol)' for some demos, 'help()' for on-line help, or
'‘help,start()' for a HTML browser interface to help.
Type 'q()' to quit R, OO O

N Xterm

USER PID NI COMMAND

cocteau 10406 0 grep R

USER PID NI COMMAMD

cocteau 10412 0 grep R
[fad-gadaet “1 i

[fad-gadget “] renice 15 -p 10236
102363 old priority 0, new priority 15

[fad-gadget “] ps -o user,pid,nice,command | grep R

> cocteau 10236 0 /Library/Frameworks/R,framework/Resources/bin/R,bin

Lfad-gadget ™) ps -o user,pid,nice,command | grep R

cocteau 10236 15 /Library/Frameworks/R,framework/Resources/bin/R.bin




Job control

C-z stops jobs, C-c kills them, and C-d kills your shell

You can also set jobs to run in the background (which means your
prompt returns)

The command jobs lets you see what jobs you have running

If you stop a job, you can restart it or restart it in the background using
the commands bg and fg




Cntl-z hit here

In response, Unix stops
the job and gives you a
list of other jobs you
have stopped or are
running in the
background

X Xterm
[compute:™] cocteau? R

R : Copyright 2005, The R Foundation for Statistical Computing
Yersion 2,1,1 (2005-06-20), ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY MO WARRANTY.
You are welcome to redistribute it under certain conditions,
Type 'license()' or 'licence()' for distribution details,

R iz a collaborative project with many contributors,
Type 'contributors()' for more information and
'‘citation()' on how to cite R or R packages in publications,

Type 'demof)' for some demos, 'help()' for on-line help, or
'help,start()' for a HTML browser interface to help,
Type 'q()' to quit R,

[Previously saved workspace restored]

>

[1] - 27308 Suspended (tty output) emacs commands,txt
[2] + 27310 Suspended R

[compute:™] cocteaud

[compute:™] cocteau? fg %2

R

> 1310
[i] 1 2 3 456 7 8 910




GAP

We get to running R on a file of commands, running R in batch
mode and so on later in the quarter...




Back to your “assignments” from last time
Who had the most hits and how did you compute it?

What about the open-ended questions... What are the active periods of
the day? What did you learn?

Take about a half an hour to discuss what you found




Also...

| might not have emphasized enough that each of the commands we
worked with can either take input from a file as in

sort access log.txt

or from a pipe (so-called standard input), as in

grep dinov access log.txt | sort




New data

We are now going to look at a series of log files containing data from
chat sessions recorded last year; in a two-hour recording session last
year we captured 46,000 lines from 4,500 people

The data are stored on 1lab-compute.stat.ucla.edu and you can
bring them to your desktop with the command

scp -r lab-compute.stat.ucla.edu:/Data/chat .

copy recursively (a directory copy it to a directory of the same name (in
and all its contents) this case “chat”) on your local machine

copy the directory /pata/chat from the
computer lab-compute.stat.ucla.edu




000 N Xterm

[fad-gadget “] cd chat
[fad-gadget “/chat] ls
total 11640
-ru-r--r-- 1 cocteau staff 507715 9 Oct 12:40 now,1159914021,txt
-ru-r--r-- 1 cocteau staff 555894 9 Oct 12:40 now,1159917841,txt
-ru-r--r-- 1 cocteau staff 454160 9 Oct 12:40 now,1159920765,txt
-ru-r--r-- 1 cocteau staff 447638 9 Oct 12:40 now,1159924151,txt
-ru-r--r-- 1 cocteau staff 450546 9 Oct 12:40 now,1159927582,txt
ru-r--r-- 1 cocteau staff 529160 9 Oct 12:40 now,1159992088,txt
ru-r--r-- 1 cocteau staff 479573 9 Oct 12:40 now,1159995531,txt
ru-r--r-— 1 cocteau staff 407640 9 Oct 12:40 now,1159998154,txt
ru-r--r-— 1 cocteau staff 613252 9 Oct 12:40 now,1160410547,txt
ru-r--r-— 1 cocteau staff 540785 9 Oct 12:40 now,1160413861,txt
ru-r--r-- 1 cocteau staff 494676 9 Oct 12:40 now,1160416555,txt
ru-r--r-- 1 cocteau staff 456485 9 Oct 12:40 now,1160419326,txt
fad-gadget “/chat] wc *

10000 92622 507715 now,1159914021,txt

10000 101173 555894 now,1159917841,txt

10000 82973 454160 now,1159920765,txt

10000 81708 447638 now,1159924151,txt

10000 82399 450546 now,1159927582,txt

10000 96956 529160 now,1159992088,txt

10000 88012 479573 now,1159995531, txt

10000 74815 407640 now,1159995154,txt

10000 111328 613252 now,1160410547 , txt

10000 98653 540785 now,1160413861,txt

10000 89669 494676 now,1160416555, txt

10000 83455 456485 now,1160419326,txt

120000 1083763 5937524 total
fad-gadget “/chat] |}

1




Rudimentary pattern matching

We have already seen some basic pattern matching notions; recall the
command “wc *.txt”

In this expression “*” acts as a wildcard and matches anything

The files now.1159914021.txt, now.1159927582.txt,
now.1160410547.txt, now.1159917841.txt, now.
1159992088.txt, now.1160413861.txt,
now.1159920765.txt, now.1159995531.txt, now.
1160416555.txt, now.1159924151.txt, and now.
1159998154 .txt will all be returned by this command




Rudimentary pattern matching
In the expression “*.txt” we can name two kinds of characters
The “.txt” is made up of literal or normal text characters

The “*” is a metacharacter




GAP

We get to running R on a file of commands, running R in batch
mode and so on later in the quarter...




Before the break...

We discussed your experiments with the Web server data

How would we get a time series of hits per day?
Who had the largest number of hits?
What can you say about the files being accessed?

The command grep let us extract lines from a file that contained a
string of characters; as we started digging into the data, we wanted a
more expressive tool for defining patterns

Before the break, we discussed so-called regular expressions, a
language for describing patterns in text data




And in this session...

Sidestepping the issue of a text corpus somewhat, we are now in a
good position to start looking at the Enron email data set

Initially, we have to understand the structure of these data before we
dig a bit into the social networking “analysis” that is to come

It will also give us an opportunity to consider simple shell scripts; a
mechanism by which we collect commands into reusable programs




Enron

Today we are going to start our work on a set of data related to the
Enron corporation

Some relevant links are

http://www.chron.com/news/specials/enron/timeline.html

http://www.cs.cmu.edu/~enron/

http://www.stat.ucla.edu/~cocteau/klimt-ecml04-1.pdf

http://www.stat.ucla.edu/~cocteau/Enron Employee Status.htm




Enron emails

As part of its investigation into
Enron, the Federal Energy
Regulatory Commission

released the emails of about 150

of its top executives

These data were then cleaned
up by groups at MIT and SRI
and are now publicly available
through the CMU CS
Department

To respect the privacy of the
individuals involved, | have
replaced the body of each email
with x’s; our interest is not in
what was said but who sent
email to whom

O

Documents Press : Legal

Energy Supply & Demand

Electric

Annual Charges

Federal Energy

Regulatory Commission

Safety and Inspections
Environment

Industry Activities

Electric Reliability

Regional Transmission
Organization Activities

Power Blackout

Addressin

the 2000-2001

Western Energy Crisis

Generator Interconnection
Joint Boards

Open Access Transmission
Tariff (OATT) Reform

Transmission Line Siting

General Information

Hydropower

Liquefied Natural Gas (LNG)

Industries

Addressing the 2000-2001 Western En

Information Released In Enron Investigation

The featured links below go to data related
Most of the data linked through this page Is
(formerly Aspen Corporation) outside of FER

You may search for emalls, scanned docume
flles, data sets and other miscellaneous files
directery, or you may also try these predeflr
sets and databases may alse be ordered dirg

1. Data on ICONECT 24/7 (Note: You will

ICONECT 24/7 Is an Lockheg
may search and access datg
and transcripts. Search ICOl

Description:

Instructions:

Contents:

Note for First-Time Users

Customer
Protection

Note about the "Scanned Dol

» User Gulde [PDF] - Inst

» Database Flelds Descrip
Information Is stored In

» Enron Emall - Database
emalls.

» Scanned Documents - (
150,000 scanned pages
provided to FERC during
underwent an optical ch
that created computer-1
as a fleld In each recor

» Transcripts - 40 transcri




Organization of the data

The data itself is organized into a series of directories, each named
after an executive

Under each directory, you will find possibly more directories, each
representing a different mail folder

At the lowest level, you have a series of email messages, one per file;
the files in each directory are named 1., 2., 3., etc.

The files we will work with are in /Data/mailfileson lab-
compute




X Xterm
[fad-gadget maildir] ls
allen-p fischer-m kitchen-1 phanis-s smith-m
arnold-j forney-j kuykendall-t pimenov-y solberg-g
arora-h fossum-d lavorato-j platter-p south-s
badeer-r gang-1 lay-k presto-k staab-t
bailey-s qay-r lenhart-m quenet-j stelair-c
bass-e geaccone-t lewis-a quigley-d steffes—j
baughman-d germany-c linder-e rapp-b stepenovitch-j
beck-s gilbertsmith-d lokay-m reitmeyer-j stokley-c
benson-r giron-d lokey-t richey-c storey-g
blair-1 griffith-j love-p ring-a sturm—-f
brawner-s grigsby-m lucci-p ring-r swerzbin-m
buy-r quzman-m maggi-m rodrique-r symes—k
campbel1-1 haedicke-m mann-k rogers-b taylor-m
carson-m hain-m martin-t ruscitti-k tholt-j
cash-m harris-s may-1 sager-e thomas-p
causholli-m hayslett-r mccarty-d saibi-e townsend-j
corman-s heard-m mcconnel 1-m salisbury-h tycholiz-b
crandell-s hendrickson-s  mckay-b sanchez-m ward-k
cuilla-m hernandez-j mckay-j sanders-r watson-k
dasovich-j hodge-j mclaughlin-e scholtes-d weldon-c
davis-d holst-k merriss-s schoolcraft-d  whalley-g
dean-c horton-s meyers-a schwieger-j whalley-1
delainey-d hyatt-k mims-thurston-p scott-s white-s
derrick-j hyvl-d motley-m semperger-c whitt-m
dickson-s jones-t neal-s shackleton-s williams-j
donoho-1 kaminski-v nemec-q shankman-j williams-w3
donohoe-t kean-s panus-s shapiro-r wolfe-j
dorland-c keavey-p parks-j shively-h ybarbo-p
ermis—f keiser-k pereira-s skilling-j zipper-a
farmer-d king-j perlingiere-d  slinger-r zufferli-j
[fad-gadget maildir] i




An example

Here we select the ex-Vice
President for Regulatory
Affairs, Shelley Corman

We see the 11 mail folders;
selecting the calendar folder,
we exhibit the content of mail
2.

Note again, that all textual
content has been replaced by
X’s; we are only interested in
(at best) the pattern of
communication

X Xterm

[fad-gadget maildir] cd corman-s/
[fad-gadget corman-s] ls

. contacts ingaastudy
all_documents deleted_items marketingaffiliate
calendar discussion_threads osha
communications inbox sent_items

[fad-gadget corman-s] cd calendar/
[fad-gadget calendar] ls
13, 29, 38, 47, 56, 65, 74, a3, 92,

10, 2, ER 33, 483, 57, 66, 75, 84, 93,
11, 20, 30, 4, 43, 58, 67, 76, 85, 94,
12, 21, 21, 40, 5., 53, 68, 77, 86, 95,
13, 22, 32, 41, 50, 6 63, 78, 87, 96,

14, 23, 33, 42, 51, 60, 7. 79, aa, 97,
15, 25, 34, 43, 52, 61, 70, 8, 89,
16, 26, 35, 44, 53, 62, 71, 80, 9.
17, 27, 36, 45, 54, B3, 72, a1, 90,
18, 28, 37, 46, 55, 64, 73, a2, 91,
[fad-gadget calendar] cat 2,
Message-1D: <8257359,1075858837944, Javaiail ,evans@thyme>
Date: Mon, 29 Oct 2001 10:23:04 -0800 (PST)
From: jean,mcfarland@enron,com
To: jean,mcfarland@enron,com, lynn,blair@enron,com, sheila,naceyBenron,com,
John,buchanan@enron,com, toby,kuehl@enron,com,
shel ley,corman@enron,com, scott,abshire@enron,com,
gary,kenagy@enron,com, bradley,holmes@enron,com, bob,hagen@enron,com,
mary,vol lmer@enron,com, terry.kowalke@enron,com,
steve, january@enron,com, don,dazelenron,com
Subject: Updated: Overall Update for DRA (BCP)
Mime-VYersion: 1,0
Content-Type: text/plain: charset=us-ascii
Content-Transfer-Encoding: 7bit
K¥-From: McFarland, Jean </0=ENROM/0U=NA/CN=RECIPIENTS/CN=JMCFARL>
#¥-To: McFarland, Jean </0=ENRON/QU=NA/CN=RECIPIENTS/CN=Jmcfarl>, Blair, Lynn <
=ENRON/0U=NA/CN=RECIPIENTS/CN=Lblair>, Macey, Sheila <{/0=EMRON/0U=NA/CN=RECIPI
TS/CN=Snacey>, Buchanan, John </0=ENRON/OU=NA/CN=RECIPIENTS/CN=Jbuchan2>, Kueh
Toby </0=ENRON/OU=NA/CN=RECIPIENTS/CN=Tkuehl>, Corman, Shelley </0=ENRON/OU=N
CH=RECIPIENTS/CN=Scorman>, Abshire, Scott </0=ENRON/OU=NA/CN=RECIPIENTS/CN=Sab
ir>, Kenagy, Gary </0=ENRON/0U=NA/CN=RECIPIENTS/CN=Gkenagy>, Holmes, Bradley <
=ENRON/0U=NA/CN=RECIPIENTS/CN=Bholmes>, Hagen, Bob </0=ENROM/0U=MA/CH=RECIPIEN
/CN=Bhagen>, Vollmer, Mary </0=ENROM/OU=NA/CN=RECIPIENTS/CN=Mvollme>, Kowalke,
erry </0=ENRON/OU=NA/CN=RECIPIENTS/CN=Tkowalk>, January, Steve </0=ENRON/DU=NA
N=RECIPIENTS/CN=Sjanuary>, Daze, Don </0=ENRON/OU=NA/CN=RECIPIENTS/CH=Ddaze>
K-ccs
K-beces
¥-Folder: “\SCORMAN {(Mon-Privileged)\Calendar
#¥-Origin: Corman-S
¥-FileName: SCORMAM {Non-Privileged),.pst

OO0 0000 X0 X000 20000000 XX 00000 XX 00O OO XXX XXX |:)()(
+ A A 0000 X0 00000 00000 300 000 2000C 200000C 20000 3000 J000OONXXXX
XXX

XXXKXK, XXX XXXXXX
[fad-gadget calendar] |




Some questions
What is the distribution of numbers of emails per user?
Are the users organizing their email into folders?
Are certain folders common to all users?

What is the distribution of emails per folder?




Hint: One more helpful command

The Unix command find traverses a directory tree and returns the

files and directories it finds; you can limit the search with various
options

For example:

Consider only those email messages numbered 404 .

find corman-s -name 404.

Consider only those entries that don’t end in a period (.)

find corman-s regex ‘[".]$’




OO0 N Xterm

[fad-gadget maildir] find corman-s/ -name 404,
corman-s//deleted_items/404,
corman-s//inbox/archives/404,
corman-s//sent_items /404,
[fad-gadget maildir]

[fad-gadget maildir] find  corman-s -regex ',*[*,]$'
corman-s

corman-s/all_documents
corman-s/calendar
corman-s/communications
corman-s/contacts
corman-s/deleted_items
corman-s/discussion_threads
corman—-s/inbox
corman—-s/inbox/archives
corman-s/inbox/archives/old_messages
corman-s/inbox/archives___post_revised_order
corman-s/ inbox/bankruptcy
corman-s/inbox/budget
corman—-s/inbox/kidsave

corman-s/ inbox/measurement
corman-s/inbox/haesb

corman-s/ inbox/oneok
corman-s/inbox/tw_neg_rates
corman-s/inbox/twdatarequests
corman-s/inbox/vacation_schedules
corman—-s/ingaastudy
corman-s/marketingaffiliate
corman-s/osha

corman-s/sent_items

y| [Fad-gadget maildir] |




Putting this to work

We can now answer some of the questions about folder usage with

calls to £ind, cut and sort; first, emails per user and folders per
user

X Xterm

[fad-qgadget Datal] find maildir -type fl cut -d"/" -f2| uniq -cl sort -rn | head
28465 kaminski-v
28234 dasovich-j
25351 kean-s
23381 mann-k
19950 jones-t
18687 shackleton-s
13875 taylor-m
132032 farmer-d
12436 germany-c
11830 beck-s
[fad-gadget Data] find maildir -type d | cut -d"/" -f2 | unigq ¢ | sort -rn | he
ad

199 kean-s

138 beck-s

117 shapiro-r

112 shackleton-s

89 taylor-m

82 mcconnell-m

78 griffith-j

72 germany-c

70 watson-k

70 blair-1
[fad-gadget Datal i

Bl




Counts per user

As was the case for hit counts per IP

address, we see a very skewed distribution

(what Malcolm Gladwell would call a
“hockey stick” distribution)

In the bottom figures
we present a histogram
and a Q-Q plot for the
logarithm of the counts

Fre

30

20

15

10

X! R Graphics: Device 2 (ACTIVE)
Histogram of log(email counts) per executive

Frequency

Sample Quantiles

a0

60

40

X! R Graphics: Device 2 (ACTIVE)

Histogram of email counts per executive

—/ —r— | —
T T T T T T 1
0 5000 10000 15000 20000 25000 30000

number of emails

X!/ R Graphics: Device 2 (ACTIVE)

Normal Q-Q Plot: log(email counts)

Theoretical Quantiles




|dentifying common folders

The email from 150 executives are included in this file; some folders
have similar structures

X Xterm

[fad-qgadget Datal] find maildir -maxdepth 2 -mindepth 2| cut -d"/" -f3 > out,txt
[fad-gadget Data] sort out,txt | uniq -c | sort -rn | head -20
137 inbox
136 sent_items
135 deleted_items
110 all_documents
93 discussion_threads
89 sent
82 notes_inbox
78 _sent_mail
71 calendar
46 contacts
39 personal
35 tasks
34 to_do
11 eol
10 prc
9 private_folders
7 presentations
7 ees
7 canada
7 california




Looking inside

In a previous version of these slides, we considered a unique message
ID tag; instead, let’s consider a time series of the number of emails by

day

If we look at the structure of the email header we see that a message’s
date is kept in a field called Date:




OO0 N Xterm

Message-I1D: <4493790,1075858840249, Javaiail ,evans@thyme>
Date: Mon, 29 Oct 2001 09:33:30 -0800 (PST)

From: forrester@forrester,com

To: weekly_research@frstrelay00l, forrester,com

Subject: Mew Research From Forrester -- 10/29/2001
Mime-Yersion: 1,0

Content-Type: text/plain: charset=us-ascii
Content-Transfer-Encoding: 7bit

#-From: Forrester Research, Inc, <forrester@FORRESTER,COM>
#¥-To: WEEKLY_RESEARCHEfrstrelayd0l,forrester,com

K-ccs

#-bces

#-Folder: “SCORMAN (Mon-Privileged)\Inbox

#-Origin: Corman-S

¥-FileMame: SCORMAN {Mon-Privileged),pst

M OO XX X0C, OO XXX == X X0 KK

KXXX XX XXXX XXXXXXXXXX XXX

XXX OOOCEEK OO XOCEKNAAXN XX XA XXK XX XXKK XA XX XHAXXKK KKK
FK OO X 20000 OO, 200000 000000 X000 200000 20000 20000
XXHHXT XK KA XXK HKHHHX XHHAAT XK HKHHHAXK XHHHHAK XHHHK XXKK KA T
XA X HOOCCEEHNH XA XHHHH XK HKHOOK HKHOOOCEHK XXX XHHHHHK
HHOCOOOOCEN XXX XXHH KKK XK XK XN K HOEHHCHHH XHHAXXKHHK
XAXXRRX XXXXXXXK XXXXXXX S

HKXXXAK Ky HHRNXNK ;XA 200K, JOOCRXXXX , XXX XXX, XKXXXAXXK XXX




Timing is everything

The dates in Corman’s inbox folder can be extracted with a simple
call to grep

o606 X Xxterm

[fad-gadget inbox] egrep '“Date:h ' *, | head -20
1,:Date: Mon, 29 Oct 2001 09:33:30 -0800 (PST)
10, :Date: Sun, 28 Oct 2001 07:34:20 -0800 (PST)
11,:Date: Sat, 27 Oct 2001 11:15:21 -0700 (PDT)
12,:Date: Fri, 26 Oct 2001 14:21:09 -0700 (PDT)
13,:Date: Wed, 26 Oct 0001 09:46:23 -0800 (PST)
14, :Date: Fri, 26 Oct 2001 07:53:46 -0700 (PDT)
15, :Date: Thu, 25 Oct 2001 16:32:35 -0700 (PDT)
16,:Date: Tue, 25 Oct 0001 12:43:42 -0800 (PST)
17.:Date: Thu, 25 Oct 2001 08:20:20 -0700 (PDT)
18,:Date: Thu, 25 Oct 2001 08:04:21 -0700 (PDT)
19,:Date: Thu, 25 Oct 2001 06:11:56 -0700 (PDT)
2.:Date: Sat, 29 Oct 0001 21:16:57 -0800 (PST)
20,:Dates Thu, 25 Oct 2001 05:14:08 -0700 (PDT)
21,:Date: Wed, 24 Oct 2001 19:47:56 -0700 (PDT)
22,:Date: Wed, 24 Oct 2001 18:29:59 -0700 (PDT)
23,:Date: Wed, 24 Oct 2001 18:30:48 -0700 (PDT)
24,:Date: Wed, 24 Oct 2001 17:08:15 -0700 (PDT)
25, :Date: Tue, 23 Oct 2001 16:38:07 -0700 (PDT)
26, :Date: Tue, 23 Oct 2001 15:55:15 -0700 (PDT)
27.:Date: Tue, 23 Oct 2001 12:05:06 -0700 (PDT)
[fad-gadget inbox] i

o




Shell programs

There are over 150 different directories and it will be hard to extract all
the information we are after by hand

Technically, we can use the find command to execute a program on
each file or directory it encounters™; for the moment, we will ignore this
and use date extraction as an application of shell scripting

You can collect a series of Unix commands into a shell program; this
allows you to repeat commands over different inputs

* The command would look something like
find maildir -type f -exec egrep '"Date:' {} ';'

Consult the web site below for more information on £ind
http://www.gnu.org/software/findutils/manual/html mono/find.html




Not really a gap, but a good time
to spilit...

From here, | teach a bit about
shell programming; | do this
because | want the students to
see that the commands they’'ve
been using can be assembled into
programs that can repeat their
operations

This will be, of course, a theme in
the class; moving from exploratory
computing to program-writing; it
also lets me talk a bit about
permission bits and some trailing
filesystem facts




A simple shell program

At the right we have a short program

contained in a file dates.sh
egrep

OK, it isn’t much of a program, but it's a

reasonably good place to start

The $1 here refers to the first argument
we use to call the program

'""Date:’

S1




Running a shell script

There are two ways to run a shell script; you can either execute it
within a new shell (recall that the shell sh is just another command)

% sh dates.sh

This should explain the funny suffix we used for our filename; this kind
of naming convention will help you (and others) recognize this file as a
shell script (program)

The second way to run this script is to make the file executable; that is,
it becomes just like any command Unix knows about

Let's see how this is done; it requires looking a little into how the
filesystem specifies permissions, who can do what to a file




Permission bits

Unix can support many users on a single system and each user can
belong to one or more groups

Every file in a Unix filesystem is owned by some user and one of that
user’s groups; each file also has a set of permissions specifying which
users can

r: read
w: write (modify) or
X: execute

the file; these are specified with three “bits” and we need three sets of
bits to define what the user can do, what their group (that owns the
file) can do and what others can do




An example

Shorthand for your present
working directory (where
you're at)

[ fad-gadget marketingaffiliate] ls -al

total 72
drwxr-xr-x
drwxr-xr-x 1
-rw-r—--r--
-rw-r—--r--
-rw-r—--r--
-rw-r—--r--—
-rw-r—--r--
-rw-Yr—--r--
-rw-r—--r--

T el e el e )

cocteau
cocteau
cocteau
cocteau
cocteau
cocteau
cocteau
cocteau
cocteau

Your user name

staff 306
staff 476
staff 2191
staff 4587
staff 1061
staff 1845
staff 2220
staff 4163
staff 2101

The group you belong to

that owns the file

11
11
11
11
11
11
11
11
11

Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct

13
13

:33
:33
14:
14:
14:
14:
14:
14:
14:

14
14
14
14
14
14
14

Shorthand for the directory
one level above

2.
3.
4.

6.
7.

The file’'s name

The file’s creation date

The file’s size

in bytes




An example The type of file

drwxXr-xr-x
drwxr-xr-x

-rw-r—--r—-
-rwW-Y—-—-r—-—
-rw-r—--r—-
-rw-r—--r—-

What you can
do to the file

What the owning
group can do

cocteau
cocteau
cocteau
cocteau
cocteau
cocteau

e i B R N V)

staff
staff
staff
staff
staff
staff

What others can do




In general...

The command chmod changes the permissions on a file; here are
some examples

oo

chomd g+x dates.sh

oo

chmod ug-x dates.sh

oo

chmod a+w dates.sh

oo

chmod go-w dates.sh

You can also use binary to express the permissions; so if we think of
bits ordered as rwx, then

r-x | 1 x224+0x2+1x20=5
rwx | 1x22+1x2l+1x20=7
r—— | 1x224+0x2+0x20=14

and we can specify permissions with these values

% chmod 755 dates.sh




A simple shell program

In addition to making our program
executable, we need to give the
operating some help in figuring out what
interpreter to use

That is, we need to tell Unix that the
following lines are to be executed in the
shell

We start the file with the location of the
shell command; if we were working in
Python (we’ll see this next time), we'd

have usr/bin/python

#!/bin/sh

egrep

'"Date:’

S1




A simple shell program

After that long detour, we could do the following; note that to call the
program, we have to tell Unix where to find it

SNAYA X xterm

[fad-gadget Datal ls

dates,sh maildir

[fad-gadget Data] chmod +x dates,sh

[fad-gadget Data]

[fad-gadget Datal 1s -1

total 8

—PUXP=XP=X 1 cocteau staff 224 16 Oct 13:28 dates,sh
druxr-xr-x 152 cocteau staff 5168 11 Oct 11:19 maildir
[fad-qadget Datal

[fad-gadget Datal] cd maildir/corman—-s/inbox

[fad-gadget inbox]

[fad-gadget inbox] /Data/dates,.sh 2,

Date: Sat, 29 Oct 0001 21:16:57 -0800 (PST)

[fad-gadget inbox]

[fad-gadget inbox] /Data/dates,.sh 1,

Date: Mon, 29 Oct 2001 09:33:30 -0800 (PST)

[fad-gadget inbox]

[fad-gadget inbox] /Datasdates,sh 30,

Date: Mon, 22 Oct 2001 14:48:40 -0700 (PDT)

[fad-gadget inbox] i




A simple shell program

Arguably, we haven’t done much in
terms of easing our workload

Instead, we could consider looping over
all the files in a directory; the slight
elaboration of our original program is
given at the right

Here we see our basic command to find
dates, but it's in the body of a for loop

#!/bin/sh

for i in “1s ; do

egrep
done

'“Date:’

Si




For loops

The basic structure of this
construction is given at the right

If you have done any programming,
this loop will function as you expect;
each pass through the loop assigns

one valuein 1istto var

This is one of several constructions
that control the operation or flow of
your running program

In our script, the variable i takes the
output from the command 1s; note
that when we want the value of i we
use $i

ttp://www.ooblick.com/text/sh/

for var in 1list; do
commands
done

#!/bin/sh
for i in "1s ; do

egrep '"Date:' Si
done




A simple shell program

In our script, the symbol i is a variable; it
takes the output from the command 1s

When we want the value of i in our script
we refer to $i

Variables are used by the shell to
remember information; for example, when
you start a shell, a number of variables get
set by default

#!/bin/sh

for i in “1s ; do

egrep
done

'“Date:’

Si




The path your shell searches for
Your home directory programs; remember which?

™ M M
FNFfDNY

N Xterm

[fad-gadget all_documents] echo $HOME
/Users/cocteau

[fad-gadget all_documents] echo $PATH
fusrflocal/bing/sw/bint/sw/sbing /Users/cocteaus/bing /Users/cocteau/nyt imes/chunke
r/brill/RULE_BASED_TAGGER_Y1,14/Bin_and_Data/:/usr/local /teTeX/bin/powerpc-apple
—-darwin-current:/Applications/ImageMagick-5,5,6/bins/usr/local/bins/su/bing/sw/s
bin:/Users/cocteaus/bing /Users/cocteaus/nyt imes/chunker/brill/RULE_BASED_TAGGER_V1
14/Bin_and_Data/:/usr/local /teTel/bin/poverpc-apple-darwin-current :/Application
s/ ImageMagick-5,5,6/bint/usr/bint/bint/usr/sbini/sbin:/Users/cocteaus /usr/¥11RE/
bin

[fad-gadget all_documents] i

)




A simple shell program

In this short program, we see two different
kinds of quotation marks; there are, in
fact, three different such constructions

1. ~command’ : Backquotes execute
the enclosed command and catch
the output; here it is assigned in turn

to i

2. ‘“string” : Double quotes allow us to
slip in special characters that are
expanded; so “echo $1” would print
the first argument

3. ‘string’ : Single quotes aren’t very
fancy; everything inside is as it
appears

#!/bin/sh

for i in “1s ; do

egrep
done

'“Date:’

Si




A simple shell program

Running this program generates a single date line for every file in the
directory; it scrolls by rather quickly and then...

N Xterm

[fad-gadget inbox] /Data/dates,sh

Date: Mon, 29 Oct 2001 09:33:30 -0800 (PST)
Date: Sun, 28 Oct 2001 07:34:20 -0800 (PST)
Date: Sat, 27 Oct 2001 11:15:21 -0700 (PDT)
Date: Fri, 26 Oct 2001 14:21:09 -0700 (PDT)
Date: lled, 26 Oct 0001 09:46:23 -0800 (PST)
Date: Fri, 26 Oct 2001 07:53:46 -0700 (PDT)
Date: Thu, 25 Oct 2001 16:32:35 -0700 (PDT)
Date: Tue, 25 Oct 0001 12:43:42 -0800 (PST)
Date: Thu, 25 Oct 2001 08:20:20 -0700 (PDT)
Date: Thu, 25 Oct 2001 08:04:21 -0700 (PDT)
Date: Thu, 25 Oct 2001 06:11:56 -0700 (PDT)
Date: Sat, 29 Oct 0001 21:16:57 -0800 (PST)
Date: Thu, 25 Oct 2001 05:14:08 -0700 (PDT)
Date: led, 24 Oct 2001 19:47:56 -0700 (PDT)
Date: led, 24 Oct 2001 18:29:59 -0700 (PDT)
Date: led, 24 Oct 2001 18:30:48 -0700 (PDT)
Date: Wed, 24 Oct 2001 17:08:15 -0700 (PDT)
Date: Tue, 23 Oct 2001 16:38:07 -0700 (PDT)
Date: Tue, 23 Oct 2001 15:55:15 -0700 (PDT)
Date: Tue, 23 Oct 2001 12:05:06 -0700 (PDT)
Date: Tue, 23 Oct 2001 19:02:55 -0700 (PDT)

g




A simple shell program

...we find a series of errors; what do these mean?

000 X Xterm

Date: Mon, 25 Mar 2002 13:05:22 -0800 (PST)
Date: Mon, 25 Mar 2002 13:28:31 -0800 (PST)
Date: Mon, 25 Mar 2002 14:09:13 -0800 (PST)
Date: Mon, 25 Mar 2002 15:12:01 -0800 (PST)
Date: Mon, 29 Oct 2001 13:44:53 -0800 (PST)
Date: Mon, 25 Mar 2002 16:03:51 -0800 (PST)
Date: Mon, 25 Mar 2002 17:07:27 -0800 (PST)
Date: Mon, 25 Mar 2002 21:38:28 -0800 (PST)
Date: Mon, 29 Oct 2001 11:08:43 -0800 (PST)
Date: Mon, 29 Oct 2001 06:22:07 -0800 (PST)
egrep: archives: Operation not permitted
egrep: archives___post_revised_order: Operation not permitted
egrep: bankruptcy: Operation not permitted
egrep: budget: Operation not permitted

egrep: kidsave: Operation not permitted

egreps measurement: Operation not permitted
egreps haesb: Operation not permitted

egreps oneok: Operation not permitted

egrep: tw_neg_rates: Operation not permitted
egrep: twdatarequests: Operation not permitted
egrep: vacation_schedules: Operation not permitted
[fad-gadget inbox]

el [F2d-gadget inbox] i /4
—




Conditional execution

The problem is that we cannot call egrep
on a directory

Therefore, we’d like to assess what kind of
file we are dealing with, and only execute
the command where we should

Unix provides a conditional evaluation
utility called test; in addition to
performing simple numerical comparisons,
it also provides facilities for interrogating
files

Here the flag -f£ returns true if $iis a
regular file

ttp://www.ooblick.com/text/sh/

if condition ; then
commands

[elif condition; then
commands ]

[else
commands |

fi

#!/bin/sh
for i in "1s ; do

if test -f S$Si; then

egrep '“"Date:' Si
fi

done




Conditional execution

Often, rather than explicitly using the

test function, programmers will use a
shorthand construction

The [ ]’s are an implicit call to test; to be
precise, there’s a command called /bin/

[

ttp://www.ooblick.com/text/sh/

if condition ; then
commands

[elif condition; then
commands ]

[else
commands |
fi
#!/bin/sh
for i in "1s ; do
if [-f $Si ]; then

egrep '“"Date:' Si
fi
done




Finally...

So far, all we've done is execute a

egrep command in the directory
where we call our program

The commands at the right recurse
through the directory provided as
an argument to the program

#!/bin/sh
for i in " find $1 ; do
if [ -f $1i ]; then
egrep '“Date:'

fi
done

Si




A simple shell program

Now we can call the program from any directory; here we call it from /
Data (note the ./ telling Unix where to find the file)

'/ \‘ ‘/ \I v, \I \ xterm
[fad-gadget Data] ,/dates,sh maildir/corman-s/inbox
Date: Mon, 29 Oct 2001 09:33:30 -0800 (PST)
Date: Sun, 28 Oct 2001 07:34:20 -0800 (PST)
Date: Sat, 27 Oct 2001 11:15:21 -0700 (PDT)
Date: Fri, 26 Oct 2001 14:21:09 -0700 (PDT)
Date: Wed, 26 Oct 0001 09:46:23 -0800 (PST)
Date: Fri, 26 Oct 2001 07:53:46 -0700 (PDT)
Date: Thu, 25 Oct 2001 16:32:35 -0700 (PDT)
Date: Tue, 25 Oct 0001 12:43:42 -0800 (PST)
Date: Thu, 25 Oct 2001 08:20:20 -0700 (PDT)
Date: Thu, 25 Oct 2001 08:04:21 -0700 (PDT)
Date: Thu, 25 Oct 2001 06:11:56 -0700 (PDT)
Date: Sat, 29 Oct 0001 21:16:57 -0800 (PST)
Date: Thu, 25 Oct 2001 05:14:08 -0700 (PDT)
Date: Wed, 24 Oct 2001 19:47:56 -0700 (PDT)
Date: Wed, 24 Oct 2001 18:29:59 -0700 (PDT)
Date: Wed, 24 Oct 2001 18:30:48 -0700 (PDT)
Date: Wed, 24 Oct 2001 17:08:15 -0700 (PDT)
Date: Tue, 23 Oct 2001 16:38:07 -0700 (PDT)
##Dates Tue, 23 Oct 2001 15:55:15 -0700 (PDT)
Date: Tue, 23 Oct 2001 12:05:06 -0700 (PDT)
Date: Tue, 23 Oct 2001 19:02:55 -0700 (PDT)
Date: Tue, 23 Oct 2001 10:02:55 -0700 (PDT)
Date: Mon, 29 Oct 2001 18:59:07 -0800 (PST)




Overview ttp://www.ooblick.com/text/sh/

while condition; do

M | h is to h lize that
y goal here is to have you realize tha commands

the commands we have been working
with can be collected into programs or done
scripts; along the way, we learned

something about file permissions

case expression 1in
The scripting facilities in Unix let you do

standard things like loop over values,

execute commands conditionally, and so pattern)
on commands

e
e

There are other structures like while loops
and case statements that further redirect esac
the control of your program




Overview

Again, much of the recursion over directories can be done with the
find command

This presentation was meant to walk you through the structure of a
shell script, illustrating what programming tools are at your disposal

This material will come up again as we consider distributing code, say
through an R package




email count

1000 1500 zooo 2500

500

Oh, and what were we after?

Here we have a plot of the total number of emails recorded during this
period; what patterns do we see?

X R Graphics: Device 2 (ACTIVE)

02/00

08/00 03/01 10/01

date




The gist

| teach the shell for both practical
as well as pedagogical reasons; it
is structurally similar to other
“shells” they will encounter
(Python, R), but the vocabulary is
fairly limited

With a few commands they can do
some pretty powerful analysis,
whether or not you want to call
that statistics is another question,
and you can quickly motivate the
need for making programs...

What do y’all think?




