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Outline

● What is proteomics?
◆ Biological questions and technologies

● Protein quantification in label-free workflows
◆ Joint analysis of multiple features and conditions

● Protein quantification in label-based workflows
◆ Appropriately account for the labeling structure

● Mass spectrometry-based imaging
◆ Account for the spacial heterogeneity of spectral data 
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● Proteomics: system-wide characterization of all proteins
◆ Sequence, structure, localization, abundance, PTMs, interactions

● More challenging than gene expression
◆ Complexity
■ Human genome: ~20,000 protein coding genes
■ Their translation+splicing+proteolysis: ~50,000–500,000 proteins
■ Somatic DNA rearrangements and PTM: ~10 million

◆  Dynamic range
■ > 10 orders of magnitude in plasma
■ Unlike nucleotides, proteins cannot be amplified

● How to make progress?
◆ Sample preparation, separation, sensitive instruments
◆ Statistical experimental design and accurate analysis

Goals.of.proteomics
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IonizationDigestion

m/z

MS

Mixture analysis – the need for separations

HPLC HPLC 

separation separation 

during mass during mass 

spectrometryspectrometry

Mass spectrometers have limited peak capacities requiring 
separation and fractionation prior to analysis

Separation methods include:
• gels

• liquid chromatography

• affinity chromatography

• immunochromatography

• selective enrichment by covalent chemistry

Acquisi7on.of.mass.spectra

www.systemsbiology.org

http://www.nonlinear.com
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Liquid chromatography coupled with mass 
spectrometry (LC-MS)

Hydrophobicity

www.systemsbiology.org

Liquid.chromatography.coupled.with.mass.
spectrometry.(LCAMS)

http://www.nonlinear.com
http://www.nonlinear.com
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Liquid.chromatography.coupled.with.mass.
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Proteomics.is.
increasingly.

comprehensive
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Nature Reviews | Molecular Cell Biology

Shotgun
proteomics 
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as the underlying gene prediction algorithms and, fourth, 
there is a lack of methods and tools, computational or 
experimental, to make use of a map’s contents.

It could be expected that over time, by combining the 
data from multiple such studies, every protein expressed 
by a species would eventually be discovered. It therefore 
seemed plausible to combine the data from multiple  
partial maps into a single, complete proteome map.

Complementary ways of compiling partial proteome 
maps. Two complementary approaches have been taken 
to compile partial proteome maps. The first is based on 
the systematic fractionation of a proteome in a single 
study and the exhaustive identification of the proteins 
contained in each fraction. The second is based on the 
collection of MS data generated from a particular species 
in many studies in different laboratories.

Examples of the first strategy, exemplified by pro-
teome mapping studies in Saccharomyces cerevisiae40,58, 
Drosophila melanogaster 12, Caenorhabditis elegans55, 
Arabidopsis thaliana59 and numerous bacterial and 
archaeal species (TABLE 1), have reached the most extensive 
proteome coverage for the respective species. Examples 
of the second strategy include the PeptideAtlas project60, 
the global proteome machine (GPM)61, the proteomics  
identifications database (PRIDE)62, Tranche63 and 
Peptidome64, which are all publicly accessible databases 
that collect data submitted by the proteomics community. 
The main resources for the collection and representation 
of MS data are detailed in Supplementary information S2 
(table). With the increasing trend of scientific journals to 
request and enforce the submission of primary proteo-
mic data after publication, the data contents of these 
repositories, and their value for research, will increase. 
Interestingly, for S. cerevisiae, the two approaches have 
reached largely similar proteome coverage, suggesting 
that both can reach a similar endpoint and that the pro-
teome observable for the specific states covered has prob-
ably been exhaustively mapped. The compilation of large 
data sets with the goal of achieving complete proteome 
maps has yielded impressive results with the most exten-
sive, albeit still incomplete, proteome maps achieved to 
date. However, these studies are also facing three diffi-
cult challenges, a poorly defined endpoint, the control 
of protein discovery error rates and the requirement for 
large resources.

Definition of the proteome mapping endpoint. In the 
incremental proteome mapping strategy, segments of 
the proteome are combined like the pieces of a puzzle. 
However, in contrast to puzzles, there is no easy way to 
determine when all the pieces have been assembled and 
the map is complete because the boundaries of the pro-
teome studied (that is, the ensemble of proteins present 
in a particular cell or tissue at a particular state) are not 
known a priori. Two main arguments can be used to assess 
the level of completeness of a combined proteome map 
and neither is satisfactory. First, a proteome could be 
considered completely mapped if a protein product for all 
the annotated ORFs located in the genome of the respec-
tive species was conclusively identified. Apart from the 
fact that genome annotation for all species itself has not 
reached a definitive endpoint (BOX 2; TABLE 1), it is unlikely 
that all possible ORFs are expressed in any cell at a par-
ticular state. The proteome expressed by a cell is there-
fore context dependent. Strikingly, most of the extensive 
proteome maps compiled today cap out in the range of 
about two-thirds to three-quarters of the predicted ORFs 
detected (TABLE 1). This is even the case for proteome maps 
of unicellular species compiled by combining data from 

Figure 1 | Development of the proteomics field. a | Progress in the proteomics field is 
exemplified by the increase in the number of publications per year with the term 
‘proteome’ or ‘proteomics’ in the title or abstract (top graph) and the proteome coverage 
achieved for a subset of eukaryotic model organisms (bottom graph; percentages indicate 
the fraction of a proteome for which experimental data has been observed for a species  
at a given time). b | The progress shown in part a is a result of specific advances in mass 
spectrometry instrumentation (green boxes), proteomics assay technology (grey boxes) 
and computational database search and data analysis solutions (pink boxes). The 
developments are contrasted with the distribution of the number of proteins identified in 
proteomics studies during the respective year (shown as box plots on a log scale covering 
the upper and lower quartile, with median numbers (dark blue with a red dot) connected 
by a red line). Dotted lines indicate maximum and minimum values. To generate this plot, 
all Pubmed abstracts with the terms ‘proteome’ or ‘proteomics’ were retrieved and the 
number of distinct protein identifications was automatically extracted; abstracts with 
more than 50 identified proteins were manually evaluated and the extracted number 
corrected where necessary. The number of abstracts finally considered for this analysis  
is shown above each box plot. ICAT, isotope-coded affinity tagging; LTQ-FT, linear 
quadrupole ion trap-Fourier transform mass spectrometer; MRM, multiple reaction 
monitoring; SILAC, stable isotope labelling by amino acids in cell culture.

REVIEWS

6 | ADVANCE ONLINE PUBLICATION  www.nature.com/reviews/molcellbio

© 20  Macmillan Publishers Limited. All rights reserved10
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Assay technology

Computational solutions
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Global.proteomic.workflows
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Käll and Vitek, PLoS Computational Biology, 7, 2011
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(Picotti et al, 2009)
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SRM: Human ovarian cancer 
(Hüttenhain et al, 2012)
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Outline

● What is proteomics?
◆ Biological questions and technologies

● Protein quantification in label-free workflows
◆ Joint analysis of multiple features and conditions

● Protein quantification in label-based workflows
◆ Appropriately account for the labeling structure

● Mass spectrometry-based imaging
◆ Account for the spacial heterogeneity of spectral data 
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Example:.labelAfree.LCAMS
High/low.invasive.breast.cancer.cell.lines

Goal:.proteinAlevel.conclusions Safia
Thaminy
ETHZ

Normoxia Hypoxia
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MCF7

Culture 1 Culture 2 Culture 1 Culture 2 Culture 1 Culture 2 Culture 1 Culture 2 Culture 1 Culture 2 Culture 1 Culture 2 Culture 1 Culture 2 Culture 1 Culture 2

6 hrs 24 hrs 6 hrs 24 hrs
Normoxia Hypoxia

Hs578T

Figure 1: Study of breast cancer cell lines. Two cultures from two breast cancer cell lines (MCF7, Hs578T)
were observed under an oxygen treatment (normoxia, hypoxia) for two periods of time (6 and 24 hours). We
refer to each combination of these treatments as condition. Separate cultures were grown in each condition,
therefore the experiment had a 3-way factorial experimental design.
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Before
treatment
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8 9

Figure 2: Study of subjects with osteosarcoma. Chemotherapy treatment was administered at weeks 1, 4, 5,
6, 9, 10, 13, 14, 16, and 17 according to the COG protocol 9754. Sample collection time points are indicated
by colored boxes. The study had a combination of a time course and a group comparison design.
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Figure 3: Exploratory data analysis in MSstats. Y-axis: Log-intensities, lines link log-intensities of LC-MS
features, averaged over all replicates. (a) Quality control: profile plot of the protein SLC44A2 in the study
of breast cancer cell lines. X-axis: all conditions. (b) Feature-level comparisons: trellis display of the protein
SLC44A2 in the study of breast cancer cell lines. X-axis: one factor (time). Each panel: a combination
of the remaining factors. (c) Feature-level comparisons for time course experiments: trellis display of the
Entrez ID 28299 of the study of subjects with osteosarcoma. Each panel: a subject. X axis: time.
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were observed under an oxygen treatment (normoxia, hypoxia) for two periods of time (6 and 24 hours). We
refer to each combination of these treatments as condition. Separate cultures were grown in each condition,
therefore the experiment had a 3-way factorial experimental design.
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Figure 2: Study of subjects with osteosarcoma. Chemotherapy treatment was administered at weeks 1, 4, 5,
6, 9, 10, 13, 14, 16, and 17 according to the COG protocol 9754. Sample collection time points are indicated
by colored boxes. The study had a combination of a time course and a group comparison design.
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Figure 3: Exploratory data analysis in MSstats. Y-axis: Log-intensities, lines link log-intensities of LC-MS
features, averaged over all replicates. (a) Quality control: profile plot of the protein SLC44A2 in the study
of breast cancer cell lines. X-axis: all conditions. (b) Feature-level comparisons: trellis display of the protein
SLC44A2 in the study of breast cancer cell lines. X-axis: one factor (time). Each panel: a combination
of the remaining factors. (c) Feature-level comparisons for time course experiments: trellis display of the
Entrez ID 28299 of the study of subjects with osteosarcoma. Each panel: a subject. X axis: time.
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Important.differences.with.microarrays

● Oligonucleotide microarrays
◆ RMA: Tukey Median Polish

■ Robust averaging of all probes                                                                         into 
array-specific summary 

● Proteomics
◆ Number and quality of features per protein vary widely 
◆ Missing features introduce imbalance
◆ Label-based workflows combine multiple samples

■ blocking structure
◆ Targeted workflows create a nested structure protein/peptide/transition

●  Explicit probabilistic models best represent the data

Introduction to microarrays - Raphael Gottardo 17

Affymetrix: Probe set

Gene Fragment

... ACGTTACGAGAGATCGATCAGTCAGTACTAGTACTTGCCTAGCTAGC ...

AGATCGATCAGTCAGTACTAGTACT 

AGATCGATCAGTGAGTACTAGTACT 

Perfect Match (PM) probe

MisMatch (MM) probe

A probe pair consists of 
a PM and MM probe

Introduction to microarrays - Raphael Gottardo 12

Affymetrix: Probe set

Gene Fragment

... ACGTTACGAGAGATCGATCAGTCAGTACTAGTACTTGCCTAGCTAGC ...

AGATCGATCAGTCAGTACTAGTACT 

AGATCGATCAGTGAGTACTAGTACT 

Perfect Match (PM) probe

MisMatch (MM) probe

Probe pair 
set

PM

MM

Fluorescent image

A probe pair consists of 
a PM and MM probe

Sebastiani et al, Statistical Science, 2003.
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Linear.mixed.models.for.feature.intensi7es
Deviation from the reference due to

log( Expected Random

peak = reference + LC-MS + condition + feature ⇥ condition + biol. + meas.

intensity) abundance feature interaction replicate error

y
ijkl

= µ111 + F
i

+ C
j

+ (F ⇥ C)

ij

+ S(C)

k(j) + "
ijkl

where F1 = C1 = (F ⇥ C)

i1 = (F ⇥ C)1j = 0 "
ijkl

iid⇠ N
�
0,�2

Error, ijk

�

and

(a) reduced scope of biological replication: S(C)1(1) = 0

(b) expanded scope of biological replication: S(C)

k(j)
iid⇠ N

�
0,�2

S

�

Figure 4: Linear mixed e↵ects model for a factorial experiment. i = 1, . . . , I is the index of a feature,
j = 1, . . . , J the index of a condition, k = 1, . . . ,K the index of a biological replicate, and l = 1, . . . , L of a
technical replicate. Notation S(C)

k(j)

is read as “biological replicate within a condition”, and is the unique
identifier of each biological replicate. �2

Error, ijk

is the variance of the measurement error and �2

S

the between-
subject variance in the underlying population. µ

111

is the expected log-intensity of the arbitrary chosen first
feature, first condition, and first biological replicate. (a) and (b) are two alternative interpretations of the
term subject, which distinguish reduced and expanded scopes of biological replication. A separate such model
is specified for each protein.
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Figure 5: Residual plots for protein CDH13 in the study of breast cancer cell lines. Residuals from the same
feature have the same color. (a) Residuals versus predicted peak log-abundance. (b) Absolute residuals
versus predicted mean peak abundance are modeled by a loess curve. Values on the curve predicted for each
LC-MS peak are used as weights in the iterative least squares model fit.
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Figure 1: Study of breast cancer cell lines. Two cultures from two breast cancer cell lines (MCF7, Hs578T)
were observed under an oxygen treatment (normoxia, hypoxia) for two periods of time (6 and 24 hours). We
refer to each combination of these treatments as condition. Separate cultures were grown in each condition,
therefore the experiment had a 3-way factorial experimental design.
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Figure 2: Study of subjects with osteosarcoma. Chemotherapy treatment was administered at weeks 1, 4, 5,
6, 9, 10, 13, 14, 16, and 17 according to the COG protocol 9754. Sample collection time points are indicated
by colored boxes. The study had a combination of a time course and a group comparison design.
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Figure 3: Exploratory data analysis in MSstats. Y-axis: Log-intensities, lines link log-intensities of LC-MS
features, averaged over all replicates. (a) Quality control: profile plot of the protein SLC44A2 in the study
of breast cancer cell lines. X-axis: all conditions. (b) Feature-level comparisons: trellis display of the protein
SLC44A2 in the study of breast cancer cell lines. X-axis: one factor (time). Each panel: a combination
of the remaining factors. (c) Feature-level comparisons for time course experiments: trellis display of the
Entrez ID 28299 of the study of subjects with osteosarcoma. Each panel: a subject. X axis: time.
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Figure 1: Study of breast cancer cell lines. Two cultures from two breast cancer cell lines (MCF7, Hs578T)
were observed under an oxygen treatment (normoxia, hypoxia) for two periods of time (6 and 24 hours). We
refer to each combination of these treatments as condition. Separate cultures were grown in each condition,
therefore the experiment had a 3-way factorial experimental design.
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Figure 2: Study of subjects with osteosarcoma. Chemotherapy treatment was administered at weeks 1, 4, 5,
6, 9, 10, 13, 14, 16, and 17 according to the COG protocol 9754. Sample collection time points are indicated
by colored boxes. The study had a combination of a time course and a group comparison design.
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Figure 3: Exploratory data analysis in MSstats. Y-axis: Log-intensities, lines link log-intensities of LC-MS
features, averaged over all replicates. (a) Quality control: profile plot of the protein SLC44A2 in the study
of breast cancer cell lines. X-axis: all conditions. (b) Feature-level comparisons: trellis display of the protein
SLC44A2 in the study of breast cancer cell lines. X-axis: one factor (time). Each panel: a combination
of the remaining factors. (c) Feature-level comparisons for time course experiments: trellis display of the
Entrez ID 28299 of the study of subjects with osteosarcoma. Each panel: a subject. X axis: time.
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All.inference.is.based.on.problemAspecific.
linear.combina7ons.of.model.terms

Quantity of interest:

H
0

: L = µ̄
[high, nm, 6]· � µ̄

[low, nm, 6]· = 0

Model-based estimate and test statistic:

L̂ = Ĉ
[high, nm, 6]

+ 1

I

IP
i=1

( dF ⇥ C)i, [high, nm, 6]

+ 1

K

KP
k=1

dS(C)k([high, nm, 6])

-
✓

Ĉ
[low, nm, 6]

+ 1

I

IP
i=1

( dF ⇥ C)i, [low, nm, 6]

+ 1

K

KP
k=1

dS(C)k([low, nm, 6])

◆

t = ˆL
SE{ˆL} ⇠ Student distribution

In balanced datasets:

L̂ = Ȳ·[high, nm, 6]·· � Ȳ·[low, nm, 6]··

t = ˆLp
2

IKL

�̂2
Error

⇠ Student

IJK(L�1)+(I�1)J(K�1) distribution

6

Also.methods.for.model.diagnos7cs,.data.visualiza7on.etc
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Veavi&Chang Meena&Choi Tim&Clough

• A#variety#of#quan0ta0ve#workflow

4 Global,'targeted,'data-independent
- Label-free'and'label-based

• Accounts#for#experimental#designs

- Group'comparison,'7me'course
• Data#visualiza0on#&#QC

• Model4based#analysis

- Model'fi:ng'and'inference
• Planning#future#experiments

- Sample'size,'resource'alloca7ons

Since 2011:
•  370 unique visitors
•  over 50 unique downloads
•  over 50 mailing list members

Tools.for.quan7ta7ve.proteomics

Since 2010:
•  extensive documentation 
•  published case studies 
•  protocols for typical analyses
•  13 tutorials and workshops

Collaboration:

Ruedi.Aebersold Michael.
MacCoss
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Outline

● What is proteomics?
◆ Biological questions and technologies

● Protein quantification in label-free workflows
◆ Joint analysis of multiple features and conditions

● Protein quantification in label-based workflows
◆ Appropriately account for the labeling structure

● Mass spectrometry-based imaging
◆ Account for the spacial heterogeneity of spectral data 
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LabelAbased.workflows.help.separate.the.
biological.and.the.technological.varia7on
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Group 1 · · · Group I
Run 1 · · · · · · · · · · · · · · · Run M

Subject 1 · · · Subject J · · · Subject 1 · · · Subject J

Peptide 1 Transition 1 10.21 · · · 10.57 · · · 15.64 · · · 15.03
... · · · · · · · · ·

Endogenous: Transition L 10.52 · · · 10.92 · · · 15.29 · · · 15.68

light labeled
...
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peptide Peptide K Transition 1 11.76 · · · 11.92 · · · 16.22 · · · 16.71
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Wednesday, January 19, 2011
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More.complex.but.similar.linear.
mixed.effects.models
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