Extracting data from
XML

@ Wednesday
DTL

Parsing - XML package

@ 2 basic models - DOM & SAX

@ Document Object Model (DOM)
Tree stored internally as C, or as regular R objects

@ Use XPath to query nodes of interest, extract info.

@ Write recursive functions to "visit" nodes,
extracting information as it descends tree

@ extract information fo R data structures via
handler functions that are called for particular
XML elements by matching XML name

@ For processing very large XML files with low-level
state machine via R handler functions - closures.

Preferred Approach

@ DOM (with internal C representation and XPath)
@ Given a node, several operations

@ xmIName() - element name (w/w.o. namespace prefix)
xmINamespace()

@ xmlAttrs() - all attributes
xmlGetAttr() - particular value

@ xmlValue() - get text content.

@ xmlChildren(), node[[i]], node [["el-name"]]

@ xmlSApply()

@ xmINamespaceDefinitions()

@ Scraping HTML - (you name it!) Examples

@ zZillow - house price estimates

@ PubMed articles/abstracts

@ European Bank exchange rates

@ itunes - CDs, tracks, play lists, ..

@ PMML - predictive modeling markup language

@ CIS - Current Index of Statistics/Google Scholar
@ Google - Page Rank, Natural Language Processing
@ Wikipedia - History of changes, ...

@ SBML - Systems biology markup language

@ Books - Docbook

@ SOAP - eBay, KEGG, ..

@ Yahoo Geo/places - given name, get most likely location

PubMed

@ Professionally archived collection of "medically-related”
articles.

@ Vast collection of information, including
@ article abstracts
@ submission, acceptance and publication date
@ authors

D ..

PubMed

@ We'll use a sample PubMed example article for
simplicity.
Can get very large, rich <ArticleSet> with many articles
via an HTTP query done from within R/XML package
directly.

® Take a look at the data, see what is available or read
the documentation
Or explore the contents.

@ http://www.ncbi.nlm.nih.gov/books/bv.fcgi?
rid=helppubmed.section.publisherhelp.XML_Tag_Descripti
ons

00 Example of a Standard XML file

) O
@33 (&) (%) (M) (& nup://www.ncbi.nim.nih.gov/books/bv.fcgi?rid=helppubmed.section.publisherhelp.Example_of_a_Stand. 12 v) = (& ssychzonphrenic

Headlines BBC SPORT GNews NYTimes WashPost Slashd Digg yucd CRAN Comp wiki Omegahat ® Q4 Doc DocBook XSLFO RGB wxWidgets Router Omegahat BofA

cogle | m Enron D Google places | |_| http...x ~. AP1 Doc Google | (Untided) | || file | (Untitled @ Ecs:Eu _| 2006.0 = x|
Search ® This book _ AllNCBIHelp _ All books _ PubMed

B EERAMppeq e
Help 2 Search

Help Manual Contents | PubMed Help Contents |

Most Visited ~

Browse More Books | Bookshelf Help

PubMed Help =% XML Help for PubMed Data Providers,

About this book
XML Help for PubMed Data Providers, Example of a Standard XML file
PubMed XML Tagged Format Follow the links for more information about cach tag.
XML Tag Descriptions <IDOCTYPE ArticleSet PUBLIC “-//NLM//DTD PubMed 2.0//EN" "http://www.ncbi.nlm.nih.gov:B0/entrez/query/static/PubMed.dtd">
= Example of a Standard XML file R 11
<Article>
Example of a Non-English XML file <Journal>
. <PublisherName>Nature Publishing Group</PublisherName>
Example of an Ahead of Print XML file <JournalTitle>Nature Chemical Biology</JournalTitle>
Example of # Replaces XML file <1880n>1552-4450</Issn>
.. L. <Volume>4</Volume>
SGML Data Entities for PubMed Submissions Tosue>2</Issue>
Correcting Errors in PubMed <Publate PubStatus-‘ppublish®>
X X . X X <Year>2008</Year>
Instructions for articles published in Non-English <Month>February</Month>
Languages </PubDate>
. </Journal>
All About Ahead of Print <ArticleTitle>High-content single-cell drug screening with phosphospecific flow cytometry</ArticleTitle>
Instructions for Replacement Files <EirstPaqe>132</FirstPage>
) N <LastPage>142</LastPage>
Ahead of Print Withdrawn Policy <BLocationID EldType="pii”">nchembio.2007.59</ELocationID>
<ELocationID EIdType="doi">10.1038/nchembio.2007.59</ELocationID>
<Language>EN</Language>
<Authorlist>
<

<FirstName>Peter</FirstName>
<MiddleName>0</MiddleNane>

<LastName>Xrutzik</LastName>
<Suffix>Jr</Suffix>

<Affiliation> Department of Microbiology and Immunology, Baxter
Laboratory in Genetic Pharmacology, Stanford University, 269 Campus Drive, Stanford, California 94305, USA.</Aaffiliation>
</Author>
<Author>
<FirstName>Janclle M</FirstName>
<LagtNamo>Crane</LastName>
</Author>
<Author>
<CollectiveName>Cancer Gonome Project</CollectiveName>
</Author>
<Author>
<FirstName>Matthow R</FirstName>
<LastName>Clutter</LastName>
</Author>

<PirstName>Garry P</PirstName>
<LastName>Nolan</LastName>
</Author>
<Author>
<CollectiveName>North American Barley Cenome Project</CollectiveName>
</Author>
</AuthorList>
<G ist>
<
<GroupName>Cancer Genome Project</GroupName>
<IndividualName>
<FirstName>John</FirstName>

@ Fnd: (@) (Next | Previous) (o Highlightall) [[] Match case Phrase not found

@ doc = xmlTreeParse("pubmed.xml”, useInternal = TRUE)

@ top = xmlRoot(doc)

@ xmIName(top)
[1] "ArticleSet"

@ names(top) - child nodes of this root
[1] "Article” "Article" - so 2 articles in this set.

@ Let's fetch the author list for each article.
Do it first for just one and then use “apply” to iterate

@ names(top[[1]])

Journal ArticleTitle FirstPage
"Journal" "ArticleTitle" "FirstPage"
LastPage ELocationID ELocationID
"LastPage" "ELocationID" "ELocationID"
Language AuthorlList GroupList
"Language" "AuthorList" "GroupList"
ArticleIdList History Abstract
"ArticleIdList" "History" "Abstract"
ObjectList
"ObjectList"

@ art = top[[1]] [["AuthorList"]]
what we want

@ names(art)
[1] "Author" "Author” “Author" "Author” "Author”
"Author”

@ names(art[[1]])
[1] "FirstName" "MiddleName" "LastName" "Suffix"
[5] "Affiliation"

@ So how do we get these values, e.g. to put in a data
frame.

® Each element is a node with text content.

@ So loop over the nodes and get the content as a string

xmlSApply(art[[1]], xmlValue)

® To do this for all authors of the article

xmlSApply(art, function(x) xmlSApply(x, xmlValue))

@ How do we deal with the different types of fields in the
names?
e.g. First, Middle, Last, Affiliation
CollectiveName
data representation/analysis question from here.

Pubmed Dates

@ In the <History> element, have date
received, accepted, aheadofprint

@ May want to look at time publication lag (i.e. received to
publication time) for different journals.

@ So get these dates for all the articles

<History>

<PubDate PubStatus="received">
<years...</year><Month>06</Month><Day>15</Day>

<PubDate>

<PubDate PubStatus="accepted”>
<years....</day>

</PubDate>

@ Find the element PubDate within History which has an
attribute whose value is "received"

@ Can use art[["History"]][["PubDate"”]] to get all 3
elements.

@ But what if we want to access the ‘received' dates for
all the articles in a single operation, then the
accepted, ..

@ Need a language to identify nodes with a particular
characteristic/condition

XPath

@ XPath is a language for expressing such node subsetting
with rich semantics for identifying nodes

@ by name

@ with specific attributes present

@ with attributes with particular values
@ with parents, ancestors, children

® XPath = YALTL (Yet another language to learn)

XPath language

@ /node - top-level node

@ //node - node at any level

@ node[@attr-name] - node that has an attribute
named "attr-name"

® node[@attr-name='bob'] - node that has attribute
named attr-name with value 'bob'

@ node/@x - value of attribute x in node with such
attr.

@ Returns a collection of nodes, attributes, etc.

@ Let's find the date when the articles were received

@ nodes = getNodeSet(top,
" //History/PubDate[@PubStatus="received']")

@ 2 nodes - 1 per article

@ Extract year, month, day
lapply(nodes, function(x) xmlSApply(x, xmlValue))

@ Easy to get date "accepted” and “aheadofprint”

Text mining of abstract

@ Content of abstract as words
@ abstracts = xpathApply(top, "//Abstract”, xmlValue)

@ Now, break up info words, stem the words, remove the
stop-words,

@ abstractWords = lapply(abstracts, strsplit, “[[:space:]]")

@ library(Rstem)
abstractWords = lapply(abstractWords,
function(x) wordStem[[1]])

@ Remove stop words
lapply(abstractWords, function(x) x[x %in% stopWords])

Zillow - house prices

@ Thanks to Roger, yesterday evening I found the Zillow
XML API - (Application Programming Interface)

@ Can register with Zillow, make queries to find estimated
house prices for a given house, comparables,
demographics, ...

@ Put address, city-state-zip & Zillow login in URL request

@ Can put this at the end of a URL within xmlTreeParse()
"http://www.zillow.com// ...2zws-
id=...&address=1029%20Bob's
%20Way&citstatezip=Berkeley"

@ But spaces are problematic, as are other characters.

@ So I use library(RCurl)

D reply = ge'l'FOl”m("h’r’rp://www.zilIow.com/webservice/Ge’rSearchResul’rs.h’rm",

'zws-id" = "AB-XXXXXXXXXXX_10312q",
address = "1093 Zuchini Way",
citystatezip = "Berkeley, CA, 94212")

@ reply is text from the Web server containing XML

<?xml version=\"1.0\" encoding=\"utf-8\"?>\n<SearchResults:searchresults
xsi:schemalLocation=\"http://www.zillow.com/static/xsd/SearchResults.xsd /vstatic/
71a179109333d30cfb3b2de866d9%9add9/static/xsd/SearchResults.xsd\" xmlns:xsi=
\"http://www.w3.0rqg/2001/XMLSchema-instance\" xmlns:SearchResults=\"http://
www.zillow.com/static/xsd/SearchResults.xsd\">\n\n <request>\n

<address>112 Bob's Way Avenue</address>\n <citystatezip>Berkeley, CA,
94212</citystatezip>\n </request>\n \n <message>\n <text>Request
successfully processed</text>\n <code>0</code>\n\t\t\n </message>\n\n
\n <response>\n\t\t<results>\n\t\t\t\n\t\t\t<result>\n\t\t\t\t
\t<zpid>24842792</zpid>\n\t<links>\n\t\t<homedetails>http://www.zillow.com/
HomeDetails.htm?city=Berkeley&state=CA& zprop=24842792&s_cid=Pa-Cv-X1-
CLzlcarc3c49ms_htxgbé&partner=X1-CLzlcarc3c49ms_htxgb</homedetails>\n\t
\t<graphsanddata>http://www.zillow.com/Charts.htm?

chartDuration=5yearsé& zpid=24842792&cbt=8965965681136447050%7E1%7E43-17yrvL
nIj-Y5pgbsogb nhlQW4CVIhubJRAXIOkwbPosbEGChw**&s cid=Pa-Cv-X1-
CLzlcarc3c49ms_htxgbé&partner=X1-CLzlcarc3c49ms_htxgb</graphsanddata>\n\t
\t<mapthishome>http://www.zillow.com/search/RealEstateSearch.htm?
zpid=24842792#src=url&s_cid=Pa-Cv-X1-CLzlcarc3c49ms_htxgb&partner=X1l-
CLzlcarc3c49ms_htxgb</mapthishome>\n\t\t<myestimator>http://www.zillow.com/
myestimator/Edit.htm?zprop=24842792&s_cid=Pa-Cv-X1-
CLzlcarc3c49ms_htxgb&partner=X1-CLzlcarc3c49ms_ htxgb</myestimator>\n\t
\t<myzestimator deprecated=\"true\">http://www.zillow.com/myestimator/Edit.htm?
zprop=24842792&s_cid=Pa-Cv-X1-CLzlcarc3c49ms htxgb&partner=X1-
CLzlcarc3c49ms_htxgb</myzestimator>\n\t</links>\n\t<address>\n\t\t<street>1292
Bob's way</street>\n\t\t<zipcode>94</zipcode>\n\t\t<city>Berkeley</city>\n\t
\t<state>CA</state>\n\t\t<latitude>34.882544</latitude>\n\t
\t<longitude>-123.11111</longitude>\n\t</address>\n\t\n\t\n\t<zestimate>\n\t
\t<amount currency=\"USD\">803000</amount>\n\t\t<last-updated>07/14/2008</last-
updated>\n\t\t\n\t\t\n\t\t\t<oneWeekChange deprecated=\"true\"></oneWeekChange>\n
\t\t\n\t\t\n\t\t\t<valueChange currency=\"USD\" duration=\"31\">-33500</
valueChange>\n\t\t\n\t\t\n\t\t<valuationRange>\n\t\t\t<low currency=\"USD
\">650430</1low>\n\t\t\t

<?xml version="1.0" encoding="utf-8"7?>
<SearchResults:searchresults xsi:schemalocation="http://
www.zillow.com/static/xsd/SearchResults.xsd /vstatic/
71a179109333d30cfb3b2de866d9%9add9/static/xsd/SearchResults.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:SearchResults="http://www.zillow.com/static/xsd/
SearchResults.xsd">

<request>
<address>123 Bob's Way</address>
<citystatezip>Berkeley, CA, 94217</citystatezip>
</request>

<message>
<text>Request successfully processed</text>
<code>0</code>

</message>

<response>

<results>
<result>

<zpid>1111111</zpid>
<links>

Processing the result

@ We want fo get the value of the element
<amount>803000</amount

@ doc =
xmlTreeParse(reply, asText = TRUE, uselnternal = TRUE)

@ xmlValue(doc[[" //amount"]])
[1] "803000"

® Other information too

2004 Election Results

http://www.princeton.edu/ ~rvdb/JP«VA/elec’rion2004/

Where are the data?

@ Within days of the election ?
USA Today, CNN, ...

@ http://www.usatoday.com/news/politicselections/
vote2004/results.htm

@ By state, by county, by senate/house, ...

| ~ c f® G http:/ /www.usatoday.com/news/politicselections/vote2004 /Presiden g == delimeter
Most Visited ¥ Headlines BBCSPORT GNews NYTimes WashPost Slashdot Digg macosxhints myucdavis CRAN Comp wiki
4 |Letters @8 BBC SP Real Est GetSear XML Ta PubMed = Entrez £3 usato 5 usa

Buick LaCrosse CX and CXL have EPA est. mpg 28 hwy.

With a highway driving range of up to 476 miles.
Locate Dealer m

S = MOST POPULA

Search
y State » President by county » Senate/House * Statewide offices
powery Yaroo! Results + Ballot initiatives * State Senate + State House * State roundup Advecisement
Election2004 Presidential vote by county - New Jersey
Election briefs
CERTIFIED
All results Presidential Results - By County PRE-OWNED
President
Senate
House Atlantic 158 158 46,197 52,181 535 MORE THAN
Governors Bergen 557 557 178,304 192,827 1,891 YOU IMAGINE
Initiatives g, jington 359 359 90,112 103,971 945 FOR LESS
USATODAY polls Camden 331 331 76,925 129,918 894 | THAN YOU THINK
Other polls Cape May 131 131 26,316 19,614 241
Battleground states Cumberiand 93 93 23,186 26,410 154
Essex 567 566 80,822 191,999 1,052 I_m
Poliical calendar gjoucester 237 237 59760 66,476 734 | S)
- - P)
Government Guide 1y gson 452 416 55530 113,603 831
Hunterdon 113 113 39,449 25727 484
Op/Ed home
— Mercer 265 264 53,469 85,682 771
LOIUMNISES See for yourself.
e Middlesex 597 597 119,436 156,168 1,701
— Monmouth 437 437 161,693 131,808 2,005
Morris 395 395 126,761 90,476 1,154
Ocean 346 346 143,797 92,621 1,571
Passaic 288 288 73,568 91,939 833
Salem 45 45 15,635 13,850 165
Somerset 277 277 67,505 61,550 739
Sussex 107 106 42,085 22,282 480
Union 443 443 77621 112,542 980
Warren 87 87 29,323 17,876 454

Vote retums will appear shortly after polls close in each state or locality (click here for times) and
will update automatically. Click refresh button for latest results. Winners of some races mav be

® read.table ?

@ Within the noise/ads, look for a table whose first cell is
"County"

@ Actually a

<td>County</td>

@ How do we know this? Look at one or two HTML files
out of the 50. Verify the rest.

@ Then, given the associated <table> element,
we can extract the values row by row and get a
data.frame/ ...

XPath expression

<table>

<td class="notch medium" width="153">County</
b></td><td class="notch medium" align="Right"
width="65">Total Precincts</td><td
class="notch medium" align="Right" width="70">Precincts
Reporting</td><td class="notch medium" align="Right"
width="60">Bush</td><td class="notch medium"
align="Right" width="60">Kerry</td><td
class="notch medium" align="Right" width="60">Nader</
b></td>

</tr><

@ Little bit of trial and error
@ getNodeSet(nj, "//table[tr/td/b/text()="Total Precincts']")

@ Could be more specific, e.g. tr[l] - first row

@ Now that we have the <table> node, read the data into
an R data structure

@ rows = xmlApply(v[[1]],
function(x)
xmlSApply(x, xmlValue))

@ i.e. for each row, loop over the <td> and get its value.

@ Got some "\n\t\t\1" and last row is "Updated...."
first row is the County, Total Precincts, ...

® So discard the rows without 7 entries
then remove the 7th entry ("\n\t\1\t")

v = getNodeSet(nj, "//table[tr/td/b/text()="Total Precincts']")
rows = xmlApply(v[[1]], function(x) xmISApply(x, xmlValue))

only the rows with 7 elements

rows = rows[sapply(rows, length) == 7]

Remove the 7th element, and transpose to put back into
counties as rows, precinct, candidates, ... as columns.

So get a matrix of # counties by 6 matrix of character
vectors.

rows = t(sapply(rows, "[", -7))

Learning XPath

@ XPath is another language
@ part of the XML technologies
@ XInclude
@ XPointer
@ XSL
@ XQuery

@ Can't we extract the data from the XML tree/DOM
(Document Object Model) without it and just use R
programming - Yes

@ doc = xmlTreeParse("pubmed.xml")

® Now have a tree in R
@ recursive - list of children which are lists of children
@ or recursive tree of C-level nodes

® Write an R function which "visits" each node and
extracts and stores the data from those nodes that are
relevant

@ e.qg. the <Author>, <PubDate> nodes

® Recursive functions are sometimes difficult to write

@ Have to store the results "globally" /non-locally
leads to closures/lexical scoping - “"advanced R"

® Have to traverse the entire tree via R code - SLOW!

Handlers

@ Alternative approach

® when we read the XML tree into R and convert it to
a list of lists of children ...

@ when convert each C-level node, see if caller has a
function registered corresponding to the name/type
of node

@ if so call it and allow it to extract and store the
data.

Efficient Parsing

@ Problem with previous styles is we have the entire tree
in memory and then extract the data
=> 2 times the data in memory at the end

@ Bad news for large datasets
@ All of Wikipedia pages - 11Gigabytes

@ Need to read the XML as it passes as a stream,
extracting and storing the contents
and discarding the XML.

@ SAX parsing - "Simple API for XML

@ xmlEventParse(content,
list(startElement = function(node, ...)....,
endElement = function(node, ...) ...,
text = function(x) ...,
comment = function(x) ..., ...))

@ Whenever XML parser sees start/end/text/comment
node, calls R function which maintains state.

@ Awkward to write, but there to handle very large dafta.

Schema....

@ Just like a database has a schema describing the
characteristics of columns in all tables within a
database, XML documents often have an XML Schema
(or Document Type Definition - DTD) describing the
"template" tree and what elements can/must go where,
attributes, etc.

® The XML Schema is written in XML, so we can read it!

@ And we can actually create R data types to represent
the same elements in XML directly in R.

@ So we can automate some of the reading of XML
elements into useful, meaning R objects
harder to programmatically flatten into data frames.

RCurl

@ xmlTreeParse() & xmlEventParse() can read from files,
compressed files, URLs, direct text - but limited
connection support.

@ RCurl package provides very rich ways that extend R's
ability to access content from URLs, efc. over the
Internet.

@ HTTPS - encrypted/secure HTTP
passwords/authentication
efficient, persistent connections
multiplexing
different protocols

@ Pass results to XML parser or other consumers.

Exceptions/Conditions

