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Abstract
Single-cell RNA sequencing (scRNA-seq) is a powerful technique that enables researchers to measure

gene expression at the resolution of single cells. Because of the low amount of RNA present in a single
cell, many genes fail to be detected even though they are expressed; these genes are usually referred to as
dropouts. Here, we present a general and flexible zero-inflated negative binomial model (ZINB-WaVE),
which leads to low-dimensional representations of the data that account for zero inflation (dropouts),
over-dispersion, and the count nature of the data. We demonstrate, with simulations and real data,
that the model and its associated estimation procedure are able to give a more stable and accurate low-
dimensional representation of the data than principal component analysis (PCA) and zero-inflated factor
analysis (ZIFA), without the need for a preliminary normalization step.

Introduction
Single-cell RNA sequencing (scRNA-seq) is a powerful and relatively young technique enabling the charac-
terization of the molecular states of individual cells through their transcriptional profiles [1]. It represents a
major advance with respect to standard “bulk” RNA sequencing, which is only capable of measuring gene
expression levels averaged over millions of cells. Such averaged gene expression profiles may be enough to
characterize the global state of a tissue, but completely mask signal coming from individual cells, ignoring
tissue heterogeneity. Assessing cell-to-cell variability in expression is crucial for disentangling complex het-
erogeneous tissues [2–4] and for understanding dynamic biological processes, such as embryo development
[5] and cancer [6]. Despite the early successes of scRNA-seq, in order to fully exploit the potential of this
new technology, it is essential to develop statistical and computational methods specifically designed for the
unique challenges of this type of data [7].

Because of the tiny amount of RNA present in a single cell, the input material needs to go through
many rounds of amplification before being sequenced. This results in strong amplification bias, as well as
dropouts, i.e., genes that fail to be detected even though they are expressed in the sample [8]. The inclusion
in the library preparation of unique molecular identifiers (UMIs) reduces amplification bias [9], but does not
remove dropout events, nor the need for data normalization [10, 11]. In addition to the host of unwanted
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technical effects that affect bulk RNA-seq, scRNA-seq data exhibit much higher variability between technical
replicates, even for genes with medium or high levels of expression [12].

The large majority of published scRNA-seq analyses include a dimensionality reduction step. This achieves
a two-fold objective: (i) the data become more tractable, both from a statistical (cf. curse of dimensionality)
and computational point of view; (ii) noise can be reduced while preserving the often intrinsically low-
dimensional signal of interest. Dimensionality reduction is used in the literature as a preliminary step prior
to clustering [3, 13, 14], the inference of developmental trajectories [15–18], spatio-temporal ordering of the
cells [5, 19], and, of course, as a visualization tool [20, 21]. Hence, the choice of dimensionality reduction
technique is a critical step in the data analysis process.

A natural choice for dimensionality reduction is principal component analysis (PCA), which projects
the observations onto the space defined by linear combinations of the original variables with successively
maximal variance. However, several authors have reported on shortcomings of PCA for scRNA-seq data. In
particular, for real datasets, the first or second principal components often depend more on the proportion
of detected genes per cell (i.e., genes with at least one read) than on an actual biological signal [22, 23].
In addition to PCA, dimensionality reduction techniques used in the analysis of scRNA-seq data include
independent components analysis (ICA) [15], Laplacian eigenmaps [18, 24], and t-distributed stochastic
neighbor embedding (t-SNE) [2, 4, 25]. Note that none of these techniques can account for dropouts, nor for
the count nature of the data. Typically, researchers transform the data using the logarithm of the (possibly
normalized) read counts, adding an offset to avoid taking the log of zero.

Recently, Pierson & Yau [26] proposed a zero-inflated factor analysis (ZIFA) model to account for the
presence of dropouts in the dimensionality reduction step. Although the method accounts for the zero
inflation typically observed in scRNA-seq data, the proposed model does not take into account the count
nature of the data. In addition, the model makes a strong assumption regarding the dependence of the
probability of detection on the mean expression level, modeling it as an exponential decay. The fit on real
datasets is not always good and, overall, the model lacks flexibility, with its inability to include covariates
and/or normalization factors.

Here, we propose a general and flexible method that uses a zero-inflated negative binomial (ZINB) model
to extract low-dimensional signal from the data, accounting for zero inflation (dropouts), over-dispersion,
and the count nature of the data. We call this approach Zero-Inflated Negative Binomial-based Wanted Vari-
ation Extraction (ZINB-WaVE). The proposed model includes a sample-level intercept, which serves as a
global-scaling normalization factor, and gives the user the ability to include both gene-level and sample-level
covariates. The inclusion of observed and unobserved sample-level covariates enables normalization for com-
plex, non-linear effects (often referred to as batch effects), while gene-level covariates may be used to adjust
for sequence composition effects, such as gene length and GC-content effects. ZINB-WaVE is an extension
of the RUV model [27, 28], which accounts for zero inflation and over-dispersion and for which unobserved
sample-level factors may either capture variation of interest or unwanted variation. We demonstrate, with
simulations and real data, that the model and its associated estimation procedure are able to give a more
stable and accurate low-dimensional representation of the data than PCA and ZIFA, without the need for a
preliminary normalization step. The model is implemented in the open-source R package zinbwave, publicly
available at https://github.com/drisso/zinbwave and to be released through the Bioconductor Project
(http://www.bioconductor.org).

Results
ZINB-WaVE: A general and flexible model for scRNA-seq
ZINB-WaVE is a general and flexible model for the analysis of high-dimensional zero-inflated count data,
such as those recorded in single-cell RNA-seq assays. Given n samples (typically, n single cells) and J
features (typically, J genes) that can be counted for each sample, we denote with Yij the count of feature
j (j = 1, . . . , J) for sample i (i = 1, . . . , n). To account for various technical and biological effects, typical
of single-cell sequencing technologies, we model Yij as a random variable following a zero-inflated negative
binomial distribution (see Methods for details).

Both the mean expression level (µ) and the probability of dropouts (π) are modeled in terms of observed
sample-level and gene-level covariates (X and V , respectively, Fig. 1). In addition, we include a set of
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unobserved sample-level covariates (W ) that need to be inferred from the data. The matrix X can include
covariates that induce variation of interest, such as cell types, or covariates that induce unwanted variation,
such as batch or quality control (QC) measures. It can also include a constant column of ones for an intercept
that accounts for gene-specific differences in mean expression level or dropout rate (cf. scaling in PCA). The
matrix V can also accommodate an intercept to account for cell-specific global effects, such as size factors
representing differences in library sizes (i.e., total number of reads per sample). In addition, V can include
gene-level covariates, such as gene length or GC-content.
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Figure 1: Schematic view of the ZINB-WaVE model. Given n cells and J genes, let Yij denote the count of
gene j (j = 1, . . . , J) for cell i (i = 1, . . . , n) and Zij an unobserved indicator variable, equal to one if gene j is
a dropout in cell i and zero otherwise. Then, µij = E[Yij |Zij = 0, X, V,W ] and πij = Pr(Zij = 1|X,V,W ).
We model ln(µ) and logit(π) with the regression specified in the figure. Note that the model allows for
different covariates to be specified in the two regressions; we have omitted the µ and π indices for clarity (see
Methods for details).

The unobserved matrixW contains unknown sample-level covariates, which could correspond to unwanted
variation as in RUV [27, 28] or could be of interest as in cluster analysis (e.g., cell type). The model extends
the RUV framework to the ZINB distribution (thus far, RUV had only been implemented for linear [27] and
log-linear regression [28]). It differs in interpretation from RUV in the Wα term, which is not necessarily
considered unwanted; this term generally refers to unknown low-dimensional variation, that could be due to
unwanted technical effects (as in RUV), such as batch effects, or to biological effects of interest, such as cell
cycle or cell differentiation.

It is important to note that although W is the same, the matrices X and V could differ in the modeling
of µ and π, if we assume that some known factors do not affect both. When X = 1n and V = 1J , the
model is a factor model akin to principal component analysis, where W is a factor matrix and αµ and απ
are loading matrices. However, the model is more general, allowing the inclusion of additional sample and
gene-level covariates that might help to infer the unknown factors.

Real datasets: ZINB-WaVE leads to biologically meaningful clusters
We applied the ZINB-WaVE procedure to four publicly-available real datasets (see Methods). First, we
compared the goodness-of-fit of our ZINB-WaVE model to that of a negative binomial (NB) model (as im-
plemented in edgeR). As previously noted in the literature, NB models, which are quite successful for bulk
RNA-seq, are not appropriate for single-cell RNA-seq as they cannot accommodate zero inflation. In partic-
ular, NB models lead to biased estimation of the overall mean count and zero probability (Supplementary
Fig. S1 and S2) and appear to handle the excess of zeros by over-estimating the dispersion parameter (Sup-
plementary Fig. S3). By contrast, ZINB models, that account specifically for the extra zeros, lead to better
fit for the overall mean count and zero probability and more stable estimators of the dispersion parameter.

As previously shown [22, 23], the first few principal components of scRNA-seq data, even after normaliza-
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tion, can be influenced by technical rather than biological features, such as the proportion of genes with at
least one read (detection rate) or the total number of reads (sequencing depth) per sample. Figure 2 illustrates
this using the Glioblastoma dataset: although the first two principal components somewhat segregated the
data by patient (Fig. 2a), the clustering was far from perfect and individuals MGH28 and MGH31 were
especially difficult to tell apart. This is at least partly due to unwanted technical effects, such as sequencing
depth and amount of starting material. To quantify such technical effects, we computed a set of QC measures,
such as dropout rate and total number of reads (see Methods). The first principal component turned out
to be correlated with such measures, in particular dropout rate, total number of reads, and total number of
detected genes (Fig. 2b).

ZIFA suffered from the same problem: the clustering of the samples in two dimensions was not qualitatively
different from PCA (Fig. 2c) and the second component was highly correlated with dropout and detection
rates (Fig. 2d). Conversely, ZINB-WaVE led to tighter clusters, grouping the cells by patient (Fig. 2e).
Perhaps more importantly, the two components inferred by ZINB-WaVE showed lower correlation with the
QC features (Fig. 2f), highlighting that the clusters shown in Figure 2e are not driven by technical effects.

These observations are not limited to the Glioblastoma dataset, as the same trend was observed for
the V1 dataset (Supplementary Fig. S4), S1/CA1 dataset (Supplementary Fig. S5), and mESC dataset
(Supplementary Fig. S6). See also Hicks et al. [22] for additional datasets in which principal components are
strongly correlated with detection rate.

As a measure of the goodness of the clustering results, we used the average silhouette width (see Methods),
computed using the labels available from the original study: these were either known a priori (e.g., the patient
ID in the Glioblastoma dataset) or inferred from the data (and consequently validated) by the authors of
the original publication (e.g., the cell types in the S1/CA1 dataset). For all four datasets, ZINB-WaVE led
to generally tighter clusters, as shown by an increased average silhouette width per cluster (Supplementary
Fig. S7).

Real datasets: Impact of normalization
As for any high-throughput genomic technology, an important aspect of scRNA-seq data analysis is normal-
ization. Indeed, there are a variety of steps in scRNA-seq experiments that can introduce bias in the data
and that need to be corrected for [11]. Some of these effects, e.g., sequencing depth, can be captured by
a global-scaling factor (usually referred to as size factor). Other more complex, non-linear effects, such as
those collectively known as batch effects, require more sophisticated normalization [28]. Accordingly, a typ-
ical scRNA-seq pipeline will include a normalization step, i.e., a linear or non-linear transformation of read
counts, to make the distributions of expression measures comparable between samples. The normalization
step is usually carried out prior to any inferential procedure (e.g., clustering, differential expression analysis,
or pseudotime ordering). In this work, we considered three popular normalization methods: total-count (TC),
trimmed-mean of M-values (TMM), and full-quantile (FQ) normalization (see Methods); we also compared
the results to unnormalized data (RAW). TC, along with the related methods Transcripts Per Million (TPM)
and Fragments Per Kilobase Million (FPKM), is by far the most widely used normalization in the scRNA-seq
literature; hence, TC-normalized data were used for the results shown in Figure 2 and in Supplementary
Figures S4, S5, and S6.

Normalization highly affected the projection of the data in lower dimensions (Supplementary Fig. S8)
and, consequently, the clustering results varied greatly between normalization methods in all four datasets
(Fig. 3). Strikingly, the choice of normalization method was more critical than the choice between PCA
and ZIFA. For instance, in the V1 dataset (Fig. 3a), FQ normalization followed by either PCA or ZIFA
outperformed all the other approaches. Critically, the ranking of normalization methods was not consistent
across datasets (Fig. 3), highlighting that the identification of the best normalization method for a given
dataset is a difficult problem for scRNA-seq [11, 29].

One important feature of the ZINB-WaVE model is that the sample-level intercept γ (corresponding to
a column of ones in the gene-level covariate matrix V , see Methods) acts as a global-scaling normalization
factor, making a preliminary global-scaling step unnecessary. As a consequence, ZINB-WaVE can be directly
applied to unnormalized read counts, hence preserving the distributional properties of count data. ZINB-
WaVE applied to unnormalized counts led to results that were comparable, in terms of average silhouette
width, to PCA and ZIFA applied using the best performing normalization (Fig. 3). In particular, ZINB-
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Figure 2: Low-dimensional representation of the Glioblastoma dataset. Upper panels provide two-dimensional
representations of the data, after selecting the 1,000 most variable genes. Lower panels provide barplots of the
absolute correlation between the first two components and a set of QC measures (see Methods). (a, b) PCA
(on TC-normalized counts); (c, d) ZIFA (on TC-normalized counts); (e, f) ZINB-WaVE (no normalization
needed). ZINB-WaVE leads to a low-dimensional representation that is less influenced by technical variation
and to tighter, biologically meaningful clusters.
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Figure 3: Average silhouette width, real datasets. (a) V1 dataset; (b) S1/CA1 dataset; (c) Glioblastoma
dataset; (d) mESC dataset. Silhouette widths were computed in the low-dimensional space, using the
groupings provided by the authors of the original publications: unsupervised clustering procedure (a, b),
observed characteristics of the samples, such as patient (c) and culture condition (d). PCA and ZIFA were
applied after normalization: unnormalized (RAW), total-count (TC), trimmed-mean of M values (TMM),
and full-quantile (FQ). For the mESC dataset (d), we fitted the ZINB-WaVE model with batch as a sample-
level covariate (ZINB-Batch) in addition to the default model with only a sample-level intercept (see Fig.
4).
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WaVE outperformed PCA and ZIFA on the S1/CA1 (Fig. 3b) and Glioblastoma (Fig. 3c) datasets, while
it was slightly worse than PCA (after FQ normalization) on the mESC dataset (Fig. 3d) and than PCA
and ZIFA (after FQ normalization) on the V1 dataset (Fig. 3a). Interestingly, the overall average silhouette
width was lower for the S1/CA1 and Glioblastoma datasets than it was for the V1 and mESC datasets,
suggesting that ZINB-WaVE leads to better clustering in more complex situations (e.g., lower sequencing
depth).

Although the overall average silhouette width is a useful metric to rank the different methods in terms
of how well they represent known biological structure, looking only at the average across many different
cell types may be misleading. For the V1 dataset, for instance, ZINB-WaVE led to a slightly lower overall
average silhouette width than ZIFA (Fig. 3a). However, ZINB-WaVE yielded higher cluster-level average
silhouette widths for the L6a, L5b, and L5 samples, while ZIFA produced higher average silhouette widths
for the L4 and L5a samples (Supplementary Fig. S7a). In fact, certain cell types may be easier to cluster
than others, leading to silhouette widths that differ greatly between different clusters, as is the case for the
S1/CA1 dataset: oligodendrocytes are much easier to cluster than the other cell types and all methods were
able to identify them (Supplementary Fig. S7b); on the other hand, only ZINB-WaVE was able to achieve
a positive silhouette width for the pyramidal SS and CA1 neurons and it performed much better than PCA
and ZIFA in the interneuron cluster; finally, certain groups, such as the endothelial-mural and astrocytes,
were simply too hard to distinguish in three dimensions (Supplementary Fig. S7b).

Real datasets: Accounting for batch effects
Although the sample-level intercept (corresponding to a column of ones in the gene-level covariate matrix
V ) can act as a global-scaling normalization factor, this may not be sufficient to accurately account for
complex, non-linear technical effects that may influence the data (e.g., batch effects). Hence, we explored
the possibility of including additional sample-level covariates in X to account for such effects (see Methods).
We illustrate this using the mESC dataset, which is a subset of the data described in Kolodziejczyk et al.
[30] and which comprises two batches of mESCs grown in three different media (see Methods). ZINB-WaVE
applied with no additional covariates led to three clusters, corresponding to the three media (Fig. 4a and
Supplementary Fig. S6). However, the clusters corresponding to media 2i and a2i are further segregated by
batch (Fig. 4a). Including indicator variables for batch in ZINB-WaVE (as columns of X) removed such
batch effects, consolidating the clustering by medium (Fig. 4b). This led to slightly larger average silhouette
widths, both overall (Fig. 3c) and at the cluster level (Fig. 4c). Conversely, the average silhouette width for
batch, a measure of how well the cells cluster by batch, was much larger in the model that did not include
the batch covariate (Fig. 4d), indicating that explicitly accounting for batch in the ZINB-WaVE model
effectively removed the dependence of the inferred low-dimensional space on batch effects.

Simulated datasets: ZINB-WaVE estimators are asymptotically unbiased and
robust
We next turned to simulations to explore in greater detail the performance of ZINB-WaVE. First, we evaluated
the ZINB-WaVE estimation procedure on simulated data from a zero-inflated negative binomial distribution,
to assess both accuracy under a correctly specified model and robustness to model misspecification. The
approach involves computing maximum likelihood estimators (MLE) for the parameters of the model of
Figure 1, namely, α, β, γ, andW , and hence µ and π. MLE are well-behaved, in that they are asymptotically
unbiased and efficient. However, because the likelihood function of our ZINB-WaVE model is not convex,
our numerical optimization procedure may converge to a local maximum, rather than to the true MLE (see
Methods). We observed that our estimators are asymptotically unbiased and have decreasing variance as the
number of cells n increases (Supplementary Fig. S9). This suggests that our estimates are not far from the
true MLE.

To assess the robustness of the estimators, we looked at bias and mean squared error (MSE) for µ and
π, for misspecified number of unobserved covariates K (i.e., number of columns of W ), gene-level covariate
matrix V , and dispersion parameter φ (Fig. 5, Supplementary Fig. S10 and S11). In Figure 5, the data were
simulated with K = 2 unknown factors, X = 1n, V = 1J , and genewise dispersion. The model parameters
were then estimated with K = 1, 2, 3, 4, both for a model that included a cell-level intercept (V = 1J) and
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Figure 4: ZINB-WaVE applied to the mESC dataset. Upper panels provide two-dimensional representations
of the data, with cells color-coded by batch and shape reflecting culture conditions: (a) Default ZINB-
WaVE with only sample-level intercept; (b) ZINB-WaVE with batch as known sample-level covariate. (c)
Average silhouette widths by biological condition for ZINB-WaVE with and without batch covariate; (d)
Average silhouette widths by batch for ZINB-WaVE with and without batch covariate. Although the data
cluster primarily based on culture condition, batch effects are evident in (a). Accounting for batch effects in
the ZINB-WaVE model (b) leads to slightly better clustering by biological condition (c) and removes the
clustering by batch (d). Note the difference in scale between the barplots of (c) and (d).
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one that did not include such intercept (V = 0J). When the intercept was correctly included in the model
and K ≥ 2, we observed no or very small bias (Fig. 5a, b) and small MSE (Fig. 5c, d). Interestingly,
the misspecification of K led to only a slight increase in bias and MSE. When no intercept was included in
the model, the sensitivity to K became more important. Although the data were simulated with K = 2,
specifying K ≥ 3 led to small bias and low MSE (Fig. 5). This is likely because one column of W acted as
a de facto intercept, overcoming the absence of V . In addition, we observed robustness of the results to the
choice of dispersion parameter (genewise or common), even though the data were simulated with genewise
dispersion (Fig. 5). The estimators for ln(µ) and π were unbiased over the whole range of mean expression
and zero inflation probability (Supplementary Fig. S12).

Simulated datasets: ZINB-WaVE is more accurate than state-of-the-art methods
We next compared ZINB-WaVE to PCA and ZIFA, in terms of their ability to recover the true underlying
low-dimensional signal and clustering structure. For datasets simulated from a ZINB model, our estimation
procedure with correctly specified K led to almost perfect correlation between distances in the true and
estimated low-dimensional space (Fig. 6a, b). The correlation remained high even for misspecified K,
in most cases higher than for PCA and ZIFA. ZINB-WaVE performed consistently well across a range of
simulation scenarios, including different numbers of cells n, different zero fractions, and varying cluster
tightness (Supplementary Fig. S14). We observed a consistent ranking, although noisier, when the methods
were compared in terms of silhouette widths (Fig. 6c, d).

As with the real datasets, the choice of normalization influenced the simulation results. Critically, there
was not an overall best performing normalization method; rather, the performance of the normalization
methods depended on the dimensionality reduction method and on intrinsic characteristics of the data, such
as the fraction of zero counts and the number and tightness of the clusters (Fig. 6 and Supplementary Fig.
S14). For instance, TC normalization worked better for PCA on data simulated from the V1 dataset (Fig.
6a, c), while FQ and TMM normalization worked better for PCA and ZIFA, respectively, on data simulated
from the S1/CA1 dataset (Fig. 6b, d).

It is important to note that the previous results were obtained for data simulated from the ZINB-WaVE
model underlying our estimation procedure. It is hence not surprising that ZINB-WaVE outperformed its
competitors. To provide a fairer comparison, we also assessed the methods on data simulated from the model
proposed by Lun & Marioni [31]. Although this model is also based on a zero-inflated negative binomial
distribution, the distribution is parameterized differently and, in particular, does not involve regression on
gene-level and sample-level covariates (see Methods).

When the data were simulated to have a moderate fraction of zeros (namely, 40%), all methods performed
well in terms of average silhouette width (Fig. 6e-g). However, the performance of PCA decreased dramat-
ically with 60% of zeros, independently of the number of cells n. Although ZIFA worked well with 60% or
fewer zeros, its performance too decreased at 80% of zeros, especially when only 100 cells were simulated
(Fig. 6e). Conversely, the performance of ZINB-WaVE remained good even when simulating data with 80%
of zeros, independently of the sample size.

Discussion
Recent advances in single-cell technologies, such as droplet-based methods [2], make it easy and inexpensive
to collect hundreds of thousands of scRNA-seq profiles, allowing researchers to study very complex biological
systems at high resolution. The resulting libraries are often sequenced at extremely low depth (tens of
thousands of reads per cell, only), making the corresponding read count data truly sparse. Hence, there is
a growing need for developing reliable statistical methods that are scalable and that can account for zero
inflation.

ZINB-WaVE is a general and flexible approach to extract low-dimensional signal from noisy, zero-inflated
data, such as those from scRNA-seq experiments. We have shown with simulations and real data analyses
that ZINB-WaVE leads to robust and unbiased estimators of the underlying biological signals. The better
performance of ZINB-WaVE with respect to PCA comes at a computational cost, since we need to numeri-
cally optimize a non-convex likelihood function. However, we empirically found that the computing time was
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Figure 5: Bias and MSE for ZINB-WaVE estimation procedure, ZINB-WaVE simulation model. Panels show
boxplots of (a) bias ln(µ), (b) bias π, (c) MSE ln(µ), and (d) MSE π for ZINB-WaVE estimation procedure,
as a function of the number of unknown covariates K, for different fitted dispersion models (common and
genewise) and with/without sample-level intercept (i.e., column of ones in gene-level covariate matrix V );
X = 1n in all fits. For each gene and cell, bias and MSE were averaged over B = 10 datasets simulated from
our ZINB-WaVE model, based on the S1/CA1 dataset and with n = 1, 000 cells, J = 1, 000 genes, scaling of
one for the ratio of within to between-cluster sums of squares (b2 = 1), K = 2 unknown factors, zero fraction
of about 80%, X = 1n, cell-level intercept (V = 1J), and genewise dispersion. The lower and upper hinges
of the boxplots correspond to the first and third quartiles (the 25th and 75th percentiles), respectively. The
upper whisker extends from the hinge to the largest value no further than 1.5× IQR from the hinge (where
IQR is the inter-quartile range or difference between the third and first quartiles). The lower whisker extends
from the hinge to the smallest value no further than 1.5× IQR from the hinge. Data beyond the end of the
whiskers are called outliers and are not plotted here. Fig. S10 provides the same boxplots with individually
plotted outliers.
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Figure 6: Between-sample distances and silhouette widths for ZINB-WaVE, PCA, and ZIFA, simulation
models. (a) Boxplots of correlations between between-sample distances based on true and estimated low-
dimensional representations of the data for datasets simulated from the V1 dataset. (b) Same as (a) for
simulations based on the S1/CA1 dataset. (c) Boxplots of silhouette widths for true clusters for datasets
simulated from the V1 dataset. (d) Same as (c) for simulations based on the S1/CA1 dataset. For (a-d),
all datasets were simulated from our ZINB-WaVE model with n = 1, 000 cells, J = 1, 000 genes, “harder”
clustering (b2 = 5), K = 2 unknown factors, zero fraction of about 80%, X = 1n, cell-level intercept
(V = 1J), and genewise dispersion. Each boxplot is based on n values corresponding to each of the n
samples and defined as averages of correlations (a, b) or silhouette widths (c, d) over B = 10 simulations.
See Supplementary Figure S13 for the same scenario but with n = 10, 000 cells and Supplementary Figure S14
for additional scenarios. (e-g) Average silhouette widths (over n samples and B = 10 simulations) for true
clusters vs. zero fraction, for n ∈ {100, 1, 000, 10, 000} cells, for datasets simulated from the Lun & Marioni
[31] model, with C = 3 clusters and equal number of cells per cluster. While ZINB-WaVE was relatively
robust to the sample size n and zero fraction, the performance of PCA and ZIFA decreased with larger zero
fraction. Between-sample distance matrices and silhouette widths were based on W for ZINB-WaVE, the
first two principal components for PCA, and the first two latent variables for ZIFA. ZINB-WaVE was applied
with X = 1n, V = 1J , genewise dispersion, and K ∈ {1, 2, 3, 4} (only K = 2 is shown in (e-g)). For PCA
and ZIFA, different normalization methods were used. Colors correspond to the different methods.
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approximately linear in the number of cells (Supplementary Fig. S15). The algorithm benefits from paral-
lelization on multicore machines, and takes a few minutes on a modern laptop to converge with thousands
of cells.

One major difference between ZINB-WaVE and previously proposed factor analysis models (such as
PCA and ZIFA) is the ability to include sample-level and gene-level covariates. In particular, by including a
column of ones in the gene-level covariate matrix, the corresponding cell-level intercept acts as a global-scaling
normalization factor, allowing the modeling of raw count data, with no need for prior normalization.

Several authors have recognized that high-dimensional genomic data are affected by confounding factors,
such as batch effects, and have proposed methods to account for such effects in either a supervised [32] or
unsupervised way [27, 33]. Recently, Lin et al. [34] proposed a model that can extend PCA to adjust for
confounding factors. This model, however, does not seem to be ideal for zero-inflated count data. In the
scRNA-seq literature, MAST [23] uses the inferred cellular detection rate to adjust for the main source of
confounding, in a differential expression setting, but is not designed to infer low-dimensional signal. The
removal of batch effects is an important example of how including additional covariates in the ZINB-WaVE
model may lead to better low-dimensional representations of the data. However, ZINB-WaVE is not limited
to including batch effects, as other sample-level (e.g., sample QC metrics) and/or gene-level (e.g., GC-content)
covariates may be included in the model.

In this article, we have focused on an unsupervised setting, where the goal is to extract a low-dimensional
signal from noisy zero-inflated data. However, our proposed ZINB model is more general and can be used, in
principle, for supervised differential expression analysis, where the parameters of interest are regression coef-
ficients β corresponding to known sample-level covariates in the matrix X (e.g., cell type, treatment/control
status). Differentially expressed genes may be identified via likelihood ratio tests or Wald tests, with standard
errors of estimators of β obtained from the Hessian matrix of the likelihood function. We envision a future
version of the zinbwave package with this added capability.

Although the low-dimensional signal inferred by ZINB-WaVE can be used to visually inspect hidden
structure in the data, visualization is not the main point of our proposed method. Low-dimensional factors
are intended as the closest possible approximation to the true signal, which is assumed to be intrinsically
low-dimensional. Such low-dimensional representation can be used in downstream analyses, such as clustering
or pseudotime ordering of the cells [15].

Visualization of high-dimensional datasets is an equally important area of research and many proposed
algorithms exist, among which t-SNE [25] has become the most popular for scRNA-seq data. Recently,
Wang et al. [35] have proposed a novel visualization algorithm that can account for zero inflation and showed
improvement over t-SNE. As t-SNE takes as input a matrix of pairwise distances between cells, a promising
line of future work may be to derive such a matrix from ZINB-WaVE and use t-SNE for visualization purpose.

Methods
ZINB-WaVE model
For any µ ≥ 0 and θ > 0, let fNB(· ;µ, θ) denote the probability mass function (PMF) of the negative
binomial (NB) distribution with mean µ and inverse dispersion parameter θ, namely:

fNB(y;µ, θ) = Γ(y + θ)
Γ(y + 1)Γ(θ)

(
θ

θ + µ

)θ (
µ

µ+ θ

)y
, ∀y ∈ N. (1)

Note that another parametrization of the NB PMF is in terms of the dispersion parameter φ = θ−1 (although θ
is also sometimes called dispersion parameter in the literature). In both cases, the mean of the NB distribution
is µ and its variance is:

σ2 = µ+ µ2

θ
= µ+ φµ2 . (2)

In particular, the NB distribution boils down to a Poisson distribution when φ = 0⇔ θ = +∞.
For any π ∈ [0, 1], let fZINB(· ;µ, θ, π) be the PMF of the zero-inflated negative binomial (ZINB) distri-

bution given by:
fZINB(y;µ, θ, π) = πδ0(y) + (1− π)fNB(y;µ, θ), ∀y ∈ N, (3)
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where δ0(·) is the Dirac function. Here, π can be interpreted as the probability that a 0 is observed instead of
the actual count, resulting in an inflation of zeros compared to the NB distribution, hence the name ZINB.

Given n samples (typically, n single cells) and J features (typically, J genes) that can be counted for
each sample, let Yij denote the count of feature j (for j = 1, . . . , J) for sample i (i = 1, . . . , n). To account
for various technical and biological effects frequent, in particular, in single-cell sequencing technologies, we
model Yij as a random variable following a ZINB distribution with parameters µij , θij , and πij , and consider
the following regression models for the parameters:

ln(µij) =
(
Xβµ + (V γµ)> +Wαµ +Oµ

)
ij
, (4)

logit(πij) =
(
Xβπ + (V γπ)> +Wαπ +Oπ

)
ij
, (5)

ln(θij) = ζj , (6)

where
logit(π) = ln

(
π

1− π

)
and elements of the regression models are as follows.

• X is a known n ×M matrix corresponding to M cell-level covariates and β = (βµ, βπ) its associated
M × J matrices of regression parameters. X can typically include covariates that induce variation of
interest, such as cell types, or covariates that induce unwanted variation, such as batch or quality control
measures. It can also include a constant column of ones, 1n, to account for gene-specific intercepts.

• V is a known J×L matrix corresponding to J gene-level covariates, such as gene length or GC-content,
and γ = (γµ, γπ) its associated L× n matrices of regression parameters. V can also include a constant
column of ones, 1J , to account for cell-specific intercepts, such as size factors representing differences
in library sizes.

• W is an unobserved n ×K matrix corresponding to K unknown cell-level covariates, which could be
of “unwanted variation” as in RUV [27, 28] or of interest (such as cell type), and α = (αµ, απ) its
associated K × J matrices of regression parameters.

• Oµ and Oπ are known n× J matrices of offsets.

• ζ ∈ RJ is a vector of gene-specific dispersion parameters on the log scale.

This model deserves a few comments.

• By default, X and V contain a constant column of ones, to account, respectively, for gene-specific (e.g.,
baseline expression level) and cell-specific (e.g., library size) variation. In that case, X and V are of the
form X = [1n, X0] and V = [1J , V 0] and we can similarly decompose the corresponding parameters as
β = [β1, β0] and γ = [γ1, γ0], where β1 ∈ R1×J is a vector of gene-specific intercepts and γ1 ∈ R1×n a
vector of cell-specific intercepts. The representation 1nβ1 + (1Jγ1)> is then not unique, but could be
made unique by adding a constant and constraining β1 and γ1 to each have elements summing to zero.

• Although W is the same, the matrices X and V could differ in the modeling of µ and π, if we assume
that some known factors do not affect both µ and π. To keep notation simple and consistent, we use the
same matrices, but will implicitly assume that some parameters may be constrained to be 0 if needed.

• By allowing the models to differ for µ and π, we can model and test for differential expression in terms
of either the NB mean or the ZI probability.

• We limit ourselves to a gene-dependent dispersion parameter. More complicated models for θij could
be investigated, such as a model similar to µij or a functional of the form θij = f(µij), but we restrict
ourselves to a simpler model that has been shown to be largely sufficient in bulk RNA-seq analysis.
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ZINB-WaVE estimation procedure
The input to the model are the matrices X, V , Oµ, and Oπ and the integer K; the parameters to be inferred
are β = (βµ, βπ), γ = (γµ, γπ), W , α = (αµ, απ), and ζ. Given an n×J matrix of counts Y , the log-likelihood
function is

`(β, γ,W, α, ζ) =
n∑
i=1

J∑
j=1

ln fZINB(Yij ;µij , θij , πij) ,

where µij , θij , and πij depend on (β, γ,W, α, ζ) through Equations (4)–(6).
To infer the parameters, we follow a penalized maximum likelihood approach, by trying to solve

max
β,γ,W,α,ζ

{`(β, γ,W, α, ζ)− Pen(β, γ,W, α, ζ)} ,

where Pen(·) is a regularization term to reduce overfitting and improve the numerical stability of the optimiza-
tion problem in the setting of many parameters. For nonnegative regularization parameters (εβ , εγ , εW , εα, εζ),
we set

Pen(β, γ,W, α, ζ) = εβ
2 ‖β

0‖2 + εγ
2 ‖γ

0‖2 + εW
2 ‖W‖

2 + εα
2 ‖α‖

2 + εζ
2 Var(ζ) ,

where β0 and γ0 denote the matrices β and γ without the rows corresponding to the intercepts if an unpe-
nalized intercept is included in the model, ‖ · ‖ is the Frobenius matrix norm (‖A‖ =

√
tr(A∗A), where A∗

denotes the conjugate transpose of A), and Var(ζ) = 1/(J − 1)
∑J
i=1

(
ζi − (

∑J
j=1 ζj)/J

)2
is the variance of

the elements of ζ (using the unbiased sample variance statistic). The penalty tends to shrink the estimated
parameters to 0, except for the cell and gene-specific intercepts which are not penalized and the dispersion
parameters which are not shrunk towards 0 but instead towards a constant value across genes. Note also
that the likelihood only depends on W and α through their product R = Wα and that the penalty ensures
that at the optimumW and α have the structure described in the following result which generalizes standard
results such as [36] (Lemma 1) and [37] (Lemma 6).
Lemma 1. For any matrix R and positive scalars s and t, the following holds:

min
S,T :R=ST

1
2
(
s‖S‖2 + t‖T‖2

)
=
√
st‖R‖∗ ,

where ‖A‖∗ = tr
(√

A∗A
)
. If R = RLRΣRR is a singular value decomposition (SVD) of R, then a solution

to this optimization problem is:

S =
(
t

s

) 1
4

RLR
1
2
Σ , T =

(s
t

) 1
4
R

1
2
ΣRR .

Proof. Let S̃ =
√
sS, T̃ =

√
tT , and R̃ =

√
stR. Then, ‖S̃‖2 = s‖S‖2, ‖T̃‖2 = t‖T‖2, and S̃T̃ =

√
stST , so

that the optimization problem is equivalent to:

min
S̃,T̃ : S̃T̃=R̃

1
2
(
‖S̃‖2 + ‖T̃‖2

)
,

which by [37] (Lemma 6) has optimum value ‖R̃‖∗ =
√
st‖R‖∗ reached at S̃ = R̃LR̃

1
2
Σ and T̃ = R̃

1
2
ΣR̃R, where

R̃LR̃ΣR̃R is a SVD of R̃. Observing that R̃L = RL, R̃R = RR, and R̃Σ =
√
stRΣ, gives that a solution of

the optimization problem is S = s−1/2S̃ = s−1/2RL(st)1/4R
1/2
Σ = (t/s)1/4RLR

1/2
Σ . A similar argument for T

concludes the proof.

This lemma implies in particular that at any local maximum of the penalized log-likelihood, W and α>
have orthogonal columns, which is useful for visualization or interpretation of latent factors.

To balance the penalties applied to the different matrices in spite of their different sizes, a natural choice
is to fix ε > 0 and set

εβ = ε

J
, εγ = ε

n
, εW = ε

n
, εα = ε

J
, εζ = ε .

In particular, from Lemma 1, we easily deduce the following characterization of the penalty on W and α,
which shows that the entries in the matrices W and α have similar standard deviation after optimization:
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Corollary 1. For any n× J matrix R and positive scalars ε, the following holds.

min
W,α :R=Wα

ε

2

(
1
n
‖W‖2 + 1

J
‖α‖2

)
= ε√

nJ
‖R‖∗ .

If R = RLRΣRR is a SVD decomposition of R, then a solution to this optimization problem is:

W =
(n
J

) 1
4
RLR

1
2
Σ , T =

(
J

n

) 1
4

R
1
2
ΣRR .

In particular, for any i = 1, . . . ,min(n, J),

1
n

n∑
j=1

W 2
j,i = 1

J

J∑
j=1

α2
i,j = [RΣ]i,i√

nJ
.

The penalized likelihood is however not concave, making its maximization computationally challenging.
We instead find a local maximum, starting from a smart initialization and iterating a numerical optimization
scheme until local convergence, as described below.

Initialization

To initialize the set of parameters we approximate the count distribution by a log-normal distribution and
explicitly separate zero and non-zero values, as follows:

1. Set P = {(i, j) : Yij > 0}.

2. Set Lij = ln(Yij)− (Oµ)ij for all (i, j) ∈ P.

3. Set Ẑij = 1 if (i, j) ∈ P, Ẑij = 0 otherwise.

4. Estimate βµ and γµ by solving the convex ridge regression problem:

min
βµ,γµ

∑
(i,j)∈P

(Lij − (Xβµ)ij − (V γµ)ji)2 + εβ
2 ‖β

0
µ‖2 + εγ

2 ‖γ
0
µ‖2 .

This is a standard ridge regression problem, but with a potentially huge design matrix, with up to
nJ rows and MJ + nL columns. To solve it efficiently, we alternate the estimation of βµ and γµ.
Specifically, we initialize parameter values as:

β̂µ ← 0 , γ̂µ ← 0

and repeat the following two steps a few times (or until convergence):

(a) Optimization in γµ, which can be performed independently and in parallel for each cell:

γ̂µ ∈ arg min
γµ

∑
(i,j)∈P

(
Lij − (Xβ̂µ)ij − (V γµ)ji

)2
+ εγ

2 ‖γ
0
µ‖2 .

(b) Optimization in βµ, which can be performed independently and in parallel for each gene:

β̂µ ∈ arg min
βµ

∑
(i,j)∈P

(Lij − (V γ̂µ)ji − (Xβµ)ij)2 + εβ
2 ‖β

0
µ‖2 .

5. Estimate W and αµ by solving(
Ŵ , α̂µ

)
∈ arg min

W,αµ

∑
(i,j)∈P

(
Lij − (Xβ̂µ)ij − (V γ̂µ)ji − (Wαµ)ij

)2
+ εW

2 ‖W‖
2 + εα

2 ‖αµ‖
2 .
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Denoting by D = L−Xβ̂ − (V γ̂)>, this problem can be rewritten as:

min
W,α
‖D −Wα‖2P + 1

2
(
εW ‖W‖2 + εα‖α‖2

)
,

where ‖A‖2P =
∑

(i,j)∈P A
2
ij . By Lemma 1, if K is large enough, one can first solve the convex

optimization problem:
R̂ ∈ arg min

R : rank(R)≤K
‖D −R‖2P +√εW εα‖R‖∗ (7)

and set

W =
(
εα
εW

) 1
4

RLR
1
2
Σ , α =

(
εW
εα

) 1
4

R
1
2
ΣRR ,

where R̂ = RLRΣRR is the SVD of R̂. This solution is exact when K is at least equal to the rank of the
solution of the unconstrained problem (7), which we solve with the softImpute::softImpute() func-
tion [37]. If K is smaller, then (7) becomes a non-convex optimization problem whose global optimum
may be challenging to find. In that case we also use the rank-constrained version of softImpute::softImpute()
to obtain a good local optimum.

6. Estimate βπ, γπ, and απ by solving the regularized logistic regression problem:

min
(βπ,γπ,απ)

∑
(i,j)

[
− Ẑij(Xβπ + (V γπ)> + Ŵαπ)ij

+ ln
(

1 + e(Xβπ+(V γπ)>+Ŵαπ)ij
) ]

+ εβ
2 ‖βπ‖

2 + εγ
2 ‖γπ‖

2 + εα
2 ‖απ‖

2 . (8)

This is a standard ridge logistic regression problem, but with a potentially huge design matrix, with up
to nJ rows and MJ + nL columns. To solve it efficiently, we alternate the estimation of βπ, γπ, and
απ. Specifically, we initialize parameter values as:

β̂π ← 0 , γ̂π ← 0 , α̂π ← 0

and repeat the following two steps a few times (or until convergence):

(a) Optimization in γπ:

γ̂π ∈ arg min
γπ

∑
(i,j)

[
− Ẑij(Xβ̂π + (V γπ)> + Ŵ α̂π)ij

+ ln
(

1 + e(Xβ̂π+(V γπ)>+Ŵ α̂π)ij
) ]

+ εγ
2 ‖γπ‖

2 . (9)

Note that this problem can be solved for each cell (i) independently and in parallel. When there
is no gene covariate besides the constant intercept, the problem is easily solved by setting (γ̂π)i to
the logit of the proportion of zeros in each cell.

(b) Optimization in βπ and απ:(
β̂π, α̂π

)
∈ arg min

(βπ,απ)

∑
(i,j)

[
− Ẑij(Xβπ + (V γ̂π)> + Ŵαπ)ij

+ ln
(

1 + e(Xβπ+(V γ̂π)>+Ŵαπ)ij
) ]

+ εβ
2 ‖βπ‖

2 + εα
2 ‖απ‖

2 . (10)

7. Initialize ζ̂ = 0.
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Optimization

After initialization, we maximize locally the penalized log-likelihood by alternating optimization over the
dispersion parameters and left and right-factors, iterating the following steps until convergence:

1. Dispersion optimization:
ζ̂ ← arg max

ζ

{
`(β̂, γ̂, Ŵ , α̂, ζ)− εζ

2 Var(ζ)
}
.

To solve this problem, we start by estimating a common dispersion parameter for all the genes, by
maximizing the objective function under the constraint that Var(ζ) = 0; in practice, we use a derivative-
free one-dimensional optimization vector over the range [−50, 50]. We then optimize the objective
function by a quasi-Newton optimization scheme starting from the constant solution found by the first
step. To derive the gradient of the objective function used by the optimization procedure, note that
the derivative of the NB log-density is:

∂

∂θ
ln fNB(y;µ, θ) = Ψ(y + θ)−Ψ(θ) + ln θ + 1− ln(µ+ θ)− y + θ

µ+ θ
,

where Ψ(z) = Γ′(z)/Γ(z) is the digamma function. We therefore get the derivative of the ZINB density
as follows, for any π ∈ [0, 1]:

• If y > 0, fZINB(y;µ, θ, π) = (1− π)fNB(y;µ, θ) therefore

∂

∂θ
ln fZINB(y;µ, θ) = Ψ(y + θ)−Ψ(θ) + ln θ + 1− ln(µ+ θ)− y + θ

µ+ θ
.

• For y = 0, ∂
∂θ ln fNB(0;µ, θ) = ln θ + 1− ln(µ+ θ)− θ

µ+θ , therefore

∂

∂θ
ln fZINB(y;µ, θ) =

ln θ + 1− ln(µ+ θ)− θ
µ+θ

1 + π(µ+θ)θ
(1−π)θθ

.

The derivative of the objective function w.r.t. ζj , for j = 1, . . . , J , is then easily obtained by

n∑
i=1

θj
∂

∂θ
ln fZINB(yij ;µij , θj)−

εζ
J − 1

(
ζj −

1
J

J∑
k=1

ζk

)
.

(Note that the J − 1 term in the denominator comes from the use of the unbiased sample variance
statistic in the penalty for ζ.)

2. Left-factor (cell-specific) optimization:(
γ̂, Ŵ

)
← arg max

(γ,W )

{
`(β̂, γ,W, α̂, ζ̂)− εγ

2 ‖γ
0‖2 − εW

2 ‖W‖
2
}
. (11)

Note that this optimization can be performed independently and in parallel for each cell i = 1, . . . , n.
For this purpose, we consider a subroutine solveZinbRegression(y,Aµ, Bµ, Cµ, Aπ, Bπ, Cπ, Cθ) to find
a set of vectors (aµ, aπ, b) that locally maximize the log-likelihood of a ZINB model for a vector of counts
y parametrized as follows:

ln(µ) = Aµaµ +Bµb+ Cµ ,

logit(π) = Aπaπ +Bπb+ Cπ ,

ln(θ) = Cθ .
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We give more details on how to solve solveZinbRegression in the next section. To solve (11) for cell
i we call solveZinbRegression with the following parameters:

aµ = γµ[., i]
aπ = γπ[., i]
b = W [i, .]>

y = Y [i, ]>

Aµ = Vµ

Bµ = α>µ
Cµ = (Xµ[i, .]βµ +Oµ[i, .])>

Aπ = Vπ

Bπ = α>π
Cπ = (Xπ[i, .]βπ +Oπ[i, .])>

Cθ = ζ

.

3. Right-factor (gene-specific) optimization:(
β̂, α̂

)
← arg max

(β,α)

{
`(β, γ̂, Ŵ , α, ζ̂)− εβ

2 ‖β
0‖2 − εα

2 ‖α‖
2
}
.

Note that this optimization can be performed independently and in parallel for each gene j = 1, . . . , J ,
by calling solveZinbRegression with the following paramters:

aµ = (βµ[., j];αµ[., j])
aπ = (βπ[., j];απ[., j])
b = ∅
y = Y [., j]
Aµ = [Xµ,W ]
Bµ = ∅
Cµ = (Vµ[j, .]γµ)> +Oµ[., j]
Aπ = [Xπ,W ]
Bπ = ∅
Cπ = (Vπ[j, .]γπ)> +Oπ[., j]
Cθ = ζj1n

.

4. Orthogonalization: (
Ŵ , α̂

)
← arg min

(W,α) :Wα=Ŵ α̂

1
2
(
εW ‖W‖2 + εα‖α‖2

)
.

This is obtained by applying Lemma 1, starting from an SVD decomposition of the current Ŵ α̂. Note
that this step not only allows to maximize locally the penalized log-likelihood, but also ensures that
the columns of W stay orthogonal to each other during optimization.

Solving solveZinbRegression

Given a N -dimensional matrix of counts y ∈ NN , and matrix Aµ ∈ RN×p, Bµ ∈ RN×r, Cµ ∈
RN , Aπ ∈ RN×q, Bπ ∈ RN×r, Cπ ∈ RN and Cθ ∈ RN , for some integers p, q, r, the function
solveZinbRegression(y,Aµ, Bµ, Cµ, Aπ, Bπ, Cπ, Cθ) attempts to find parameters (aµ, aπ, b) ∈ Rp×Rq ×Rr
that maximize the ZINB log-likelihood of y with parameters:

ln(µ) = Aµaµ +Bµb+ Cµ ,

logit(π) = Aπaπ +Bπb+ Cπ ,

ln(θ) = Cθ .
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Starting from an initial guess (as explained in the different steps above), we perform a local minimization
of this function F (aµ, aπ, b) using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method. Let
us now give more details on how the gradient of F is computed.

Given a single count y (i.e., N = 1), we first explicit the derivatives of the log-likelihood of y with respect
to the (µ, π) parameters of the ZINB distribution. We first observe that

∂

∂µ
ln fNB(y;µ, θ) = y

µ
− y + θ

µ+ θ
,

and that by definition of the ZINB distribution the following holds:

∂

∂µ
ln fZINB(y;µ, θ, π) =

(1− π)fNB(y;µ, θ) ∂
∂µ ln fNB(y;µ, θ)

fZINB(y;µ, θ, π) ,

∂

∂π
ln fZINB(y;µ, θ, π) = δ0(y)− fNB(y;µ, θ)

fZINB(y;µ, θ, π) .

Let us explicit these expressions, depending on whether or not y is null:

• If y > 0, then δ0(y) = 0 and fZINB(y;µ, θ, π) = (1− π)fNB(y;µ, θ), so we obtain:

∂

∂µ
ln fZINB(y;µ, θ, π) = y

µ
− y + θ

µ+ θ
,

∂

∂π
ln fZINB(y;µ, θ, π) = −1

1− π .

• If y = 0, then δ0(y) = 0, and we get

∂

∂µ
ln fZINB(0;µ, θ, π) =

−(1− π)
(

θ
µ+θ

)θ+1

π + (1− π)
(

θ
µ+θ

)θ ,
∂

∂π
ln fZINB(0;µ, θ, π) =

1−
(

θ
µ+θ

)θ
π + (1− π)

(
θ

µ+θ

)θ .
When N ≥ 1, using standard calculus for the differentiation of compositions and the facts that:

(
ln−1)′ (lnµ) = µ ,(

logit−1)′ (logitπ) = π(1− π) ,

we finally get that

∇aµF = A>µG ,

∇aπF = A>πH ,

∇bF = B>µ G+B>π H .

where G and H are the N -dimensional vectors given by

∀i ∈ [1, N ], Gi = µi
∂

∂µ
ln fZINB(yi;µi, θi, πi) ,

Hi = πi(1− πi)
∂

∂π
ln fZINB(yi;µi, θi, πi) .
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Software implementation
The ZINB-WaVE method is implemented in the R package zinbwave, available from the GitHub repository
https://github.com/drisso/zinbwave. See the package vignette for a detailed example of a typical use.
The code to reproduce all the analyses and figures of this article is available at https://github.com/drisso/
zinb_analysis.

Real datasets
V1 dataset. Tasic et al. [3] characterized more than 1,600 cells from the primary visual cortex (V1) in
adult male mice, using a set of established Cre lines. Single cells were isolated by FACS into 96-well plates
and RNA was reverse transcribed and amplified using the SMARTer kit. Sequencing was performed using
the Illumina HiSeq platform, yielding 100 bp-long reads. We selected a subset of three Cre lines, Ntsr1-Cre,
Rbp4-Cre, and Scnn1a-Tg3-Cre, that label Layer 4, Layer 5, and Layer 6 excitatory neurons, respectively.
This subset consists of 379 cells, grouped by the authors into 17 clusters; we excluded the cells that did not
pass the authors’ quality control filters and that were classified by the authors as “intermediate” cells between
two clusters, retaining a total of 285 cells. Gene expression was quantified by gene-level read counts. Raw
gene-level read counts and QC metrics (see below) are available as part of the scRNAseq Bioconductor package
(https://bioconductor.org/packages/scRNAseq). We applied the dimensionality reduction methods to
the 1,000 most variable genes.

S1/CA1 dataset. Zeisel et al. [4] characterized 3,005 cells from the primary somatosensory cortex (S1) and
the hippocampal CA1 region, using the Fluidigm C1 microfluidics cell capture platform followed by Illumina
sequencing. Gene expression was quantified by unique molecular identifier (UMI) counts. In addition to gene
expression measures, we have access to metadata that can be used to assess the methods: batch, sex, number
of mRNA molecules. Raw UMI counts and metadata were downloaded from http://linnarssonlab.org/
cortex/.

mESC dataset. Kolodziejczyk et al. [30] sequenced the transcriptome of 704 mouse embryonic stem cells
(mESCs), across three culture conditions (serum, 2i, and a2i), using the Fluidigm C1 system followed by
Illumina sequencing. We selected only the cells from the second and third batch, after excluding the samples
that did not pass the authors’ QC filters. This allowed us to have cells from each culture condition in each
batch and resulted in a total of 169 serum cells, 141 2i cells, and 159 a2i cells. In addition to gene expression
measures, we have access to batch and plate information that can be included as covariates in our model. Raw
gene-level read counts were downloaded from http://www.ebi.ac.uk/teichmann-srv/espresso/. Batch
and plate information was extracted from the sample names, as done in Lun & Marioni [31]. We applied the
dimensionality reduction methods to the 1,000 most variable genes.

Glioblastoma dataset. Patel et al. [6] collected 672 cells from five dissociated human glioblastomas.
Transcriptional profiles were generated using the SMART-Seq protocol. We analyzed only the cells that
passed the authors’ QC filtering. The raw data were downloaded from the NCBI GEO database (accession
GSE57872). Reads were aligned using TopHat with the following parameters: –rg-library Illumina –rg-
platform Illumina –keep-fasta-order -G -N 3 –read-edit-dist 3 –no-coverage-search -x 1 -M -p 12. Counts
were obtained using htseq-count with the following parameters (http://www-huber.embl.de/HTSeq/doc/
count.html): -a 10 -q -s no -m union. We applied the dimensionality reduction methods to the 1,000 most
variable genes.

Simulated datasets
Simulating from the ZINB-WaVE model

Setting the simulation parameters. In order to simulate realistic data, we fitted our ZINB-WaVE
model to two real datasets (V1 and S1/CA1) and used the resulting parameter estimates as the truth to be
estimated in the simulation. Genes that did not have at least 5 reads in at least 5 cells were filtered out
and J (J = 1, 000) genes were then sampled at random for each dataset. The ZINB-WaVE model was fitted
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to the count matrix Y with the number of unknown cell-level covariates set to K = 2, genewise dispersion
(ζ = ln θ = − lnφ), Xµ, Xπ, Vµ, and Vπ as columns of ones (i.e., intercept only), and no offset matrices, to
get estimates for W , αµ, απ, βµ, βπ, γµ, γπ, and ζ. The parameters which were varied in the simulations are
as follows.

• The number of cells: n = 100, 1, 000, 10, 000.
• The proportion of zero counts, zfrac =

∑
i,j 1(Yij = 0)/nJ , via the parameter γπ: zfrac ≈ 0.25, 0.50, 0.75.

Since logit(π) = Xβπ + (V γπ)T +Wαπ, the value of γπ is directly linked to the dropout probability π,
thus to the zero fraction. Note that by changing only γπ but not γµ, we change the dropout rate but
not the underlying, unobserved mean expression; i.e., this increases the number of technical zeros but
not biological zeros.

• The ratio of within to between-cluster sums of squares for W . Specifically, let C denote the number of
clusters and nc the number of cells in cluster c. For a given column of W (out of K columns), let Wic

denote the value for cell i in cluster c, W̄ the overall average across all n cells, W̄c the average for cells
in cluster c, and TSS the total sum of squares. Then,

TSS =
C∑
c=1

nc∑
i=1

(Wic − W̄ )2

=
C∑
c=1

nc∑
i=1

(Wic − W̄c)2 +
C∑
c=1

nc(W̄c − W̄ )2

= WSS +BSS,

with WSS =
∑C
c=1

∑nc
i=1(Wic − W̄c)2 and BSS =

∑C
c=1 nc(W̄c − W̄ )2 the within and between-cluster

sums of squares, respectively. The level of difficulty of the clustering problem can be controlled by the
ratio of within to between-cluster sums of squares. However, we want to keep the overall mean W̄ and
overall variance (i.e., TSS) constant, so that the simulated values of W stay in the same range as the
estimated W from the real dataset; this prevents us from simulating an unrealistic count matrix Y .
Let us scale the between-cluster sum of squares by a2 and the within-cluster sum of squares by a2b2,
i.e., replace (W̄c− W̄ ) by a(W̄c− W̄ ) and (Wic− W̄c) by ab(Wic− W̄c), with a ≥ 0 and b ≥ 0 such that
TSS and W̄ are constant. The total sum of squares TSS remains constant, i.e.,

TSS = a2b2WSS + a2BSS,

provided
a2 = TSS

b2WSS +BSS
.

Requiring the overall mean W̄ to remain constant implies that
W̄ ∗c = (1− a)W̄ + aW̄c.

Thus,
W ∗ic = W̄ ∗c + ab(Wic − W̄c)

= (1− a)W̄ + aW̄c + ab(Wic − W̄c)
= (1− a)W̄ + a(1− b)W̄c + abWic. (12)

The above transformation results in a scaling of the ratio of within to between-cluster sums of squares
by b2, while keeping the overall mean and variance constant.
In our simulations, we fixed C = 3 clusters and considered three values for b2, where the same value
of b2 is applied to each k ∈ {1, . . . ,K}: b2 = 1, corresponding to the case where the within and
between-cluster sums of squares are the same as the ones of the fitted W from the real dataset; b2 = 5,
corresponding to a larger ratio of within to between-cluster sums of squares and hence a harder clustering
problem; b2 = 10, corresponding to a very large ratio of within to between-cluster sums of squares and
hence almost no clustering.

Overall, 2 (real datasets) × 3 (n) × 3 (zfrac) × 3 (clustering) = 54 scenarios were considered in the
simulation.
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Simulating the datasets. For each of the 54 scenarios, we simulated B = 10 datasets, resulting in a total
of 54 × 10 = 540 datasets. Using the fitted W , αµ, απ, βµ, βπ, γµ, γπ, and ζ from one of the two real
datasets, the datasets were simulated according to the following steps.

1. Simulate W with desired clustering strength. First fit a K-variate Gaussian mixture distribution to
W inferred from one of the real datasets using the R function Mclust from the mclust package and
specifying the number of clusters C. Then, for each of B = 10 datasets, simulate W cluster by cluster
from K-variate Gaussian distributions using the mvrnorm function from the MASS package, with the
cluster means, covariance matrices, and frequencies output by Mclust. Transform W as in Equation
(12) to get the desired ratio of within to between-cluster sums of squares.

2. Simulate γµ and γπ to get the desired zero fraction. We only considered cell-level intercept n-vectors γµ
and γπ, i.e., L = 1 and a matrix V of gene-level covariates consisting of a single column of ones. As the
fitted γµ and γπ from the original datasets are correlated n-vectors, fit a bivariate Gaussian distribution
to γµ and γπ using the function Mclust from the mclust package with C = 1 cluster. Then, for each of
B = 10 datasets, simulate γµ and γπ from a bivariate Gaussian distribution using the mvrnorm function
from the MASS package, with the mean and covariance matrix output by Mclust. To increase/decrease
the zero fraction, increase/decrease each element of the mean vector for γπ inferred from Mclust (shifts
of {0, 2, 5} for V1 dataset and {−1.5, 0.5, 2} for S1/CA1 dataset).

3. Create the ZINB-WaVE model using the function zinbModel from the package zinbwave.
4. Simulate counts using the function zinbSim from the package zinbwave.

Simulating from the Lun & Marioni [31] model

To simulate datasets from a different model than our ZINB-WaVE model, we simulated counts using the pro-
cedure described in Lun & Marioni [31] (details in Supplementary Materials of original publication and code
available from the Github repository https://github.com/MarioniLab/PlateEffects2016). Although the
Lun & Marioni [31] model is also based on a zero-inflated negative binomial distribution, the distribution is
parameterized differently and also fit differently, gene by gene. In particular, the negative binomial mean is
parameterized as a product of the expression level of interest and two nuisance technical effects, a gene-level
effect assumed to have a log-normal distribution and a cell-level effect (cf. library size) whose distribution is
empirically derived. The zero inflation probability is assumed to be constant across cells for each gene and is
estimated independently of the negative binomial mean. The ZINB distribution is fit gene by gene using the
zeroinfl function from the R package pscl. We used the raw gene-level read counts for the mESC dataset as
input to the script reference/submitter.sh, to create a simulation function constructed by fitting a ZINB
distribution to these counts. The script simulations/submitter.sh was then run to simulate counts based
on the estimated parameters (negative binomial mean, zero inflation probability, and genewise dispersion
parameter). We simulated C = 3 clusters with equal number of cells per cluster. The parameters which were
varied in the simulations are as follows.

• The number of cells: n = 100, 1, 000, 10, 000.
• The proportion of zero counts, zfrac =

∑
i,j 1(Yij = 0)/nJ , via the zero inflation probability: zfrac ≈

0.4, 0.6, 0.8. For zfrac = 0.4, we did not modify the code in Lun & Marioni [31]. However, to simulate
datasets with greater zero fractions, namely zfrac = 0.6 and zfrac = 0.8, we added respectively 0.3
and 0.6 to the zero inflation probability (p′i, in their notation).

For each of the 3 (n) × 3 (zfrac) = 9 scenarios, we simulated B (B = 10) datasets, resulting in 9 × 10 = 90
simulated datasets in total.

Dimensionality reduction methods
Four different methods were applied to the real and simulated datasets. For all the methods, we selected
K = 2 components, unless specified otherwise. A notable exception is the S1/CA1 dataset, for which, given
the large number of cells and the complexity of the signal, we specified K = 3 components.
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ZINB-WaVE

We applied the ZINB-WaVE procedure using the function zinbFit from our R package zinbwave, with the
following parameter choices.

• Number of unknown cell-level covariates K: K = 1, 2, 3, 4.
• Gene-level covariate matrix V : not included or set to a column of ones 1J .
• Cell-level covariate matrix X: set to a column of ones 1n. For the mESC dataset, we also considered

including batch covariates in X.
• Dispersion parameter ζ: ζ the same for all genes (common dispersion) or specific to each gene (genewise

dispersion).

Negative binomial fit

For the V1 dataset, after full-quantile normalization (function betweenLaneNormalization from the R pack-
age EDASeq [38]), we used the R package edgeR [39] (Version 3.16.5) to fit a negative binomial distribution
gene by gene with only an intercept (i.e., default value for the design argument as a single column of ones)
and genewise dispersion. The parameters estimated by edgeR are

• the mean E[Yij ] = µij for the NB distribution, for each cell i and gene j;

• the dispersion parameter exp(−ζj), for each gene j.

Zero-inflated factor analysis

We used the zero-inflated factor analysis (ZIFA) method [26], as implemented in the ZIFA python pack-
age (Version 0.1) available at https://github.com/epierson9/ZIFA, with the block algorithm (function
block_ZIFA.fitModel, with default parameters). The output of ZIFA is an n×K matrix corresponding to
a projection of the counts onto a latent low-dimensional space of dimension K, where we chose K = 2.

Principal component analysis

We used the function prcomp from the R package stats for the simulation study and, for computational
efficiency, the function jsvds from the R package rARPACK for the real datasets.

Normalization

As normalization is essential, especially for zero-inflated distributions, PCA and ZIFA were applied to both
raw and normalized counts. The following normalization methods were used.

• Total-count normalization (TC). Counts are divided by the total number of reads sequenced for each
sample and multiplied by the mean total count across all the samples. This method is related to the
popular Transcripts Per Million (TPM) [40] and Fragments Per Kilobase Million (FPKM) [41] methods.

• Full-quantile normalization (FQ) [42]. The quantiles of the distributions of the gene-level read counts
are matched across samples. We used the function betweenLaneNormalization from the R package
EDASeq.

• Trimmed mean of M values (TMM) [43]. The TMM global-scaling factor is computed as the weighted
mean of log-ratios between each sample and a reference sample. If the majority of the genes are not
differentially expressed (DE), TMM should be close to 1, otherwise, it provides an estimate of the
correction factor that must be applied to the library sizes in order to fulfill this hypothesis. We used
the function calcNormFactors from edgeR to compute these scaling factors.
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Evaluation criteria
Bias and MSE of the ZINB-WaVE estimators

For data simulated from the ZINB-WaVE model, let θ and θ̂b, b = 1, . . . , B, respectively denote the true
parameter and an estimator of this parameter for the bth simulated dataset. Then, for each scenario, the
performance of the estimator θ̂ can be assessed in terms of bias and mean squared error (MSE) as follows:

Bias = 1
B

B∑
b=1

(θ̂b − θ),

MSE = 1
B

B∑
b=1

(θ̂b − θ)2.

Bias and MSE were computed for βµ, βπ, γµ, γπ, ζ, Wαµ, Wαπ, ln(µ), and logit(π). When the parameter
to be estimated was an n× J matrix, the matrix was converted to a 1× nJ row vector.

Goodness-of-fit of the ZINB-WaVE model

For the ZINB-WaVE model, the overall mean, variance, and zero probability are

E[Yij ] = (1− πij)µij ,
Var(Yij) = (1− πij)µij(1 + µij(φj + πij)),

P (Yij = 0) = πij + (1− πij)(1 + φjµij)
1
φj .

When πij = 0, the ZINB model reduces to a negative binomial model. We compared the goodness-of-fit of
the ZINB and NB models on real data, using mean-difference plots of estimated vs. observed mean count and
zero probability, as well as plots of the estimated dispersion parameter against the observed zero fraction.

Correlation of pairwise distances between observations

For simulated data, we assessed different dimensionality reduction methods (ZINB-WaVE, PCA, and ZIFA)
in terms of the correlation between pairwise distances between observations in the true and in the estimated
reduced-dimensional space. In particular, we monitored the influence of the number of unknown cell-level
covariates K when the other parameters are set correctly (V is a column of ones 1J and genewise dispersion).
For each simulation scenario, the correlation between true and estimated pairwise distances was computed
and averaged over B datasets.

Silhouette width

Given a set of labels for the samples (e.g., biological condition, batch) silhouette widths provide a measure
of goodness of the clustering of the samples with respect to these labels. Silhouette widths may be averaged
within clusters or across all observations to assess clustering strength at the level of clusters or overall,
respectively. The silhouette width si of a sample i is defined as follows:

si = bi − ai
max{ai, bi}

,

where ai = d(i, Ccl(i)), bi = minl 6=cl(i) d(i, Cl), Ccl(i) is the cluster to which i belongs, and d(i, Cl) is the
average distance between sample i and the samples in cluster Cl.

Average silhouette widths were used to compare ZINB-WaVE, PCA, and ZIFA on both real and simulated
datasets. For simulated data, the cluster labels correspond to the true simulated W and, for each scenario,
silhouette widths were computed and averaged over B datasets. For real data, the authors’ cluster labels or
known cell types were used.
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Correlation with QC measures

To evaluate the dependence of the inferred low-dimensional signal on unwanted variation, we computed
the absolute correlation between each dimension (e.g., principal component) and a set of quality control
(QC) measures. For the V1 dataset, FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) and Picard tools (https://broadinstitute.github.io/picard/) were used to compute a set
of 16 QC measures. These measures are available as part of the scRNAseq Bioconductor package (https:
//bioconductor.org/packages/scRNAseq). For the Glioblastoma and mESC datasets, we used the scater
Bioconductor package [44] (Version 1.2.0) to compute a set of 7 QC measures. For the S1/CA1 dataset, we
used a set of 6 QC measures provided by the authors (http://linnarssonlab.org/cortex/).
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Figure S1: Goodness-of-fit of ZINB and NB models: Mean-difference plot of estimated vs. observed mean
count, V1 dataset. Left panel: the estimated count from ZINB-WaVE for cell i and gene j is (1 − π̂ij)µ̂ij .
Right panel: the estimated count from edgeR’s NB model for cell i and gene j is µ̂ij . Observed and estimated
counts were averaged over n cells and plotted on a log scale.
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Figure S2: Goodness-of-fit of ZINB and NB models: Mean-difference plot of estimated vs. observed zero
probability, V1 dataset. Left panel: the estimated zero probability from ZINB-WaVE for cell i and gene j is
π̂ij + (1 − π̂ij)(1 + φ̂jµ̂ij)

1
φ̂j . Right panel: the estimated zero probability from edgeR’s NB model for cell i

and gene j is (1 + φ̂j µ̂ij)
1
φ̂j . Observed and estimated zero probabilities were averaged over n cells.

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

ZINB−WaVE

Observed zero probability

E
st

im
at

ed
 d

is
pe

rs
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

NB, edgeR

Observed zero probability

E
st

im
at

ed
 d

is
pe

rs
io

n

Figure S3: Goodness-of-fit of ZINB and NB models: Estimated dispersion parameter vs. observed proportion
of zero counts, V1 dataset. Left panel: genewise dispersion parameters φj estimated using ZINB-WaVE.
Right panel: genewise dispersion parameters φj estimated using edgeR’s NB procedure.
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Figure S4: Low-dimensional representation of the V1 dataset. Upper panels provide two-dimensional repre-
sentations of the data, after selecting the 1,000 most variable genes. Lower panels provide barplots of the
absolute correlation between the first two components and a set of QC measures (see Methods). (a, b) PCA
(on TC-normalized counts); (c, d) ZIFA (on TC-normalized counts); (e, f) ZINB-WaVE (no normalization
needed). ZINB-WaVE leads to a low-dimensional representation that is less influenced by technical variation
and to tighter, biologically meaningful clusters.
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Figure S5: Low-dimensional representation of the S1/CA1 dataset. Upper panels provide two-dimensional
representations of the data. Lower panels provide barplots of the absolute correlation between the first
three components and a set of QC measures (see Methods). (a, b) PCA (on TC-normalized counts); (c,
d) ZIFA (on TC-normalized counts); (e, f) ZINB-WaVE (no normalization needed). ZINB-WaVE leads
to a low-dimensional representation that is less influenced by technical variation and to tighter, biologically
meaningful clusters.
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Figure S6: Low-dimensional representation of the mESC dataset. Upper panels provide two-dimensional
representations of the data, after selecting the 1,000 most variable genes. Lower panels provide barplots
of the absolute correlation between the first two components and a set of QC measures (see Methods).
(a, b) PCA (on TC-normalized counts); (c, d) ZIFA (on TC-normalized counts); (e, f) ZINB-WaVE (no
normalization needed). ZINB-WaVE leads to a low-dimensional representation that is less influenced by
technical variation and to tighter, biologically meaningful clusters.
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Figure S7: Per-cluster average silhouette widths, real datasets. (a) V1 dataset; (b) S1/CA1 dataset; (c)
mESC dataset; (d) Glioblastoma dataset. For each of the four scRNA-seq datasets of Figures S4, S5,
S6, and 2, barplots of the per-cluster average silhouette widths for ZINB-WaVE, ZIFA, and PCA (the best
normalization method was used for ZIFA and PCA). Silhouette widths were computed in the low-dimensional
space, using the groupings provided by the authors of the original publications: unsupervised clustering
procedure (a-b), observed characteristics of the samples, such as culture condition (c) and patient (d) .
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Figure S8: Principal component analysis for Glioblastoma dataset. (a) No normalization; (b) TC normal-
ization; (c) TMM normalization; (d) FQ normalization.
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Figure S9: Bias, MSE, and variance for ZINB-WaVE estimation procedure, ZINB-WaVE simulation model.
Boxplots of bias, MSE, and variance for ln(µ) and π as a function of the number of cells n. For each gene and
cell, bias, MSE, and variance were averaged over B = 10 datasets simulated from our ZINB-WaVE model,
based on the S1/CA1 dataset and with n ∈ {50, 100, 500, 1, 000, 5, 000, 10, 000} cells, J = 1, 000 genes, scaling
of one for the ratio of within to between-cluster sums of squares (b2 = 1), and zero fraction of about 80%.
The following values were used for both simulating the data and fitting the ZINB-WaVE model to these data:
K = 2 unknown factors, X = 1n, cell-level intercept (V = 1J), and genewise dispersion.
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Figure S10: Bias and MSE for ZINB-WaVE estimation procedure, ZINB-WaVE simulation model. Same as
Figure 5, but with outliers plotted individually (i.e., observations beyond the whiskers).
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Figure S11: Variance for ZINB-WaVE estimation procedure, ZINB-WaVE simulation model. Panels show
boxplots of variance (over B = 10 simulated datasets) for estimates of ln(µ) (a, c) and π (b, d). Outliers
plotted in (a, b) and omitted in (c, d). Simulation scenario as in Figure 5.
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Figure S12: Mean-difference plots for ZINB-WaVE estimation procedure, ZINB-WaVE simulation model.
(a) Mean-difference plot of estimated vs. true negative binomial mean (log scale), ln(µ̂)− ln(µ) vs. (ln(µ) +
ln(µ̂))/2. (b) Mean-difference plot of estimated vs. true zero inflation probability, π̂ − π vs. (π + π̂)/2.
The estimates are based on one of the B = 10 datasets simulated from our ZINB-WaVE model, based on
the S1/CA1 dataset and with n = 1, 000 cells, J = 1, 000 genes, scaling of one for the ratio of within to
between-cluster sums of squares (b2 = 1), and zero fraction of about 80%. The following values were used for
both simulating the data and fitting the ZINB-WaVE model to these data: K = 2 unknown factors, X = 1n,
cell-level intercept (V = 1J), and genewise dispersion (as in Fig. 5, S10, and S11).
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Figure S13: Between-sample distances and silhouette widths for ZINB-WaVE, PCA, and ZIFA, ZINB-WaVE
simulation model. (a) Boxplots of correlations between between-sample distances based on true and estimated
low-dimensional representations of the data for datasets simulated from the V1 dataset. (b) Same as (a)
for simulations based on the S1/CA1 dataset. (c) Boxplots of silhouette widths for true clusters for datasets
simulated from the V1 dataset. (d) Same as (c) for simulations based on the S1/CA1 dataset. All datasets
were simulated from our ZINB-WaVE model with n = 10, 000 cells, J = 1, 000 genes, “harder” clustering
(b2 = 5), K = 2 unknown factors, zero fraction of about 80%, X = 1n, cell-level intercept (V = 1J), and
genewise dispersion. Each boxplot is based on n values corresponding to each of the n samples and defined as
averages of correlations (a, b) or silhouette widths (c, d) over B = 10 simulations. Between-sample distance
matrices and silhouette widths were based on W for ZINB-WaVE, the first two principal components for
PCA, and the first two latent variables for ZIFA. ZINB-WaVE was applied with X = 1n, V = 1J , genewise
dispersion, and K ∈ {1, 2, 3, 4}. For PCA and ZIFA, different normalization methods were used. Colors
correspond to the different methods. See Figure 6 (a-d) for the same scenario but with n = 1, 000 cells and
Supplementary Figure S14 for additional scenarios.
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Figure S14: Between-sample distances and silhouette widths for ZINB-WaVE, PCA, and ZIFA, ZINB-WaVE
simulation model. (a) Correlation between between-sample distances based on true and estimated low-
dimensional representations of the data for datasets simulated from the V1 dataset. (b) Same as (a) for
simulations based on the S1/CA1 dataset. (c) Silhouette width for true clusters for datasets simulated from
the V1 dataset. (d) Same as (c) for simulations based on the S1/CA1 dataset. As in Figure 6, all datasets
were simulated from our ZINB-WaVE model with J = 1, 000 genes, K = 2 unknown factors, X = 1n,
cell-level intercept (V = 1J), and genewise dispersion. Each point corresponds to a simulation scenario (zero
fraction, clustering strength, sample size); correlations between true and estimated between-sample distances
and silhouette widths are averaged over B = 10 simulated datasets and n cells. Column panels show three
different clustering scenarios, where the scaling of the ratio of within to between-cluster sums of squares b2
corresponds to the original clustering (b2 = 1), a harder clustering (b2 = 5), and no clustering (b2 = 10).
Row panels show different number of cells (n ∈ {100, 1, 000, 10, 000}). Between-sample distance matrices and
silhouette widths were based on W for ZINB-WaVE, the first two principal components for PCA, and the
first two latent variables for ZIFA. ZINB-WaVE was applied with X = 1n, V = 1J , genewise dispersion, and
K ∈ {1, 2, 3, 4}. For PCA and ZIFA, different normalization methods were used. Colors correspond to the
different methods.
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Figure S15: CPU time vs. sample size for ZINB-WaVE estimation procedure. Log-log scatterplot of mean
CPU time (in seconds) vs. sample size n, for B = 10 datasets simulated from the Lun & Marioni [31] model
with n ∈ {50, 100, 500, 1, 000, 5, 000, 10, 000} cells, J = 1, 000 genes, zero fraction of about 60%. The following
values were used to fit the ZINB-WaVE model to these data: K = 2 unknown factors, X = 1n, cell-level
intercept (V = 1J), and common dispersion. CPU time were averaged over B = 10 simulated datasets and
standard deviations are indicated by the vertical bars. Computations were done with 7 cores on a iMac with
eight 4 GHz Intel Core i7 CPUs and 32 GB of RAM.
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