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Abstract

Single-cell transcriptomics allows researchers to investigate complex communities of heterogeneous

cells. These methods can be applied to stem cells and their descendants in order to chart the pro-

gression from multipotent progenitors to fully differentiated cells. While a number of statistical and

computational methods have been proposed for analyzing cell lineages, the problem of accurately

characterizing multiple branching lineages remains difficult to solve. Here, we introduce a novel

method, Slingshot, for inferring multiple developmental lineages from single-cell gene expression

data. Slingshot is a uniquely robust and flexible tool for inferring developmental lineages and

ordering cells to reflect continuous, branching processes.
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1 Background

Traditional transcription assays, such as bulk microarrays and RNA sequencing (RNA-Seq), offer

a bird’s-eye view of transcription. However, as they rely on RNA from a large number of cells

as starting material, they are not ideal for examining heterogeneous populations of cells. Newly-

developed single-cell assays can give us a much more detailed picture (Kolodziejczyk et al., 2015).

This higher resolution allows researchers to distinguish between closely-related populations of cells,

potentially revealing functionally distinct groups with complex relationships (Wagner et al., 2016).

For many systems, there are not clear distinctions between cellular states, but instead there is

a smooth transition where individual cells represent points along a continuum or “lineage”. Cells

in these systems change states by undergoing gradual transcriptional changes, with progress being

driven by an underlying temporal variable. For example, Trapnell et al. (2014) examined the

differentiation pattern of skeletal myoblasts, showing that their development into myocytes and

mature myotubes follows a continuous lineage, rather than discrete steps. Inference of lineage

structure has been referred to as “pseudotemporal reconstruction” and it can help us understand

how cells change state and how cell fate decisions are made (Bendall et al., 2014; Campbell et al.,

2015; Trapnell et al., 2014). Furthermore, many systems contain lineages that share a common

initial state but branch and terminate at different states. These complicated lineage structures

require additional analysis to distinguish between cells that fall along different lineages (Ji and Ji,

2016; Setty et al., 2016; Shin et al., 2015).

Several methods have been proposed for the task of pseudotemporal reconstruction, each with

their own set of strengths and assumptions. We describe a few popular approaches here; for a

more complete review see Bacher and Kendziorski (2016). One of the most well-known methods

is Monocle (Trapnell et al., 2014), which constructs a minimum spanning tree (MST) on cells in a

reduced-dimensionality space created by independent component analysis (ICA) and orders cells

via a PQ tree along the longest path through this tree. The direction of this path and the number

of branching events are left to the user, who may examine a known set of marker genes or use

time of sample collection as indications of initial and terminal cell states. The methods Waterfall

(Shin et al., 2015) and TSCAN (Ji and Ji, 2016) instead determine the lineage structure by first

clustering cells and then drawing an MST on the cluster centers. Lineages are represented in the

low-dimensional space as piecewise linear paths through the tree, providing a simple, unsuper-

vised method for identifying branching events. The output pseudotime values are calculated by

orthogonal projection onto these paths, with the identification of the direction and of the cluster

of origin again left to the user. The method of Wishbone (Setty et al., 2016), an extension of

Wanderlust (Bendall et al., 2014), uses an ensemble of k-nearest neighbors (kNN) graphs on cells

and a randomly selected group of waypoints to robustly determine cell-to-cell distances. Given a
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user-specified initial cell, these distances are used to determine the presence or absence of a bifur-

cation event, which limits the method to only two lineages. Finally, other approaches use smooth

curves to represent lineages. For example, Embeddr (Campbell et al., 2015) uses the principal

curves method of Hastie and Stuetzle (1989) to infer lineages in a low-dimensional space obtained

by a Laplacian eigenmap. Again, the direction of the curve must be specified by the user and the

method is limited to a single lineage. See Table 1 for a summary of existing methods.

Here, we introduce Slingshot, a novel lineage inference tool designed for multiple, branching

lineages. Slingshot combines highly stable techniques necessary for noisy single-cell data with the

flexibility to identify multiple lineages with varying levels of supervision. Slingshot consists of two

main stages: 1) the inference of the lineage structure and 2) the inference of pseudotime variables

for cells along each lineage (Figure 1). Like other methods (Ji and Ji, 2016; Shin et al., 2015),

Slingshot’s first stage uses a cluster-based MST to stably identify the key elements of the global

lineage structure, i.e., the number of lineages and where they branch (Figure 1, Step 1). This allows

us to identify novel lineages while also accommodating the use of domain-specific knowledge to

supervise parts of the tree. For the second stage, we propose a novel method, simultaneous principal

curves, to fit smooth, branching curves to these lineages, thereby translating the knowledge of

global lineage structure into stable estimates of the underlying cell-level pseudotime variable for

each lineage (Figure 1, Step 2). The Slingshot method is implemented in the open-source R package

slingshot (available from the GitHub repository https://github.com/kstreet13/slingshot) to

be released through the Bioconductor Project (http://www.bioconductor.org).

In addition to Slingshot’s core methodological components described above for lineage and

pseudotime inference, we note the importance of upstream analysis choices. Indeed, many pseu-

dotemporal inference methods will either implicitly or explicitly require certain choices at previous

steps in the workflow. Dimensionality reduction, for example, helps in reducing the amount of

noise in the data and in visualizing the data, but a variety of approaches are available, with a

potentially large impact on the final result (see Figure S1). Monocle uses independent component

analysis, Waterfall and TSCAN use principal component analysis (PCA), Embedder uses Lapla-

cian eigenmaps (Belkin and Niyogi, 2003), and Wishbone uses diffusion maps for analysis and

t-distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton, 2008) for visualization

(Table 1). Given the great diversity of data being generated by single-cell assays, it seems unlikely

that there is a one-size-fits-all solution to the dimensionality reduction problem. Similar issues

arise for normalization and clustering methods. These data analysis steps are very important and

because different methods hard-code different choices, the methods can be difficult to compare.

Slingshot does not specify these crucial upstream choices, but is instead designed with flexibility

and modularity in mind, to easily integrate with the normalization, dimensionality reduction, and
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clustering methods deemed most appropriate for any particular dataset.

2 Results

Slingshot divides the problem of multiple lineage inference into two stages: 1. Identification of

lineages, i.e., ordered sets of cell clusters, where all lineages share a starting cluster and each

leads to a unique terminal cluster. This is achieved by constructing an MST on clusters of cells.

2. For each lineage, identification of pseudotime, i.e., a one-dimensional variable representing each

cell’s transcriptional progression toward the terminal state. This is achieved by a method which

extends principal curves (Hastie and Stuetzle, 1989) to the case of multiple branching lineages. The

primary benefits of Slingshot are robustness and the ability to detect complicated multiple-lineage

structures.

2.1 Robustness

One of the main difficulties of single-cell RNA-Seq is the high level of noise. In addition to the host

of biological and technical confounders that can affect any (bulk) RNA-Seq experiment, single-cell

data may contain effects from transcriptional bursting (Chubb et al., 2006; Raj et al., 2006) and

drop-out (Kharchenko et al., 2014). Furthermore, downstream analyses such as lineage inference

may be affected by upstream computational choices such as normalization and clustering methods.

For these reasons, we believe that robustness to noise, unwanted technical effects, and choice of

pre-processing methods should be important characteristics of a lineage inference method.

Robustness to Noise. We first examined the stability of a few well-known methods using a

subset of the HSMM dataset of Trapnell et al. (2014) chosen to represent a single lineage. In

Figure 2, we illustrate each method’s ordering of the full set of 212 cells and show how consistently

it orders cells over 50 bootstrap subsamples. The Monocle procedure, which constructs an MST on

individual cells and orders them according to PQ trees along the diameter path of the MST, was

the least stable of the methods we compared. The diameter path drawn by Monocle was highly

variable and sensitive to even small amounts of noise; this instability has been previously discussed

in Ji and Ji (2016). In contrast, other methods which emphasize stability in the construction of

their primary trajectory and obtain pseudotime values based on orthogonal projection, produced

much more stable orderings.

Although both the cluster-based MST method (Ji and Ji, 2016; Shin et al., 2015) and the

principal curves method (Campbell et al., 2015; Hastie and Stuetzle, 1989) demonstrated robustness

over the bootstrap subsamples shown in Figure 2b, the former has some important drawbacks. Due

to the sharp corners of the piecewise linear paths, multiple cells will often be assigned identical
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pseudotime values, corresponding to the value at the vertex. Additionally, the tree does not always

capture the correct global structure: due to variability in the exact distances between cluster

centers, the MST may end up cutting corners in a lineage and curving back on itself or detecting

spurious branching events (see Supplemental Figure S2). The principal curve approach was the

most stable method, producing very similar orderings on all subsets of the data (Figure 2b). On

more complex datasets, however, Embeddr’s (Campbell et al., 2015) principal curves method has

the obvious limitation of only characterizing a single lineage. It is for this reason that we chose to

extend principal curves to accommodate multiple, branching lineages.

Robustness to Cluster Assignments. Although Slingshot uses cluster assignments for the

identification of lineages and branching events, its use of simultaneous principal curves to estimate

the final pseudotimes makes its final results quite robust to the choice of clustering method. In

Figure 3, we demonstrate on a simulated dataset the stability of the pseudotime estimates for

different sets of clusters, chosen by k-means clustering. Slingshot produces very similar curves

over a wide range of values for the number of clusters k, even while the underlying MSTs change

dramatically (Figure 3a). In comparison, using an MST alone to identify lineages and estimate

pseudotimes (as is done by Waterfall and TSCAN) gives estimates that are quite sensitive to the

choice of clusters.

Of course, Slingshot is not completely independent of the effect of poor clustering since the

clusters define the lineages. This is seen in the extreme cases where k = 2 and k = 15 (Figure 3b),

for which the inferred lineages are dramatically wrong because of the choice of k. Nonetheless,

Slingshot shows a reduced reliance on clustering results and increased stability, leading to more

robust pseudotime estimates.

2.2 Multiple Lineage Identification

Determining the number and location of branching events is one of the most difficult components

of lineage inference. Already faced with potentially noisy, high-dimensional data, we now have

to consider the problem of model selection in an extremely large model space. Some methods

introduce restrictions on lineage discovery; for example, Monocle requires the user to pre-specify

the number of lineages and Wishbone is limited to only one or two lineages. In contrast, Slingshot

allows for multiple lineage detection without limiting or pre-specifying the number of lineages.

Moreover, Slingshot provides the user the ability to direct lineage detection in a biologically

relevant manner, specifically by giving the option to identify known endpoints of lineages. Using

the complex example of lineage detection in the olfactory epithelium data of Fletcher et al. (2017

in press), we demonstrate the importance of this type of supervision, as opposed to supervision
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which requires specific knowledge of the number of lineages.

Figure 4 displays the result of running Slingshot with and without supervision on the data of

Fletcher et al. (2017 in press). For this dataset, clusters corresponding to the neuronal, sustentac-

ular, and microvillous cell types were identified based on known marker genes (Fletcher et al., 2017

in press). These cell types are known to be non-differentiating and should thus be the terminal

states of their respective lineages. However, without supervision (Figure 4a), the sustentacular

cluster was not identified as an endpoint, yielding results inconsistent with prior knowledge. Se-

lecting the sustentacular cluster as an endpoint led to the recovery of the three lineages reported

and validated in the original paper (Figure 4b). We also note that this structure could not have

been recovered using standard Euclidean distances between cluster centers (Figure 4c), as in Wa-

terfall and TSCAN. By failing to utilize the shapes of the clusters, the standard Euclidean distance

between cluster centers identified a spurious branching event very early on in HBC differentiation.

By default, Slingshot uses a shape-sensitive distance measure inspired by the Mahalanobis dis-

tance (Mahalanobis, 1936), which scales the distance between cluster centers based on the shared

covariance structure of the two clusters.

Other lineage detection methods were not able to correctly identify the three lineages in this

dataset, diagrammed in Figure 5a. Monocle requires that the number of lineages be pre-specified,

but in practice this number was unknown before running Slingshot and performing validation

experiments. Even when we specified the proper number of lineages (three), Monocle’s results

contradicted prior knowledge (Figure 5b). While one of Monocle’s lineages captured most of the

neurogenic trajectory, it also included the identified microvillous cells and a fair number of imma-

ture sustentacular cells. More importantly, the neuronal lineage skipped most of the GBC cluster,

cells which are known to be intermediates between HBCs and mature olfactory sensory neurons.

Instead, Monocle classified GBCs as an alternate terminal state branching from the neuronal lin-

eage. Another popular method, Wishbone, has a maximum of two lineages, so we applied it to

a subset of the data believed to represent the two main lineages, namely, the sustentacular and

neuronal lineages (Figures 5d and S4a). Wishbone identified a bifurcation, but not one which sep-

arated neurons from sustentacular cells (Figures 5e and S4b). The large skip in the longer lineage

is caused by a small group of neurons which were isolated in a corner of the three-dimensional

space constructed by diffusion maps. When we used Wishbone again with PCA as the dimension-

ality reduction step, we observed that this gap was no longer present, but Wishbone still failed to

identify the primary bifurcation in the data (Figures 5f and S4b).

For both the full and subsetted data, Slingshot identified lineages which are consistent with

prior biological knowledge (Figures 5c and 5g). In the two-lineage case, this required no additional

supervision beyond identifying the initial HBC cluster. For the full data, we specified all three
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terminal state clusters as endpoints, but we note that only one of these (the sustentacular cluster)

had any effect on the inferred structure. Originally, it was not established that the microvillous

endpoint was a branch off of the neuronal lineage, but this relationship was discovered and validated

by Fletcher et al. (2017 in press). This novel biological discovery would not have been possible

with lineage inference methods that restrict or require specification of the number of lineages.

In Supplemental Figures S3a and S3c, we show that in addition to capturing complicated,

multilineage structures, Slingshot is also able to correctly detect a single lineage and two bifurcating

lineages, respectively, in the datasets of Trapnell et al. (2014) and Shin et al. (2015). In both cases,

Slingshot’s final pseudotime variables are highly similar to those found in the original papers, but

do not rely on user specification of the number of lineages or subsetting of the data.

3 Discussion

We have introduced a new method, Slingshot, for lineage and pseudotime inference in datasets

where the number of lineages is unknown. Because Slingshot breaks the lineage inference problem

into two steps, we are able to make use of appropriate methods for each task and avoid the common

trade-off between robustness and the flexibility to detect complex structures. Using a cluster-based

MST for lineage identification allows Slingshot to identify potentially complex global patterns in

the data without being overly sensitive to individual data points. Our novel simultaneous principal

curves method for pseudotime inference extends the stability and robustness properties of principal

curves to the case of multiple branching lineages.

Unlike other methods for multiple lineage identification, Slingshot does not require a priori

knowledge of the number of lineages, but instead uses a cluster-based MST method that has the

flexibility to detect novel lineages. At the same time, Slingshot also allows the user to constrain the

global tree structure to ensure that previously established terminal states are correctly identified.

This is a more natural way to incorporate prior information than placing burdensome restrictions

on the number of lineages and leads to more biologically meaningful results than other methods.

Lineage characteristics such as initial and terminal states can be difficult to identify at the level

of individual cells (as in Wishbone), due to drop-out effects and the high levels of noise in single-

cell data. However, more unsupervised methods like Monocle and Embeddr, which only require a

direction to be given to an inferred lineage, can end up missing the initial state altogether. We

find that supervision at the cluster level provides a nice balance: due to averaging, clusters are

less ambiguous than individual cells, making them easier to identify based on known marker genes,

and specifying initial and terminal states provides an intuitive, but not overly restrictive way to

ensure that inferred lineages do not contradict previously established results.
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We demonstrated, using the data of Trapnell et al. (2014) and Shin et al. (2015), that Sling-

shot can correctly detect a single lineage and two bifurcating lineages, respectively (Supplemental

Figures S3a and S3c). In both cases it produces results similar to those found and validated in the

original paper (Supplemental Figures S3b and S3d). Additionally, using the olfactory epithelium

data of Fletcher et al. (2017 in press), we demonstrated that with minimal supervision, Slingshot

can correctly identify a complicated three-lineage structure that other methods cannot.

Since there are many aspects to the problem of lineage inference, from sample collection to

final analysis, it is important to define precisely the tasks for which Slingshot is designed. The

philosophy of Slingshot is that some common steps in single-cell analysis, such as dimensionality

reduction or clustering, do not have a single solution that works well for all data types. For example,

Slingshot does not require a specific dimensionality reduction method because single-cell data can

come from a variety of assays and in a wide range of dimensions, from the 271 cells× 47, 192 genes

RNA-Seq dataset of Trapnell et al. (2014) to the 25, 000 cells×13 markers mass cytometry dataset

of Setty et al. (2016). This extreme heterogeneity precludes any one-size-fits-all solution and

similar arguments can be made for other upstream analysis steps. Slingshot makes use of both

a dimensionality reduction and clustering step, but unlike other methods it does not attempt to

solve either problem, viewing these instead as separate analysis choices, analogous to the choice of

normalization method or short read aligner.

Ultimately, single-cell data are noisy, high-dimensional, and may contain a multitude of com-

peting, interwoven signals. In the presence of such data, Slingshot provides a robust and modular

method for lineage inference that allows for novel lineage discovery, meaningful incorporation of

biological constraints, and fits easily within existing analysis pipelines.

4 Online Methods

We start from an n× J matrix of normalized expression measures (e.g., read counts) for n single

cells and J genes or features. Slingshot assumes that the n cells have been partitioned into K

clusters, potentially corresponding to distinct cellular states. Although Slingshot can in principle

be applied directly to the normalized expression values, we strongly recommend a dimensionality

reduction step before pseudotemporal reconstruction, as Slingshot’s curve-fitting step uses Eu-

clidean distances which can misbehave in high-dimensional spaces (cf. curse of dimensionality).

Dimensionality reduction can also strengthen signal in the data and help with visualization. We

denote the dimension of the reduced space by J ′.

Before detailing Slingshot’s two main steps, we introduce some notation. First, denote by X =

(Xij) the n × J ′ reduced-dimensional matrix of gene expression measures, for cells i ∈ {1, . . . , n}
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and dimensions j ∈ {1, . . . , J ′}. Let {C1, . . . , CK} denote the K cell clusters or states, i.e., disjoint

subsets of cells, obtained by clustering the cells based on their gene expression measures. We then

define a lineage as an ordered set of clusters and let L denote the total number of lineages. For

a particular lineage, Ll, denote its length (i.e., the number of clusters in the lineage) by Kl and

the kth cluster by Clk, for l ∈ {1, . . . , L} and k ∈ {1, . . . ,Kl}. In particular, Cl1 and ClKl
correspond

to the initial and terminal states for the lth lineage, respectively. It is important to note that a

cluster can belong to multiple lineages and that the ordering of the clusters within a lineage does

not strictly determine the final relative orderings of cells in those clusters.

As a given cluster can belong to multiple lineages, so can a cell. For ease of notation, we

therefore allow cells to have distinct pseudotime values for each lineage they are a part of. The

pseudotime value for cell i in lineage l is denoted by tli ∈ R≥0; if cell i does not belong to lineage

l, i.e., i /∈ ∪Kl

k=1Clk, then set tli = ∅. The vector of pseudotime values for lineage l is denoted by

tl = (tli : i = 1, . . . , n).

4.1 Identification of Cluster-Based Lineages

In its first step, Slingshot identifies lineages by treating clusters of cells as nodes in a graph and

drawing an MST between the nodes, similar to the work of Ji and Ji (2016) and Shin et al. (2015).

Lineages are then defined as ordered sets of clusters created by tracing paths through the MST,

starting from a given root node. Our method differs however in a number of important respects

from those of Ji and Ji (2016) and Shin et al. (2015), including the distance measure used for

drawing the tree and the incorporation of biologically meaningful supervision.

4.1.1 Shape-Sensitive Distance Measure between Cell Clusters

Constructing an MST involves specifying a distance measure between nodes (in this case, clusters).

Although in principle any type of distance measure could be used (e.g., Euclidean, Manhattan),

we found that a Mahalanobis distance, i.e., a covariance-scaled Euclidean distance, that accounts

for cluster shape, works well in practice. Specifically, the pairwise distance between clusters i and

j, d(Ci, Cj), is defined as

d2(Ci, Cj) = (X̄i − X̄j)
T (Si + Sj)

−1(X̄i − X̄j),

where X̄i represents the center (mean) of cluster i and Si its empirical covariance matrix in the

reduced-dimensional space. This is essentially a multivariate t-statistic. By default, Slingshot uses

the full covariance matrix of both clusters, allowing us to draw trees that are better covered by

and representative of the cells in a dataset. However, in the presence of small clusters, the matrix
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Si + Sj may not be invertible and we replace the full covariance matrix with the corresponding

diagonal covariance matrix.

4.1.2 Biologically Meaningful Supervision

Slingshot allows two forms of supervision during lineage identification: initial state and terminal

states specification. Like other methods relying on cluster-based MSTs (TSCAN, Waterfall), Sling-

shot requires the user to identify the initial cluster or root node. Subsequently, every direct path

from this node to a leaf node (i.e., a cluster with only one edge) will be called a lineage. Indeed, all

existing lineage construction methods explicitly or implicitly make the assumption that a starting

state can be identified by the user: Monocle and Embeddr construct orderings for which the user

must select the correct direction and Wishbone requires the user to select an initial cell or group of

cells. In the simple case where the MST constructed by Slingshot has only two leaf nodes and one

is specified as the root, this results in a single lineage. If an interior (non-leaf) node is specified as

the origin, this results in two lineages, one terminating in each leaf node. Clusters with more than

two edges will create bifurcations and produce additional lineages.

Additionally, Slingshot allows the user to provide further supervision in the construction of

the lineages by selecting clusters known to represent terminal cell states, imposing a constraint

on the MST algorithm. The constrained MST is obtained by first constructing the MST on all

non-selected clusters and then connecting each selected cluster to its nearest non-selected neighbor.

Such supervision results in more biologically meaningful lineages for situations where the data can

be explained by many possible lineage structures. Identified lineages are by construction consistent

with known biology and provide improved stability over less supervised methods. Although termi-

nal state supervision is not required, we find that in many settings researchers do have knowledge

of the cell types present in their data and that systematically incorporating this knowledge can

provide more stable inference. Ultimately, detecting multiple lineages based on gene expression is

a difficult problem that benefits from such guidance, as we demonstrate in the results (Section 2).

4.2 Identification of Individual Cell Pseudotimes

The second stage of Slingshot is concerned with assigning pseudotimes to individual cells. For this

purpose, we make use of principal curves (Hastie and Stuetzle, 1989) to draw a path through the

gene expression space of each lineage. As we show in the results (Section 2), principal curves give

very robust pseudotimes when there is a single lineage.

Multiple lineages demand more care and are handled using the simultaneous principal curves

method proposed below. Just as clusters in the MST may belong to one or more lineages, the

cells which constitute these clusters may be assigned to one or more lineages. In principle, we
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could construct traditional principal curves for each lineage separately to arrive at pseudotimes.

However, there is no guarantee that these curves would agree with each other in the neighborhood

of clusters shared between lineages, so cells belonging to multiple lineages could be assigned very

different pseudotime orderings by each curve. Since we assume a smooth differentiation process,

this is potentially a violation and may be problematic in downstream analysis.

We therefore introduce a method of simultaneously fitting the principal curves of each lineage,

which shrinks the curves to a consensus path in areas where lineages share many common cells, but

allows the curves to separate as they share fewer and fewer cells. This ensures smooth bifurcations

of the paths. We call the resulting curves simultaneous principal curves, as they are fit by an

iterative procedure based on the principal curves algorithm of Hastie and Stuetzle (1989). When

there is only a single lineage (L = 1), the pseudotimes of Slingshot are found by the standard

principal curves algorithm, except that the initial curve for the algorithm is based on the lineage’s

path through the MST found in the earlier stage (see below for details), rather than the first

principal component.

We review the standard principal curves algorithm (for a single curve) in order to be clear

about how we adapt it for simultaneous principal curves. After specification of an initial curve,

the algorithm iteratively follows these steps:

1. Project all data points onto the curve and calculate the arclength from the beginning of the

curve to each point’s projection. Setting the lowest value to zero, this produces pseudotimes.

2. For each of the J ′ dimensions, use the cells’ pseudotimes to predict their coordinates along

dimension j, j ∈ {1, . . . , J ′}, typically with a smoothing spline. This produces a set of

functions which collectively map pseudotime values in R≥0 into RJ′
, thereby defining a

smooth curve in J ′ dimensions.

3. Repeat this process until convergence. We use the sum of squared distances between cells

and their projections on the curves to determine convergence.

In the case of branching lineages, this iterative process is modified with an additional shrinkage

step to ensures smooth bifurcations. Specifically, for each lineage l, we infer a vector of pseudotime

values, tl = (tli : i = 1, . . . , n), and a function cl : R≥0 → RJ′
for the associated curve in the

low-dimensional space. Then, the shrinkage step is done by first constructing an average curve

which, as with the individual lineage curves, is a function of pseudotime. It simply consists of the

average of the points along the L curves at each pseudotime value:

cavg(t) =
1

L

L∑
l=1

cl(t),
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where t represents pseudotime. Because the L lineages share the same root cluster, we are assured

that their starting points (where t = 0) will be identical and will also be the starting point of the

average curve.

We next construct a set of lineage-specific weighting functions to determine how much we

should shrink each curve toward the average. For lineage l, we define the weighting function

wl : R≥0 → [0, 1], with the constraint that wl must be non-increasing. Additionally, by specifying

that wl(0) = 1, ∀l, we ensure that diverging curves always share the same initial point. These

weighting functions allow us to shrink the diverging lineage curves toward their shared average

curve with the additional update step:

cnew
l (t) = wl(t)cavg(t) + (1− wl(t))cl(t).

If all the w functions are smooth, this shrinkage step ensures that the final curves will follow a tree

structure with smooth branching events.

Slingshot’s default weighting function satisfies these conditions and is based on the distribution

of pseudotimes over cells shared between lineages. Given a set of lineages l1, . . . , lm (typically with

m = 2), which all contain certain shared cells {i : tl1i 6= ∅, . . . , t
lm
i 6= ∅}, we define the weighting

function for lineage l1 as follows. Set tl10 and tl11 respectively as the lowest and highest non-outliers

in this distribution, where outliers are defined by the 1.5IQR rule of boxplots. The weighting

function is then defined as:

wl1(t) = 1−K

(
t

tl11 − tl10
− 1

2

)
,

where K is the cumulative distribution function of a standard cosine kernel with a bandwidth of

1
6 (which places weight only on values between − 1

2 and 1
2 ). We note that wl1(t) = 1 ∀t ≤ tl10

and wl(t) = 0 ∀t ≥ tl11 . Weighting functions for the other lineages are then calculated similarly.

The final curves are fairly robust to the choice of kernel function (we also tried standard kernels

provided by the density function in R, results not shown).

In both the single and branching lineage cases, final pseudotime values are derived from each

point’s orthogonal projection onto the curves. Thus, cells belonging to multiple lineages will have

multiple pseudotime values, but these values will agree quite well for cells positioned before the

lineage bifurcation, where the curves are most similar.

Initialization of Simultaneous Principal Curves Algorithm. As mentioned above, we ini-

tialize the algorithm using the MST from the first stage. Specifically, we start with the piecewise

linear path through the centers of the clusters contained in the lineage (in contrast, standard

principal curves are initialized by the first principal component of all points being fit). Starting
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with the path through the cluster centers allows us to leverage the prior knowledge that went into

lineage identification as well as to improve the speed and stability of the algorithm, though in

practice, the two procedures typically converge to very similar curves.

4.3 Datasets

We demonstrate the performance of Slingshot by applying it to three previously-published single-

cell RNA-Seq datasets, each with a different number of terminal cell types. The first is a subset

of the data used in Trapnell et al. (2014), which assayed 271 human skeletal muscle myoblasts

(HSMMs) in order to study their development into mature myotubes. This is an example of

data with only a single lineage. In their analysis, Trapnell et al. (2014) identify a population of

contaminating interstitial mesenchymal cells, which we omit from this dataset. This results in a

sample of 212 cells believed to form a single, continuous developmental lineage. For our analysis,

we used the cluster labels generated by Monocle as well as a set of labels obtained via k-means

clustering and, as in the original paper, we represented the data in two dimensions obtained by

ICA. The normalized data were downloaded from the NCBI GEO database (accession GSE52529).

The second dataset comes from Shin et al. (2015), who assayed 132 hippocampal quiescent

neural stem cells (qNSCs) and their immediate progeny from adult mice, cells known to be involved

in neurogenesis. Their goal was to assess cellular heterogeneity among this population and analyze

continuous-time developmental dynamics. After removing a few outliers, their analysis focuses on

101 cells believed to represent the development of qNSCs into intermediate progenitor cells (IPCs),

a transitional state between qNSCs and mature neurons. However, they note an additional cluster

of 23 cells branching off of this lineage, potentially representing an alternative terminal cell type.

As in the original paper, we used the hierarchical clustering labels and the first two principal

components as the reduced dimensional space. Rather than focus solely on the IPC lineage though,

we characterized the developmental trajectory of both proposed cell fates. The normalized data

and code for preliminary analysis were downloaded from GEO (accession GSE71485).

The third dataset is that of Fletcher et al. (2017 in press), featuring 616 cells from the adult

mouse olfactory epithelium (OE), tracing the development of quiescent stem cells into three unique

terminal cell fates. The primary lineage maps the development of horizontal basal cells (HBCs)

into mature olfactory sensory neurons (OSNs) via a series of intermediate states. The secondary

lineage gives rise to the support (sustentacular) cells of this system and features fewer identifiable

intermediates. A third lineage which appears to split from the neuronal path leads to a cluster of

microvillous cells. Again, we relied on the cluster labels of the authors, who used RSEC (Purdom

and Risso, 2016), and represent cells by their coordinates along the first five principal components.

The normalized data and cluster labels are available from GEO (accession GSE95601).
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Table 1: Summaries of existing lineage and pseudotime inference methods within a common frame-
work.
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(a) Simulated dataset.
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(b) Single-cell RNA-Seq dataset of Fletcher et al. (2017 in press).

Figure 1: Schematics of Slingshot’s main steps. The main steps for Slingshot are shown for: Panel
(a) a simple simulated dataset in two dimensions and Panel (b) the dataset of Fletcher et al.
(2017 in press), discussed in Section 2. Step 0: Slingshot starts from clustered data in a low-
dimensional space (cluster labels indicated by color). For Panel (b), the plot shows the top three
principal components, but Slingshot was run on the top five. Step 1: A minimum spanning tree
is constructed on the clusters to determine the number and rough shape of lineages. For Panel
(b), we impose some constraints on the MST based on known biology, see Section 2. Step 2:
Simultaneous principal curves are used to obtain smooth representations of each lineage. Step 3:
Pseudotime values are obtained by orthogonal projection onto the curves (only shown for Panel
(a)).
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(a) Three single-lineage inference methods applied to the data of Trapnell et al. (2014).
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(b) Stability of inferred pseudotimes over 50 subsamples.

Figure 2: Pseudotime inference: Robustness to noise. We examine the stability of three lineage
inference methods, showing how each method orders the cells for the original dataset as well as
for 50 subsamples of the data. Panel (a): Monocle identifies the longest path through the MST
constructed on all cells (red). Waterfall and TSCAN cluster cells and connect cluster centers
with an MST (purple, clustering performed by k-means with k = 5). A principal curve is a
non-linear fit through the data, used by Embeddr and Slingshot (green). As in Trapnell et al.
(2014), dimensionality reduction is performed by ICA. Panel (b): We examine the stability of
these three methods by plotting pseudotimes based on 50 subsamples of the data vs. the original
pseudotimes. Subsamples were generated in a bootstrap-like manner, by randomly sampling n
times with replacement from the original cell-level data and retaining only one instance of each
cell. Thus, subsamples were of variable sizes, but contained on average about 63% of the original
data. The cluster-based MST method occasionally detected spurious branching events and, for the
purposes of visualization, cells not placed along the main lineage were assigned a pseudotime value
of 0.
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(a) Cluster-based MSTs and simultaneous principal curves with correct lineage structure.
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(b) Problematic cases with too few or too many clusters.

Figure 3: Pseudotime inference: Robustness to cluster assignments. Panel (a): Using a simulated
two-dimensional dataset with two endpoints, k-means to assign cluster labels (k = 3, . . . , 14),
and Slingshot’s covariance-scaled distance measure, we show that the cluster-based MST can be
highly variable, even while identifying the correct global structure (purple, as in TSCAN and
Waterfall). Despite using these same trees, Slingshot’s simultaneous principal curves are robust
to this variability and all of them produce nearly identical results (green). Panel (b): With the
same dataset as above, we show two pathological scenarios in which the cluster-based MST fails to
identify the correct global structure; the corresponding simultaneous principal curves are plotted in
green. Setting k = 2, we are unable to detect a branching event and the resulting curve attempts
to fit all of the data. With higher numbers of clusters, we eventually run into the problem of
overfitting and the MST detects spurious branching events. Thus, for k = 15, the corresponding
simultaneous principal curves similarly overfit certain regions of the data.
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(a) Covariance-scaled distance,
no endpoint supervision.
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(b) Covariance-scaled distance,
endpoint supervision.
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(c) Euclidean distance, end-
point supervision.

Figure 4: Semi-supervised lineage inference. We show three methods of constructing an MST on
the clusters of the mouse olfactory epithelium dataset from Fletcher et al. (2017 in press). Although
we only visualize the first 3 principal components, we note that these trees were constructed in
the 5-dimensional space defined by the first 5 PCs. Panel (a): Without endpoint supervision, we
draw the (known) false conclusion that sustentacular cells may develop into GBCs. Panel (c):
Using Euclidean distances between cluster centers leads to the detection of a spurious branching
event and the same erroneous conclusion about sustentacular cells. Panel (b): Both of these
issues are resolved by using Slingshot’s covariance-scaled distance measure and marking the mature
sustentacular cell cluster as an endpoint. This final tree is consistent with known biology and
branching events were validated in follow-up experiments.
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(a) Biology, full data.
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(b) Monocle, full data.
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(c) Slingshot, full data.
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(d) Biology, MV removed.
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(e) Wishbone, MV removed.
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(f) Wishbone with PCA, MV removed.
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(g) Slingshot, MV removed.

Figure 5: Multiple lineage inference. Results from multiple lineage inference methods on the olfac-
tory epithelium dataset of Fletcher et al. (2017 in press), along with known biological relationships.
Panels (a–c): Comparison of Slingshot and Monocle on the full dataset. For Slingshot, we spec-
ified the HBC cluster as the origin and the mature sustentacular (mSus) cluster as an endpoint.
For Monocle, the main path was oriented such that pseudotimes started in the HBC cluster and
the correct number of lineages (three) was provided. Panels (d–g): Comparison of Slingshot and
Wishbone on a subset of the data, excluding cells specific to the microvillous (MV) lineage (we do
this because Wishbone can only discern a maximum of two lineages).
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