
Basics of Debugging R

Like any program, R will occasionally produce errors which are not
easily understood. The classical method of debugging is to insert
print statements at appropriate locations, which can be time
consuming and inefficient.

One simple tool that is sometimes useful in R is the traceback()

function. If a program fails, and it’s not clear where or why,
invoking traceback() may provide useful information.

However, it is often usefult to have a more interactive environment
in which to examine and modify variables.

1

Interactive Debugging in R

R provides facilities for interactive debugging which can be invoked
through a variety of methods. The basic function for debugging is
browser(), which pauses the current execution, and provides an R
interpreter, allowing you to view and modify variables, and then
continue execution.

browser() can be invoked in several ways:

• insert a call to browser() in your R code.

• invoke the browser after each step of a function’s execution
using debug()

• invoke the browser if there’s an error in the your program by
calling recover() via options(error=recover).

• temporarily modify a function to allow browsing (or other code
of your choice) using trace()

2



Using browser()

When you are in the R browser, the following single letter
commands have special meaning:

• c - continue: execute all of the current function

• n (or carriage return) - next: step through the current function
a line at a time

• Q - quit: terminates debugging

• control-C return to top level - allows you to move among
frames

You’ll usually have to type “n” to get started once you’re in the
browser.

Once in the browser, any valid R commands can be entered. Typing
ls() or objects() is especially useful. Note that to examine
variables named c, n or Q, you need to use print() statements.

3

Inserting browser() into your function

If you place a call to browser() inside a function, execution will
pause when the call is reached, allowing you to examine and modify
variables. All valid R statements can be used.

Suppose we have the following function:

doit = function(x,y){

z = x + y

browser()

return(sum(z > 10))

}

Now suppose we invoke the function:

> doit(1:8,5:12)

Called from: doit(1:8, 5:12)

Browse[1]> objects()

[1] "x" "y" "z"

Browse[1]> x

[1] 1 2 3 4 5 6 7 8

4



Using debug()

When you want to interact with your R program on a step-by-step
basis, you can use the debug() function. debug() accepts a single
argument, the name of a function, and the function is then flagged
for debugging. To unflag a function, pass the function name to
undebug().

> debug(doit)

> doit(1:8,5:12)

debugging in: doit(1:8, 5:12)

debug: {

z = x + y

return(sum(z > 10))

}

Browse[1]>

The entire body of the function is printed when you first enter the
function, and individual lines are printed as you step through using
the “n” command.

5

Debugging Builtin Functions

The debug() command is not limited to user-written functions –
you can pass any non-primitive function to debug(). As an
example, suppose you are fitting a model with glm, and you would
like to investigate the glm.fit function.

> debug(glm.fit)

> glm(y~x,data=mydata)

Once glm.fit is reached, the body of the function is printed,
followed by the browser prompt.

Browse[1]> objects()

[1] "control" "etastart" "family" "intercept" "mustart"

[6] "offset" "start" "weights" "x" "y"

Browse[1]> n

debug: x <- as.matrix(x)

Browse[1]> n

debug: xnames <- dimnames(x)[[2]]

Browse[1]>

6



Using trace()

The trace() function allows you to temporarily add arbitrary code
to a function; untrace() allows you to remove that code. This
allows inserting code in a function without permanently changing
it.

The trace() function accepts the name of the function to be
traced, a function or unevaluated evaluated expression to execute,
and the line number at which to execute it. Line numbers inside a
function are revealed by calling list(body(function)).

For complex tracing, including tracing inside of loops, the
edit=TRUE argument can be passed to trace(). This will invoke a
text editor, allowing you to insert tracing code wherever desired,
and a call to untrace() will remove the code. This is especially
convenient when dealing with built-in functions.

7

Profiling R code

Profiling a program means determining how much execution time a
program spends in various different sections of code. In R, profiling
is available on a per-function basis; i.e. you can only see which
functions are being invoked, not which individual lines within those
functions. But by designing your program in a clever way, you can
often spot bottlenecks which might conveniently be converted to C
code.

Profiling is turned on with the Rprof function; you can specify a
filename to direct output to a particular file, or NULL to turn off
profiling.
To see the results of the profiling, run:

R CMD Rprof filename

where filename is the name of the profiler’s output (Rprof.out if
you don’t specify a filename.

8



Example of Profiling

Consider the problem of removing rows of a data frame if they
contain any missing values. It is “common knowledge” that loops
in R can be very slow. Consider three ways of removing rows with
missing values:

fun1 = function(x){ fun2 = function(x){ fun3 = function(x){

res = NULL n = nrow(x) omit = F

n = nrow(x) res = matrix(0,n,ncol(x)) n = ncol(x)

for(i in 1:n)if(!any(is.na(x[i,]))) k = 1 for(i in 1:n)

res = rbind(res,x[i,]) for(i in 1:n) omit = omit | is.na(x[,i])

res if(!any(is.na(x[i,]))){ x[!omit,]

} res[k,] = x[i,] }

k = k + 1

}

res[1:(k-1),]

}

9

Example of Profiling R code

To facilitate timing and profiling, we can use the following script:

x = matrix(rnorm(20000000),100000,20)

x[x > 1.5] = NA

Rprof("method1.out")

print(unix.time(fun1(x)))

Rprof(NULL)

Rprof("method2.out")

print(unix.time(fun2(x)))

Rprof(NULL)

Rprof("method3.out")

print(unix.time(fun3(x)))

Rprof(NULL)

10



Results of Timing and Profiling

[1] 194.68 49.19 245.71 0.00 0.00

[1] 0.99 0.05 1.04 0.00 0.00

[1] 0.18 0.03 0.21 0.00 0.00

Timings indicate that the first method is indeed very slow.
However, the other two loops were reasonably fast. To examine the
profiles, we exit R and use a command like

R CMD Rprof filename

(The profiler can be called from within R through the
summaryRprof() function, but it’s more efficient to invoke it from
the command line as shown above.)

11

Results for Method 1
Each sample represents 0.02 seconds.

Total run time: 232.280000000045 seconds.

Total seconds: time spent in function and callees.

Self seconds: time spent in function alone.

% total % self

total seconds self seconds name

100.00 232.28 0.20 0.46 "fun1"

100.00 232.28 0.00 0.00 "eval.with.vis"

100.00 232.28 0.00 0.00 "source"

100.00 232.28 0.00 0.00 "print"

100.00 232.28 0.00 0.00 "unix.time"

100.00 232.28 0.00 0.00 "eval"

99.22 230.46 99.21 230.44 "rbind"

0.56 1.30 0.53 1.24 "any"

0.03 0.06 0.03 0.06 "!"

0.03 0.06 0.03 0.06 "is.na"

0.01 0.02 0.01 0.02 "!="

% self % total

self seconds total seconds name

99.21 230.44 99.22 230.46 "rbind"

0.53 1.24 0.56 1.30 "any"

0.20 0.46 100.00 232.28 "fun1"

0.03 0.06 0.03 0.06 "!"

0.03 0.06 0.03 0.06 "is.na"

0.01 0.02 0.01 0.02 "!="

12



Results for Method 2
Each sample represents 0.02 seconds.

Total run time: 0.980000000000001 seconds.

Total seconds: time spent in function and callees.

Self seconds: time spent in function alone.

% total % self

total seconds self seconds name

100.00 0.98 0.00 0.00 "eval.with.vis"

100.00 0.98 42.86 0.42 "fun2"

100.00 0.98 0.00 0.00 "source"

100.00 0.98 0.00 0.00 "print"

100.00 0.98 0.00 0.00 "unix.time"

100.00 0.98 0.00 0.00 "eval"

51.02 0.50 48.98 0.48 "any"

4.08 0.04 4.08 0.04 "matrix"

2.04 0.02 2.04 0.02 "!"

2.04 0.02 2.04 0.02 "is.na"

% self % total

self seconds total seconds name

48.98 0.48 51.02 0.50 "any"

42.86 0.42 100.00 0.98 "fun2"

4.08 0.04 4.08 0.04 "matrix"

2.04 0.02 2.04 0.02 "!"

2.04 0.02 2.04 0.02 "is.na"

13

Results for Method 3
Each sample represents 0.02 seconds.

Total run time: 0.18 seconds.

Total seconds: time spent in function and callees.

Self seconds: time spent in function alone.

% total % self

total seconds self seconds name

100.00 0.18 33.33 0.06 "fun3"

100.00 0.18 0.00 0.00 "eval.with.vis"

100.00 0.18 0.00 0.00 "eval"

100.00 0.18 0.00 0.00 "unix.time"

100.00 0.18 0.00 0.00 "print"

100.00 0.18 0.00 0.00 "source"

44.44 0.08 44.44 0.08 "|"

22.22 0.04 22.22 0.04 "is.na"

% self % total

self seconds total seconds name

44.44 0.08 44.44 0.08 "|"

33.33 0.06 100.00 0.18 "fun3"

22.22 0.04 22.22 0.04 "is.na"

14



Conclusions from Profiling Example

Usually the second part of the profiling output (time spent in
function alone) is most useful.

Since the difference between method 1 and method 2 was the
replacing the repeated rbind() call with a single call to matrix()

we can compare the execution time for rbind in method 1 (230
seconds) with the execution time for matrix in method 2 (.04
seconds). This speedup is due to preallocating the result matrix.

Looking at method 3’s profile, it appears that it improves on
method 2 primarily by eliminating the need to repeatedly call
any() inside the loop, along with the added speed of the “|”
operator compared to the logic used in method 2. Time spent in
primitive (i.e. non-function) execution is lumped together in the
line corresponding to the function’s name: 0.46 seconds for method
1, 0.42 seconds for method 2, and .06 seconds for method 3.

15


