

Statistical mass spectrometry-based proteomics Olga Vitek

www.stat.purdue.edu

Outline

- What is proteomics?
 - Biological questions and technologies
- Protein quantification in label-free workflows
 - Joint analysis of multiple features and conditions
- Protein quantification in label-based workflows
 - Appropriately account for the labeling structure
- Mass spectrometry-based imaging
 - Account for the spacial heterogeneity of spectral data

Goals of proteomics

- Proteomics: system-wide characterization of all proteins
 - Sequence, structure, localization, abundance, PTMs, interactions
- More challenging than gene expression
 - Complexity
 - Human genome: ~20,000 protein coding genes
 - Their translation+splicing+proteolysis: ~50,000–500,000 proteins
 - Somatic DNA rearrangements and PTM: ~10 million
 - Dynamic range
 - > 10 orders of magnitude in plasma
 - Unlike nucleotides, proteins cannot be amplified
- How to make progress?
 - Sample preparation, separation, sensitive instruments
 - Statistical experimental design and accurate analysis

Acquisition of mass spectra

www.systemsbiology.org

Liquid chromatography coupled with mass spectrometry (LC-MS)

Liquid chromatography coupled with mass spectrometry (LC-MS)

7

Global proteomic workflows

Käll and Vitek, PLoS Computational Biology, 7, 2011 8

Targeted proteomic workflows

Käll and Vitek, PLoS Computational Biology, 7, 2011 9

Variation is experiment-specific

Outline

- What is proteomics?
 - Biological questions and technologies
- Protein quantification in label-free workflows
 - Joint analysis of multiple features and conditions
- Protein quantification in label-based workflows
 - Appropriately account for the labeling structure
- Mass spectrometry-based imaging
 - Account for the spacial heterogeneity of spectral data

Example: label-free LC-MS High/low invasive breast cancer cell lines Safia **Goal:** protein-level conclusions

ETHZ

Important differences with microarrays

Oligonucleotide microarrays

- RMA: Tukey Median Polish
 - Robust averaging of all probes array-specific summary

Sebastiani et al, Statistical Science, 2003.

• Proteomics

- Number and quality of features per protein vary widely
- Missing features introduce imbalance
- Label-based workflows combine multiple samples
 - blocking structure
- Targeted workflows create a nested structure protein/peptide/transition
- Explicit probabilistic models best represent the data

Linear mixed models for feature intensities

All inference is based on problem-specific linear combinations of model terms

$$\begin{aligned} & \mathbf{Quantity of interest:} \\ & H_0: L = \bar{\mu}_{\text{[high, nm, 6].}} - \bar{\mu}_{\text{[low, nm, 6].}} = 0 \\ & \mathbf{Model-based estimate and test statistic:} \\ & \hat{L} = \hat{C}_{\text{[high, nm, 6]}} + \frac{1}{I} \sum_{i=1}^{I} (\widehat{F \times C})_{i, \text{[high, nm, 6]}} + \frac{1}{K} \sum_{k=1}^{K} \widehat{S(C)}_{k(\text{[high, nm, 6]]}} \\ & - \left(\hat{C}_{\text{[low, nm, 6]}} + \frac{1}{I} \sum_{i=1}^{I} (\widehat{F \times C})_{i, \text{[low, nm, 6]}} + \frac{1}{K} \sum_{k=1}^{K} \widehat{S(C)}_{k(\text{[low, nm, 6]]}} \right) \\ & t = \frac{\hat{L}}{SE\{\hat{L}\}} \sim \text{Student distribution} \\ & \mathbf{In \ balanced \ datasets:} \\ & \hat{L} = \bar{Y}_{\text{[high, nm, 6]..}} - \bar{Y}_{\text{.[low, nm, 6]..}} \\ & t = \frac{\hat{L}}{\sqrt{\frac{2}{IKL}\hat{\sigma}_{Error}^2}} \sim \text{Student}_{IJK(L-1)+(I-1)J(K-1)} \ \text{distribution} \end{aligned}$$

Also methods for model diagnostics, data visualization etc

Tools for quantitative proteomics

Veavi Chang Meena Choi

i Tim Clough

- A variety of quantitative workflow
 Global, targeted, data-independent
 Label-free and label-based
- Accounts for experimental designs
 Group comparison, time course
- Data visualization & QC
- Model-based analysis
 Model fitting and inference
- Planning future experiments
 - Sample size, resource allocations

Since 2010:

- extensive documentation
- published case studies
- protocols for typical analyses
- 13 tutorials and workshops

Since 2011:

- 370 unique visitors
- over 50 unique downloads
- over 50 mailing list members Skyline

Ruedi Aebersold

Michael MacCoss

Collaboration:

Outline

- What is proteomics?
 - Biological questions and technologies
- Protein quantification in label-free workflows
 - Joint analysis of multiple features and conditions
- Protein quantification in label-based workflows
 - Appropriately account for the labeling structure
- Mass spectrometry-based imaging
 - Account for the spacial heterogeneity of spectral data

Transitions

Label-based workflows help separate the biological and the technological variation

More complex but similar linear mixed effects models

Purdue University

Kyle Bemis Meena Choi Tim Clough Veavi Chang Robert Ness Danni Yu Cheng Zheng

ETH Zürich

Ruedi Aebersold Ruth and lab Hüttenhain

Safia Thaminy Silvia Surinova

Purdue

Graham Cooks and lab

Stanford

Parag Mallick

36

CGR, Spain

Eduard Sabidó

