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1 The Task

Suppose we have two vectors, x and y. The goal is to find the indices in y that represent the value in y that
is closest to each value of x. As a very simple example, consider the following two vectors:

> x = c(1,7,3,8,2)
> y = c(15,6,9,1,4,7,2)

Then the first value of x is closest to the fourth value of y; the second value is closest to the sixth, the third
is closest to the fifth (ties are broken using the first value encountered in y), the fourth value is closest to
the third, and the last value is closest to the seventh. Thus we would return the vector

[1] 4 6 5 3 7

2 Pure R Solutions

2.1 The outer function

One possible way to solve this problem is provided by the outer function in R: the expression abs(outer(x,y,’-’))
will return a matrix where each row of the matrix represents the absolute value of the distance between a
particular value of x, and all the values of y – the which.min function can then be applied to each row of
the matrix returned by outer to get the appropriate index.

To test this on our trivial sample data, we can use the following code:

> apply(abs(outer(x,y,’-’)),1,which.min)
[1] 4 6 5 3 7

The problem with this approach is that it generates all the distances at once in a matrix that will become
very large as the lengths of x and y increase. We can see the problems this causes by testing the method
with progressively longer vectors:

testouter = function(n){
x = rnorm(n)
y = rnorm(n*2)
system.time(apply(abs(outer(x,y,’-’)),1,which.min))[3]

}

Here we’re arbitrarily having the second vector being twice the length of the first vector, but we’d see similar
results with other types of samples. Let’s look at how the function performs as we increase the size of x and
y:
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> res = sapply(seq(100,1000,by=100),testouter)
> names(res) = seq(100,1000,by=100)
> res
100 200 300 400 500 600 700 800 900 1000

0.005 0.019 0.079 0.172 0.213 0.273 0.355 0.384 0.430 0.501

When we increase the size from 100 to 200 (an increase of two times), we see that it takes nearly four times
as much time to calculate the indices. This indicates that we have an O(n2) algorithm, which will cause
problems as the sample size increases.

2.2 sapply

In the previous example, there was really no need to calculate all the distances at once – to get our answer,
we can consider the values of x one at a time. Here are timings for the same sample sizes, without keeping
all the distances in memory:

testapply = function(n){
x = rnorm(n)
y = rnorm(n*2)
system.time(sapply(x,function(z)which.min(abs(z-y))))[3]

}
> res = sapply(seq(100,1000,by=100),testapply)
> names(res) = seq(100,1000,by=100)
> res
100 200 300 400 500 600 700 800 900 1000

0.001 0.003 0.006 0.011 0.017 0.021 0.028 0.039 0.052 0.065

While this is certainly an improvement, it’s still roughly O(n2) – it’s just faster from the beginning. This
indicates that, eventually, if the sample size is large enough, we’ll still have some problems.

2.3 A Note about Loops

While it’s often said that loops in R are inherently inefficient, this is simply not the case. The biggest problem
with loops occurs when an object changes size inside a loop. If the result of a loop is “pre-allocated” before
the loop begins, loops in R really aren’t a problem. Here’s the appropriate way to use a loop to solve a
problem like this in R:

> result = numeric(length(x))
> for(i in 1:length(x))result[i] = which.min(abs(x[i] - y))
> result
[1] 4 6 5 3 7

Let’s see how this performs in practice:

testloop = function(n){
x = rnorm(n)
y = rnorm(n*2)
system.time({result = numeric(length(x))

for(i in 1:length(x))result[i] = which.min(abs(x[i] - y))})[3]
}
> res = sapply(seq(100,1000,by=100),testloop)
> names(res) = seq(100,1000,by=100)
> res
100 200 300 400 500 600 700 800 900 1000

0.001 0.003 0.006 0.010 0.015 0.022 0.030 0.039 0.049 0.064
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The results are actually a little bit better than using sapply. Unfortunately, many new users of R would
implement this same algorithm as follows:

testloopnull = function(n){
x = rnorm(n)
y = rnorm(n*2)
system.time({result = NULL

for(i in 1:length(x))result = c(result,which.min(abs(x[i] - y)))})[3]
}
> res = sapply(seq(100,1000,by=100),testloopnull)
> names(res) = seq(100,1000,by=100)
> res
100 200 300 400 500 600 700 800 900 1000

0.001 0.004 0.006 0.011 0.018 0.023 0.033 0.043 0.048 0.068

The results don’t look much worse, but we’ll examine this issue again when we do a final comparison of the
methods.

3 Developing an Efficient Algorithm

If you think about the solutions we’ve looked at, they calculate the distance between each point in x and each
point in y. But since we are always using y as a reference vector, we could sort y, record it’s permutation
vector, and calculate distances to the smallest point in y until we found an increase in the distance. Then
we could return the corresponding value in the permutation vector to get the index. Here’s that idea
implemented in R – note that the end conditions (when a value in x is greater or less than any in y) need to
be handled separately:

fnr = function(x,y){
ix = order(y)
y = sort(y)

dofind = function(x,y,ix){
if(x < y[1])return(ix[1])
if(x > y[length(y)])return(ix[length(y)])
last = abs(x - y[1])
for(j in 2:length(y)){

test = abs(x - y[j])
if(test > last){

return(ix[j - 1])
}

last = test
if(j == length(y))return(ix[j])
}

}

sapply(x,dofind,y,ix)
}

Unfortunately, calculating things like this in R, where we are not taking advantage of vectorization inside
the loop are very, very slow:

testralgo = function(n){
x = rnorm(n)
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y = rnorm(n*2)
system.time(fnr(x,y))[3]

}
100 200 300 400 500 600 700 800 900 1000

0.001 0.004 0.006 0.013 0.019 0.027 0.037 0.050 0.061 0.072

3.1 Implementing the Algorithm in C

The identical algorithm that we used in the previous section can be implemented in C in virtually an
identical way, provided that we have a sorting routine that can return a permutation vector. Here’s one such
implementation:

void myqsort(double *x,int *ii,int n)
{
char done;
int i,ip,iy,iup,lp;
static int lv[16],iv[16];
register double y;

lv[0] = 0;
iv[0] = n - 1;
ip = 0;

while(ip >= 0)
{if((iv[ip] - lv[ip]) < 1)

{ip--;
continue; }

lp = lv[ip] - 1;
iup = iv[ip];
y = x[iup];
iy = ii[iup];

for(;;)
{if((iup - lp) < 2)break;
if(x[++lp] < y)continue;
x[iup] = x[lp];
ii[iup] = ii[lp];

for(;;)
{if((iup-- - lp) < 2)break;
if(x[iup] >= y)continue;
x[lp] = x[iup];
ii[lp] = ii[iup];
break; }

}

x[iup] = y;
ii[iup] = iy;

if((iup - lv[ip]) < (iv[ip] - iup))
{lv[ip + 1] = lv[ip];
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iv[ip + 1] = iup - 1;
lv[ip] = iup + 1; }

else
{lv[ip + 1] = iup + 1;
iv[ip + 1] = iv[ip];
iv[ip] = iup - 1; }

ip++;
}

}

Here’s the algorithm for finding the indices written in C. Note that one had to be added to the indices so
that they’ll correspond to the indexing used in R:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <R_ext/Memory.h>

void myqsort(double *x,int *ii,int n);

void findnr(double *x, double *y, int *nx, int *ny, int *ans)
{
int *ii;
int i,j;
double last,xnow,test;

ii = (int*)R_alloc(*ny,sizeof(int));
if(ii == NULL){
fprintf(stderr,"Couldn’t allocate space for index vector");
return;

}

for(i=0;i<*ny;i++)ii[i] = i;
myqsort(y,ii,*ny);

for(i=0;i<*nx;i++){
xnow = x[i];
if(xnow <= y[0]){
ans[i] = ii[0] + 1;
continue;
}

if(xnow >= y[*ny - 1]){
ans[i] = ii[*ny - 1] + 1;
continue;
}

last = fabs(x[i] - y[0]);
for(j=1;j<*ny;j++){

test = fabs(xnow - y[j]);
if(test > last){
ans[i] = ii[j - 1] + 1;
break;
}
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last = test;
if(j == (*ny - 1))ans[i] = ii[*ny - 1] + 1;
}

}
}

The R alloc function was used so that R would free the allocated memory once the function exits.
The shared library necessary to use the function in R could be created through the command

R CMD SHLIB findnr.c qsort.c

and the R functions to call and test it:

findnr = function (x, y)
{

if(!is.loaded(’findnr’))dyn.load(’findnr.so’)
nx = length(x)
ny = length(y)
ans = numeric(nx)
.C("findnr", as.double(x), as.double(y), as.integer(nx),

as.integer(ny), ans = as.integer(ans))$ans
}

testalgoc = function(n){
x = rnorm(n)
y = rnorm(n*2)
system.time(findnr(x,y))[3]

}

> res = sapply(seq(100,1000,by=100),testalgoc)
> names(res) = seq(100,1000,by=100)
> res
100 200 300 400 500 600 700 800 900 1000

0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.004

We can see that this algorithm is orders of magnitudes faster than the previous ones, and, although the
timings are too small to verify it, seems to be O(n).

4 Comparison of the Methods

The method using outer and the R implementation of the more efficient algorithm are too slow to use in
the following comparison, so we’ll compare the sapply solution, the two solutions based on loops, and the
C implementation of the algorithm. The process can be automated using the following function:

testnr = function(n1,n2){
x = rnorm(n1)
y = rnorm(n2)
rbind(system.time(one <- sapply(x,function(z)which.min(abs(z-y)))),

system.time({two = numeric(length(x))
for(i in 1:length(x))two[i] = which.min(abs(x[i] - y))
}),

system.time({three <- NULL
for(i in 1:length(x))three = c(three,which.min(abs(x[i] - y)))
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}),
system.time(four <- findnr(x,y)))[,3]

}

Testing with values from 1000 to 10000:

> xseq = seq(1000,10000,by=1000)
> tries = cbind(xseq,2*xseq)
> answer = apply(tries,1,function(x)testnr(x[1],x[2]))
> answer

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0.062 0.246 0.530 0.925 1.415 2.224 3.236 4.052 4.682 5.884
[2,] 0.055 0.208 0.463 0.856 1.409 2.329 3.225 3.626 4.565 5.694
[3,] 0.058 0.217 0.514 0.902 1.440 2.467 3.348 3.856 4.929 6.373
[4,] 0.004 0.014 0.037 0.056 0.087 0.132 0.180 0.239 0.306 0.381

These results can be plotted using the matplot function, giving a graphical comparison among the methods:

> matplot(xseq,t(answer),lty=1,type=’l’,main=’Comparison of Four Methods’)
> legend(’topleft’,legend=c(’sapply’,’loop’,’loop null’,’C algo’),col=1:6,lty=1)

The plot is shown in Figure 1. Notice how the timings for the loop implementation starting with NULL
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Figure 1: Comparison of the four methods

become worse and worse as n increases. This is due to the fact the length of the vector containing the results
needs to be reallocated each time a new value is added. While this problem may not be apparent from
small-scale testing, it should be avoided at all costs when writing loops in R, because it will eventually slow
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things down dramatically as the sample size increases. As you might imagine, adding rows to a matrix using
the rbind function at each iteration of a loop will cause even larger problems.
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