
Using the snowfall library in R

Phil Spector (spector@stat.berkeley.edu)
Statistical Computing Facility

Department of Statistics
University of California, Berkeley

1 Introduction

The snowfall library of R provides a simplified interface to the snow (Simple Network
of Workstations) library, allowing parallelizable jobs to be distributed across a number of
machines.

2 Basic Commands

The basic commands to set up a cluster, distribute information, and collect results are as
follows:

• sfInit - The sfInit function sets up the machines which will be used in the
parallel calculation. By listing machines multiple times, multiple CPUs on those
machines will be used. In addition, the type= argument tells which type of mes-
saging system will be used. To use snow’s internal mechanism, type=’SOCK’ can
be used. The parallel= argument allows selecting parallel operation (TRUE) or
sequential operation (FALSE). When using snowfall on the SCF computers, all
the hosts specified must be of the same architecture.

• sfExport - The sfExport function distributes copies of any data or functions
which will be needed on the remote machines in the cluster. It takes an unlimited
number of arguments, each representing a character string with the name of an
object which needs to be distributed.

• sfLibrary The sfLibrary function is called once for each library which will be
needed in the distributed computation. The name of the library required is provided
without quotes.

• sfClusterSetupRNG - The sfClusterSetupRNG function sets up the random
number generator to insure that each distributed machine gets a unique stream of

1

random numbers. An optional seed= argument allows specification of a seed for
reproducible results.

• sfLapply, sfSapply, sfApply - These functions provide parallelized versions
of the functions lapply, sapply, and apply, respectively.

• sfStop - The sfStop function should be called with no arguments when the dis-
tribued computations are finished, to close the connections with the other machines.

The basic strategy of using snowfall is to choose the machines for the cluster using
sfInit, pass required data and libraries to the cluster using sfExport and sfLibrary,
initialize the random number generator with sfClusterSetupRNG, and then use one of
the “sf-apply” functions to do the work.

3 An Example

This example uses simulation for a power calculation. The test being studied is a paired
t-test, where observations have a correlation of 0.6. The goal is to determine the power
for sample sizes from 10 to 80, using 1000 simulations for each sample size.

First, here’s the program without any use of a cluster:

library(mvtnorm)
makedat = function(n,mean,var,delta){

rmvnorm(n,c(mean,mean+delta),matrix(c(var,.6*var,.6*var,var),ncol=2))
}

runsim = function(nsim,n,mean,var,delta){
nsig = 0
for(i in 1:nsim){

dat = makedat(n,mean,var,delta)
if(t.test(dat[,1],dat[,2],paired=TRUE)$p.value < 0.05)nsig = nsig + 1
}

nsig / nsim
}

res <- sapply(seq(10,80,by=1),function(n)runsim(1000,n,.3,.3ˆ2,.1))

The elapsed time to run this job on a single CPU is around 170 seconds.

Next, here’s the program modified to use snowfall:

library(snowfall)
sfInit(socketHosts=rep(c(’bilbo’,’roo’,’wanjina’,’beren’,’treebeard’),2),

cpus=10,type=’SOCK’,parallel=TRUE)

2

makedat = function(n,mean,var,delta){
rmvnorm(n,c(mean,mean+delta),matrix(c(var,.6*var,.6*var,var),ncol=2))

}

runsim = function(nsim,n,mean,var,delta){
nsig = 0
for(i in 1:nsim){

dat = makedat(n,mean,var,delta)
if(t.test(dat[,1],dat[,2],paired=TRUE)$p.value < 0.05)nsig = nsig + 1
}

nsig / nsim
}

sfExport(’makedat’,’runsim’)
sfLibrary(mvtnorm)
sfClusterSetupRNG(seed=7221)

wrapper = function(n){
runsim(1000,n,.3,.3ˆ2,.1)

}

res = sfSapply(seq(10,80,by=1),wrapper)
sfStop()

The execution time using 10 CPUs across the network is around 45 seconds.

4 Using snowfall with pvm

Instead of using snow’s internal message passing, the snowfall library allows using
external messaging systems as well, for example pvm. (On the SCF system, pvm is only
available on the Linux computers.) To use pvm with snowfall, a pvm process must be
started at the command line (and halted when it’s no longer needed). This is done using
the pvm command. For example, to add the same hosts as used previously to a pvm
cluster, the pvm command is executed at the UNIX prompt, and the add command is
used to add the desired hosts:

% pvm
pvm> add bilbo roo wanjina beren treebeard
add bilbo roo wanjina beren treebeard
5 successful

HOST DTID
bilbo 80000
roo c0000

wanjina 100000

3

beren 140000
treebeard 180000

pvm>

Note that pvm will still accept commands, so the window in which the command was
initiated should be left undisturbed until the halt command is issued after the cluster is
no longer needed.

The only change needed to use pvm instead of the internal method is in the call to
sfInit. For pvm, a call like the following should be used:

sfInit(cpus=10,type=’PVM’,parallel=TRUE)

Note that there is no need to specify the machine names, once pvm is started. Specifying
more cpus than machines will cause pvm to use multiple cpus on some or all of the ma-
chines specified. While multiple architectures are supported by pvm, it appears that the
snowfall library requires that all the machines in the pvm cluster are of the same archi-
tecture. After the pvm cluster is no longer needed, the halt command should be entered
in the shell running pvm to terminate the process. (This will also terminate the R session
which was running snowfall).

Using pvm, the example program used previously had an elapsed time of around 33
seconds.

4

