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ABSTRACT

F D) U U S A D

by

James Dennis Reimann

Doctor of Philosophy in Statistics
University of California at Berkeley

Professor John Rice, Chair

This thesis studies estimation of the frequency of a periodic function of time, when
the function is observed with noise at a collection of unequally-spaced times. This research
was motivated by the detection and classification of variable stars in astronomy. Most of the
statistical literature on frequency estimation assumes equadlgesitimes, but observation times
in astronomy are often unequally-spaced with a sampling distribution that contains periodic effects
due to being able to collect data only at certain times of day.

In Chapter 1 we describe the database of variable stars collected by the MACHO collab-
oration and present examples which illustrate the common types of variable stars and the nature of
the estimation problem.

In Chapter 2 we provide background material and give models for the periodic function
and sampling times. We derive the asymptotic behavior of frequency estimates based on peri-
odogram and least-squares estimation methods for sinusoidal periodic curves and sample times
that are randomly distributed about equally-spaced values, and evaluate these estimators using
a simulation study. We also discuss bounds on the variance of frequency estimates for general
periodic functions under two sampling models.

In Chapter 3 we outline various methods for estimating frequency in practice, apply these
methods to some example data, and compare their precision through the use of a simulation study.
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Chapter 1

Introduction

In this thesis we consider estimation of the frequency of a periodic function of time,
when the function is observed with noise at a collection of unequally-spaced times.

This research grew out of work on a problem in astronomy: the detection and classifica-
tion of periodic variable stard/ariable starsare stars in which the intensity of the emitted energy
changes over time, and periodic variable starshe change of intensity is periodic over time. In
this chapter we describe the substantial collection of light curve data that has been collected by one
astronomical star survey. We summarize the common types of variable stars and present examples
of some of these stars to illustrate the nature of the estimation problem.

In Chapter 2 we provide some background material on frequency estimation in time
series and give models for the periodic function shape and the distribution of the sampling times.
We derive the asymptotic behavior of two frequency estimators under the assumptions that the
periodic function is sinusoidal and that the sampling times are distributed about equally-spaced
values, and evaluate these estimators using a simulation study. Finally, we discuss frequency
estimation for general periodic functions, obtain variance bounds for frequency estimators for two
sampling models, and propose a variance bound for other sampling schemes.

In Chapter 3 we outline various methods for estimating frequency in practice and charac-
terize the optimization problem inherent in these methods. We apply these methods to light curves
of variable stars, and compare their precision through a simulation study. Finally, we note further
issues in frequency estimation that were unable to be developed in this work.



The MACHO Project

The data upon which this research is based were collected at the Mount Stromlo Ob-
servatory near Canberra, Australia, by the MACHO collaboration, a group of scientists from the
Center for Particle Astrophysics of the University of California at Berkeley, Lawrence Livermore
National Laboratory, and Mount Stromlo and Siding Spring Observatories of the Australian Na-
tional University. The collaboration is probing the halo of our galaxy in order to detect dark
matter in the form of Massive Compact Halo Objects, commonly known as MACHOSs. These are
astronomical bodies that emit negligible visible light, such as dwarf or neutron stars, large planets,
and black holes. Detection of a MACHO is achieved by observing its gravitational lensing effect
on a chance background star as the MACHO crosses near the line of sight between the observer
and this star. In order to detect a sufficiently large number of MACHOSs, the collaboration needs to
collect observations on an large number of distant stars over an extended period of time. Data are
being collected daily over a 4-year period (weather permitting), on approximately 8 million stars
in the Large Magellanic Cloud (LMC) and the bulge of the Milky Way. Approximately 250-300
observations have been collected per star over a 400-day observing period, and by the end of the
project there should be more than 1200 observations per star. This database is a valuable resource
for many other types of astronomical research. It is the most comprehensive catalog of stars in
the LMC and contains stars much dimmer than those covered by previous surveys. The length
of data-taking is unusually long compared to most star surveys, which permits a comprehensive
study of star variability, including long periods and transient phenomena. Over 40,000 variable
stars have been detected in the LMC data. The author has been collaborating with the MACHO
group on methods for estimating the periodicity of the periodic variable stars in this group, which

will be used to prepare a catalog of the estimated periods and amplitudes.

Data Collection

Observations are taken from the 1.27m “Great Melbourne” telescope at the Mount
Stromlo Observatory. The incoming light stream is split by filters into two color bands, a blue
band from 4500—-6300 Angstroms and a red band from 6300-7600 Angstroms. Two large charge-
coupled device (CCD) cameras are positioned at the focal points of the streaofsgcamera
contains a 22 array of 2048« 2048 pixel CCD imagers. Each digitized image thus contains over
16 million pieces of information in each color band. The photon counts at each pixel are adjusted
to compensate for differing efficiencies between pixels; this is knowlagfelding



The digital images are reduced to a collection of star brightnesses by a photometry
program “SoDophot”. It was designed for photometry (calculation of light intensity) on crowded
sky images, which is the case with the images from the LMC and the galactic bulge. Incoming light
from a point source is blurred by the atmosphere; the shape of the distribution of scattered photons
is called thepoint-spread function (PSFpoDophot first fits a 7-parameter nonlinear model to the
scattered light for a collection of bright stars that are isolated from their neighbors on the image.
The seven parameters are the background intensity, the additional intensity at the center of the
star image (thestar intensity, and five parameters for modeling the shape of the point-spread
function. The pooled estimates of the five PSF shape parameters from the bright stars are used in
the estimation of the background intensity and star intensity for the remaining stars. As each star
intensity is estimated in turn, the fitted point-spread function is subtracted from the data before
the next star is fitted; if two stars have overlapping images, a bimodal estimation is done on the
two together. The intensities ehch star are converted to fluxes to compensate for the observing
conditions of the night; this is done by comparing the intensity of non-varying bright stars with
their previously estimated value.

Error in the flux measurements can come from multiple sources, which can generally be
described aadditiveor multiplicative The size of additive errors does not depend on the flux,
while the size of multiplicative errors is proportional to the flux. Poisson-like behavior in the
photon counts contributes additional error which is inversely proportional to the square root of
the flux. An estimate of the standard error of each flux measurement (combining all components
of error) is produced by the photometry program. The standard error estimates come from the
curvature of the residual sum of squares (RSS) surface for the estimation of the background and
star intensities, with a lower bound specified on the errors to prevent unrealistically low values.
There is reason to believe that the error estimates are appropriate for the weaker stars and are
slightly too large for the stronger stars. Systematic bias is also present in the flux measurements.
As this bias varies between stars but not within multiple measurements on the same star, this is not
a problem when considering changes in flux of a given star over time. There is prior evidence that
the noise in the flux measurements is correlated witlségéng conditionavhich is the state of the
atmosphere that determines the shape and spread of the point-spread function. When the seeing
conditions are bad, i.e., the incoming light is severely blurred by the atmosphere, it is difficult to
resolve nearby stars and the quality of the flux estimate deteriorates. As seeing conditions a few
hours apart are effectively unrelated, and repeat measurements in the MACHO data are spaced at
least a few hours apart, the noise in the flux measurements can be considered independent. It is



observed that the measurement noise is also approximately normally distributed.

Variable Stars

In order to find the variable stars in the overall population of stars, the average flux
of each star is subtracted from the sequence of measurements and the weighted residual sum of
squares (WRSS) is calculated. Stars are considered variable if the WRSS falls above a given value,
which changes with star baseline flux to compensate for the bias in the standard error estimates.
Up to the present time, this has yielded over 40,000 variable stars.

The most common types of periodic variable stars that will be detectable in the MACHO
data are eclipsing binaries, RR Lyraes, Cepheids, and Long Period Vari&tulgssing binaries
are binary stars (two stars orbitiegch other) for which brightness variity occurs kecause one
star passes in front of the other in turn; as the stars may be of different brightnesses, the drop in
light flux depends on which star is in the front. These stars have periods of between 3 hours and 24
years, although 0.5 to 10 days is the most common range. The brightness changes in the remaining
classes of periodic variables is caused by periodic pulsation (contraction and expansion) of the
stars and their outer layerRR Lyrae starare the second most common class of known periodic
variable stars; they have periods in the range 0.2 to 0.9 days. There are two common types, RRab
stars which have an asymmetric signal and RRc stars which have a symmetric slgphkids
are rare, very bright stars with periods of 1-70 days. The light curve has an asymmetric shape, and
rises more rapidly than it falls. Cepheids with periods of about 1 week tend to have a bump in the
descending part of the curve. For periods of about 10 days, the bump is at the peak of the curve, and
for longer periods it is on the rising part of the curve. The most common class of known periodic
variable stars are tHeong Period VariablegLPVs). These are red giant stars with periods in the
range 30-1000 days. The period can vary by about 10% with accompanying changes in average
flux and amplitude of the harmonic component, and so these are more accurately semiperiodic
stars. Other types of periodic variable stars are not expected to be detected in any great number by

the experiment.

Examples

We present five examples of common types of periodic variable stars which illustrate
typical periodic curve shapes. The first star is a cepheid variable of magnitude 16.1 in the red band



and of magnitude 16.5 in the blue band. [Thagnitudescale is a logarithmic measure of flux,

m = —25log(f/fs),

wheref is the measured flux anf] is a standardization constant; note that weaker stars aiaer
magnitudes.] Figure 1.1 shows the brightness plotted against time for the two bands. There are
323 observations in the red band and 203 observations in the blue band. The observation times are
measured in days since January 2, 1992, and span approximately 400 days. There are substantially
less observations in the early part of the time period when the experiment was not yet running
smoothly, and indeed near day 250 there was no data taken for 25 days. The vertical axis, A-1, is
the ratio of the measured flux to a average flux for that star, shifted to have mean zero. This quantity
is correctly called theormalized fluxbut for convenience we shall refer to it as “brightness” in
the remainder of this document. At each point, the small dot represents the brightness estimate
and the two bars lie at thel SE values.

Denote the brightness and observation time of ttieobservation byy; andt; for
j=1,...,n. Ifthe brightness (without noise) has a strict periodic dependence on time with period
p, then the brightnesg should also be dependent on the circular variabteodp, and a plot of
Yj versus%tj mod 1 should describe the nature of the dependengg @fi¢; at periodp. We call
this thephase ploat periodp. Figure 1.2 shows the phase plot of the same star at period 1.44324
days. The phase axis has been extended by 0.2 units at each end so that the shape of the plot near
phase values zero and one can be seen more easily. Dependgnoa of can be seen clearly in
these plots; the shape of the curve is approximately sinusoidal and there are few outlying points.

The second example is also a cepheid star, but is brighter than the first: it is of magnitude
15.3 in the red and 15.8 in the blue. Figure 1.3 shows the brightness plotted against time. The
standard errors are lower than in the previous example, and the error bars increase in length as the
measured flux increases. There appears to be four horizontal “bands” in each scatter plot. There
are 303 observations in the red band and 254 observations in the blue band. Figure 1.4 shows the
phase plot for these data at period 3.9862 days. The shape of the dependence of brightness on time
is non-sinusoidal and there are four gaps in the data between phases 0 and 1. These gaps are due
to the frequency of the oscillation: as the period is very close to four days, parts of the signal cycle
occur only during the day, when astronomical observations cannot be taken. Thus any method used
to detect and estimate periodicity in data of this type must handle missing information on parts of
the curve.

The third example is an eclipsing binary star of magnitude 16.4 both in the red and blue
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bands. The plots of the brightness against time are shown in Figure 1.5; there are 300 observations
in the red band and 305 observations in the blue band. Note that there is a skew in the observed
brightness: there are many observations with brightness close to zero, and a smaller number with
negative brightness, but few with large positive values. This is typical of eclipsing binary stars,
and provides a method of identifying them without even estimating the periodicity. Figure 1.6
shows the phase plot for period 2.47133 days. The curve shape is typical of eclipsing binaries:
the brightness is at a constant level while the two stars are side by side, with less light emitted
when one of the stars is positioned behind the other. The differing depths of the troughs is caused
by one star being brighter then the other; when the bright star is in front, the trough is less deep.
This signal shape can be more difficult to detect than a unimodal cycle shape, and a general period
estimation approach should be able to accommodate eclipsing binaries.

The fourth example is an RR Lyrae star which is much dimmer then the previous
examples. It has magnitude 19.1 in the red band and 19.5 in the blue band, which is very close
to the limit of resolution of the experiment. The plots of brightness against times are shown in
Figure 1.7; the red band had 304 observations and the blue band had 310. The error bars are
much wider than in the other examples, with standard deviation of about 0.1, compared with about
0.015 for the second example and about 0.02 for the first and third examples. This means that
the amplitude of the oscillation must be very large to be seen above the noise. The phase plots
for these data at period 0.52715 days are shown in Figure 1.8. The periodic dependence appears
clearly in the blue band but less strongly in the red band. RR Lyrae stars typically have periods of
less than one day, and so methods for detecting them must be able to search for periods well under
the sampling rate, which for these data is about one observation every two days.

The final example is a relatively bright LPV star, of magnitude 15.0 in the red band
and 16.2 in the blue band. Plots of the brightness against time are shown in Figure 1.9; there are
322 observations in the red band and 277 observations in the blue. The brightness varies slowly
over time and seems not to be strictly periodic, with changes in amplitude and baseline over time.
Because there are only a few cycles present in these data, many more observations are needed to
describe the non-periodic behavior of stars like this one.

In these examples, we have seen that the shape of the oscillation igcessarily
sinusoidal, and that the curve may even be bimodal over a single cycle. We saw also that when
the period is close to a multiple of days, there may not be information available on all parts of the
curve, and that for stars such as RR Lyraes, the noise in the data can be large in comparison with
the amplitude of the oscillation. Finally, there is a class of stars which are obviously variable, but
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Chapter 2

Theory of Frequency Estimation

2.1 Introduction

In this chapter we determine properties of frequency estimation methods, including
consistency of the frequency estimate, rate of convergence, and influence of the sampling times on
the estimation. In its most general form, the periodic regression problem can be expressed as

Y; = s(wtj) +e,5=1...,n, (2.2)

in which¢; denotes thgth sampling timew is the frequencyg; is the measurement noise in the

jth observations is a continuous periodic function of period one, apds the jth brightness
measurement. This model is discussed in Bickel, Klassen, Ritov & Wellner[6], p. 107, which
presented it as an example of a semiparametric regression model and investigated its asymptotic
behavior. McDonald [30] also discussed this model, as well as estimatierbgfthe use of an
edge-preserving smoother. In a different context, that of estimation of motion in meteorological
data, Brillinger [12] estimated the frequency of a periodic function of space and time and compared
the performance of Fourier and nonparametric (spline-based) approaches. There is little else in the
literature for the general model (2.1), but much work has been done smtipée harmonic modgl

Y; = aCOS(wtj) + bsin(wtj) + €5, (2.2)

and the generalization to multiple frequencies,

p
Y = Z {ak Coqwktj) + b sin(wktj)} + €. (2-3)
k=1

Note that the above model with, = kw is contained within (2.1) as the set of functionthat

can be expressed agderm Fourier expansion.
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Aliasing of w = 0.211 withw = 1.211

- ) ) A T
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Aliasing of w = 0.211 with w = 0.789

Figure 2.1: The curvg = cos(0.211 2rt), as a dotted line, displayed with= cog1.211 2rt) in
the upper plot ang = cog0.789 2rt) in the lower plot.

Background

Extensive theoretical work has been done on the simple harmonic model with equally-
spaced sampling times,

ti=4,7=1...,n,

beginning with Whittle [50]. Hannan [22] and Walker [48] formalized and generalized Whittle's
results. These works used the periodogram as an approximation to least squares, and found that
the estimate ofv is consistent for frequencies in the rari@er], that the asymptotic variance of
the frequency estimate is of order?, and that the asymptotic variances of the estimatesanid
b are of ordem 1. These results extend to the model with multiple harmonic components (2.3).
Hannan [22] also showed that the rate of convergence of the frequency estimate is faster’than
for w = 0, 7 (see Section 2.2.4 for further discussion).

The frequency estimationis restricted to the raj@ge| for equally-spaced times because
of aliasing One frequency is an alias of another if the signals at the two frequencies have identical
values at the sample times. This is illustrated in Figure 2.1. The dotted lieacim plot is the
curvey = c0g0.211 2rt¢), plotted overt € [0,20]. The solid line in the upper plot is the curve
y = cog1.211 2rt), and the solid line in the lower plot is the curye= cog0.789 2rt). The
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value of the curves at integer times is marked with a diamond, and is identical for the two curves in
each plot. The frequencies = 1.211 andw = 0.789 are thus indistinguishable from= 0.211

at these times. Indeed, this is true for all frequencies of the form +0.211+ k, k € Z, as

cog (+w + k)2nt) = coJw 2xt) for integersk. Aliasing is also discussed in Bloomfield [8].

A few writers discuss sampling models for (2.2) other than equally-spaced times. Ivanov
[26] studies continuously-sampled time, and showed consistency of the least squares estimate of
frequency forw € (0,Q), Q < oo, with the asymptotic variance being of order3. Kutoyants
[27] also considers the continuous-time process, as well as frequency estimation in the intensity
function of a point process. Isokawa [25] and Brillinger [11] study the frequency estimate obtained
from the periodogram for sample times generated by a point process that is stationary and mixing.
These works find that the frequency estimate is consistentfor0< Q < oo, and has asymptotic
variance of order,~2. Thrall [44] derives spectral estimates for a sampling model in which the
probability of an observation being taken on a given day depends on the day of the week.

None of the above models are appropriate for our data, in which the sampling times are
not equally-spaced, but there is periodicity in the sampling distribution (as observations can be
taken only at night) that violates the mixing assumption for the point process model. We need to
know how the sampling scheme affects the frequency estimation and how this differs from what
occurs in the above models.

Spectral Windows

Consider the Fourier transform of the periodic regression funetidhs(wt) is a simple
harmonic component at frequeney then the Fourier transform efwt),

Fv) = / s(wt)emt d,

is zero everywhere but at= w andv = —w. We only have information aboutat the sample

timest;, and the discrete Fourier transform,

n

Fo(v) = 2 s(wt;)e®™,
j=1

is a natural measure of the periodicity of the observed functiBp(v) is related toF'(v) by a

convolution result,
Fo,(v) = F(v)*d,(v)
= / F(v — u)on(u) du,

—00
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whered,,, thespectral windowof timest;, is defined by

n

571(7)) _ %ZeiZthj )

j=1
If s(wt) is a simple harmonic component with Fourier transfdifw) = ¢, F(—w) = ¢* and

F(v) = 0 otherwise, then
Fo.(v) = con(v—w) + " (v +w).

If the spectral window is significantly different from zero at frequencies otherdhar®, then the
discrete Fourier transform will be large at frequencies other than-attw. A typical spectral
window has a well defined peak at= 0 with approximate width of 2—1, whereT is the span

of the sample times, and numerous smaller peaks coming from the spacing of the sample times.
Deconvolution methods can be used to approximately remove the effect of the time sampling from
the discrete Fourier transform if the correct frequency of the harmonic components is known. One
implementation of this is the CLEAN algorithm (Schwarz [41]).

Figure 2.2 shows the modulus of the spectral window of 300 equally-spaced sample
times.  There is a sequence of peaks of height one at the frequencied, 2, 3, ... with
smaller side peaks around the main peaks. Thus the modulus of the discrete Fourier transform of
a simple harmonic component at these times will have peaks of equal height at the frequencies
+tw + k, k € Z. Furthermore, the modulus df,(v) would be the same i was a simple
harmonic component with the same amplitude as before but now with frequency ataay-ofk,
and we see as discussed above that the simple harmonic components with these frequencies are
indistinguishable on equally-spaced times. For continuous data and a stationary and mixing point
process, the spectral window tends to zero everywhere huta0, so aliasing effects become
unimportant as becomes large.

What does this mean for our observation times? The spectral window of the 300
observation times of the red band of star 77043:4317 are plotted over the frequency intervals
[0,5.5] and[0, 0.15] in Figure 2.3. There are significant peaks at the frequencies:, but the size
of the peaks decreases withThere are numerous smaller peaks visible which are larger than the
small peaks in the spectral window of the equally-spaced times. We see from this that the Fourier
transform of a simple harmonic component would have large modulus at frequencigsk,
with height decreasing with. This means that a harmonic component at some frequency &

would not have an identical Fourier transform to the signal with frequendtt that it would have
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peaks in the modulus for many of the same frequencies. We call this pHfeatlo-aliasingafter
Scargle [36]) since the signals at these frequencies will not be identical to the signal at the true
frequency, as in aliasing, but will still be similar to this signal. Similarly, the frequentiest &

for k # O are callegpseudo-aliases

Jittered Sampling Times

We need a model that captures the essence of this behavior: that there is a periodicity in
the distribution of the sampling times but that they are not equally-spaced. Consider the sampling
model in which the observation times are randomly perturbed about uniformly-spaced values,

tj:j+5j, ‘5j‘<A, j:l,...,n, (24)

where the(d; } are independently and identically distributed (I1D) with prottiodensity function
h, have mean zero, and are distributed independentfy df. This observation model is called
randomly jittered samplingn Beutler [4], and is also discussed in the context of spectral estimation
in Akaike [2]. As presented, the jittered sampling process is not stationary; it can easily be made
stationary by making the time scale arbitrary (e.g., by adding the €&jfiel] random variable
to all the sample times). The resulting process is hot mixegabnse the autocovariance function
Cnn(u)is periodic for large: (This is discussed in more detail in the Comments of Section 2.2.1).
This model mimics astronomical observations which are taken daily but at varying times. This is
only a first approximation to real life, in which there can be multiple observations taken per night,
as well as stretches of days when no data can be collected due to bad weather. Nevertheless, it
captures the most important feature of the sampling: that the observations come from continuous
time with a strong day effect in the sampling distribution.

The modulus of the spectral window for 300 times generated from the jittered sampling
modelwithd; ~ U[—£, 2] is displayed in Figure 2.4 over the frequency rar@es.5] and[0, 0.15].
The modulus spectral window takes on the valbiglrv)| at the frequency = k, k € Z, where
¢(.) is the characteristic function @f and tends to zero otherwiseagets large. The heights of
the side peaks are small when densityas a large variance, are large wiikdmas a small variance,
and are of height one when tldg are identically zero (the equally-spaced case). Note that over
the rangdg0, 0.15], the spectral window looks more like that of Figure 2.2 than that of Figure 2.3.
This is because at the short frequencies (long periodsjittied sampling is effectively equally-
spaced, with one observation per day, while the actual sampling times have varying numbers of
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GG
observations per day. Limitations of the jittered sampling model are discussed further in Section
2.4.2.
Much of the theory that we present is based on the simple harmonic model (2.2) with

parameter vectd? = (a, b, w) satisfying
a?>+b% e (0,00), w e [0,00), (2.5)

and in which the measurement noiseare IID with mean zero and varianeé. We call this

response model thjgtered cosine modelhen the sampling times are distributed as in (2.4).

Overview of the Chapter

The properties of frequency estimation under the simple harmonic model are investigated
in Sections 2.2-2.4. Frequency estimation based on the periodogram is discussed in Section 2.2,
and the maximum likelihood estimator is discussed in Section 2.3. Conditions are given for
consistency of the estimators and the asymptotic distributions of the estimates are calculated. Both

estimators are found to be consistent for frequencies in the space

we (0,Q], w#km, ke Z,
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but the maximum likelihood method is asymptotically efficient while the periodogram estimator is
inefficient. We also discuss extensions to the simple harmonic model: the addition of a constant
term and consideration of several harmonic components.

Section 2.4 presents the results of simulations which evaluate the behavior of the peri-
odogram and maximum likelihood estimates at and near the frequancie&r, and compares
the observed finite-sample distribution of the frequency estimates with the asymptotic distributions
for frequencies not close to = kn. Two types of sampling times were used in the simulations:
simulated times from the jittered model (2.4), and actual times from one of the MACHO light
curves. The simulations found that the maximum likelihood estimator appeared to be consistent at
w = kxn while the periodogram estimator was sometimes inconsistent, and that the finite sample
distributions agreed closely with those predicted by asymptotic theory.

In Section 2.5 we discuss issues that arise in estimation using the semiparametric model
(2.1), derive variance bounds for frequency estimators for a couple of sampling models, and propose
an estimate of the best attainable precision of the frequency estimate under more general sampling
schemes.

2.2 Estimating Frequency Using the Periodogram

In this section we derive the asymptotic properties of a frequency estimate based on the

periodogramdefined by
2

2| —
I(w) = - E y; e (2.6)
=1

J
This is a natural extension to the definition of the periodogram for equadlgezptimes, which

is the modulus-squared of the finite Fourier transform of the time series. Assume the simple
harmonic model (2.2) and that the errefsare 11D with mean zero and varianeg. Define the
periodogram estimate of frequen@y; on some intervdD, Q] to be the frequency which maximizes

the periodogram on that interval,

L) = sup {L(v)). @7)
vE[0,Q]

Further define estimators af b ando?

R 2 & R
an = — Z yj COgWpt;)
j=1
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- 20
bn = — Z Y Sin(’lf)ntj)
n =1

1| A
= {Z yjz‘ - In(wn)} (28)
j=1
The periodogram was introduced by Schuster [38], who applied it to the analysis of various data
sets [39, 40].
The periodogram estimate is asymptotically equivalentto the least squares estimate under

P
3N
3|

certain conditions. If the errors are normally distributed and the distribution of the sample times
does not depend on the parameters, then the log-likelihood of the obseryations y,, is equal
to

1 1
Ln(av bv w, 02) = _En |Og(27T02) - ﬁs&(av ba ’U)),
o)

plus a constant term. Here, §$ is the residual sum of squares (RSS)
SS.(a,b,w) = Z {y; — acogwt;) — bsin(wt;)}%
j=1

Thus the maximum likelihood estimate|af, a, b] is obtained by minimizing the RSS, and we call
this theleast squares estimatén comparison, the periodogram estimate is the estimate obtained
by minimizing U,, a modified form of the RSS

- - . 1
U, (a,b,w) = Zyjz —2) y;j{acoqwt;) + bsin(wt;)} + En(az +b?).
j=1 j=1

The difference between the RSS angli¥

n

U, (a, b, w) — SS\(a, b, w) %Zl{(az 1) cog2uty) + 2absin2ut,)}.  (2.9)
j=

This is uniformly O(1) forw bounded away from 0r when the sampling times are equally-spaced,
and so the periodogram and least squares estimates are equivalent for this model. Ibragimov and
Has’minskii [24] found that the least squares estimate was asymptotically efficiemt 00, .
As the asymptotic variance they obtained was the same as that derived by Hannan [22] and Walker
[48] for the periodogram, the periodogram estimate is also efficient for equally-spaced times. For
sampling times distributed according to tfittered model (2.4), the difference (2.9)@(711/2)

for w # km, and we will see in Sections 2.2 and 2.3 that the periodogram estimate has larger
asymptotic variance than the least squares estimate.
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In Section 2.2.1 we present consistency and asymptotic normality results for the peri-
odogram estimates under the jittered model; the proofs of these are given in Sections 2.2.2 and
2.2.3. We find that the periodogram estimate is consistentfet kx, and has asymptotic vari-
ance larger than that for equally-spaced times and which depends (ittetieg distribution.

In Section 2.2.4 we discuss the case= kx, and extend the results of Section 2.2.1 to models

incorporating a constant term or multiple periodic components.

2.2.1 Asymptotic Results

Theorem 1 Consider the jittered cosine model (2.4), witle ©
0= {(a,b,w): a®+b*c (0,00); w € [0,Q]; w # kr, k€ Z}.

Also assume:

1)
Eler)® < 0. (2.10)

(2) Denoting the characteristic function &f by ¢(.),

Vn >0, suple(t)| < 1. (2.11)

[t|>n
Then the estimators defined in (2.7) and (2.8) satisfy
p lim nw, = nw,
p im (Gn, b, 02) = (a,b,0?). (2.12)
Here,plim,,_ ., denotes convergence in probability: we wtém,, .., v, = a,, if, forall § > 0,

lim Pr|y, —a,| > ] =0.

n—oo

Comments

e Almost sure results of this type have been shown for equally-spaced observation times
(Hannan [22]), and should also be obtainable for the jittered model.

e Condition (1) is used in Lemma 1(a) to study the stochastic order of

n
sup | eehi|2.

vE[0,Q] j=1
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We obtained the order,(n?), but feel this could be improved. For equally-spaced sample
times, assuming? < oo gives the orde©, (n*?2) (Walker [48]), and assuming|&|" < oo
for somer > 4 gives the orde©,(n logn) (Whittle [51]).

e Condition (2) is known a£rameér’s condition and ensures that the limiting value of the
periodogram at the true frequenay is larger than the periodogram at the pseudo-alias
frequencied+w + k2w, k € Z}. Any probability measure having a nontrivial, absolutely
continuous component satisfies this condition (Bhattacharya & Rao [5],p.207).

Theorem 2 Under the conditions of Theorem 1yY/2(d, — a),n%2(b, — b), n¥2(iW, — w)]
converges in distribution to a multivariate normal distribution with zero mean and variance matrix

> given by
(@) Forw# 2 ke 2+,

- {202 4 %(a2 1) (1- \cp(zw)\z)} r1, (2.13)

(b) Forw= %, k=1,35,..,

iy 1
y=20T"tyr"1c| 2 4 |coTr (2.14)
iy iy
Here, the matrice§, C, andY are defined by
1 0 & ] | —a b 0 0 |
r=4o 1 -5 1|, ¢=|b —a O 0 ;
b _g i 0 0 —2ab a®—1?

(2.15)

1+ Rep(4w) — 2REG(2w)  Imp(4w) — Rep(2w)Ime(2w)
Im¢(4w) — Rep(2w)Imp(2w) 1 — Rep(4w) — 2m2p(2w) |

Comments
Substituting the explicit value df~1 in (2.13) for casda), the asymptotic variance of
the scaled frequency estimat& 2w, is

2452
pran Rk |6(2w)[?}, (2.16)
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and so the asymptotic standard errorgf i$ of ordern—3/2. In addition to the usuat—/2 rate
(due to averaging out of the observational noise), the additional ardethe precision is due to
the lengthening of the series. For example, a signal of frequérgges through 2.5 cycles over a
ten-day period, and 25 cycles over 100 days. If one tries to fit a signal of freqgenayto this,
it would be out of phase by.26 at 10 days, and by Z5at 100 days. Thus estimates based on the
longer estimation period should be 10 times more precise.

The comparable asymptotic variance matrix for the scaled periodogram estimate of
frequency for equally-spaced times (derived by Walker [48] and Hannan [22]) is

%, (2.17)
and so the asymptotic variance for jittered sampling contains an additional tgtm,|6(2w)|?},
which depends on the sampling distribution through the quaai@w). [If we let |¢(2w)| T 1,
the sampling distribution approaches that of equally-spaced times and the two variances (2.16) and
(2.17) agree.]

Case(b) is a little more difficult to interpret. The contribution to the variance from the
observation times comes through the variance of the stfhs e?“ andy,_, t;e"“%. For
w # km /2, the variances of the real and imaginary parts of these are equalbut k7 /2, the
symmetry in the formulae is disturbed, leading to the complicated form in (2.14).

Another model in which the observation times are random is a point process that is
stationary and mixing (Isokawa [25] and Brillinger [11]). Denote the point process (a¥), the
sampling rate by = E[(0, 1]], and the spectral densitiesaf) and N (dt) by f..(\) and fyn ()

respectively. Then the asymptotic variance of the scaled periodogram estimates is given by

S = {4nfe(w)+4n87%(fee * fun)(w) + 7(a® + b?) B2 fyn(2w) ML
0 0 O
+ 218 %fun(0) | O a2 ab |. (2.18)
0 ab b?

In the jittered cosine model(t) is a white noise process with varianggwhich givesf.. (v) = %
If the time scale of the sampling is made arbitrary (for example, by adding the same U[0,1] variable
to all the times), then the jittered sampling is stationary with samplingdatel. The remaining

unknown term in (2.18) is the spectral density of the jittered sampling proggssi\). The



24

autocovariance function of the jittered proceSs;y (u), is equal to one at = 0, and otherwise

Cnn(u) = fj /h(t)h(t—I—u—j)dt—/h(t)h(t+u)dt—1

— p(u)— / h()h(t + ) dt,

wherep(u) is a periodic function with period one and integral zero ojveso, oo). Integrating
%CNN(’UJ) againsie—**, we find that the spectral density of the jitter process is

1 1 >
PN = o AL= 16+ o- D 6N —2mk) 3 |é(2rk)[?
v s £
k#0 j=—00
whered() is the Dirac delta function, and st x (27k) is infinite when|¢(27k)| > O.
Substitutingf.., fvn, andg into (2.18), the asymptotic variance of the scaled estimates

forw # kmis
5 - {202 + %(aZ +02)(1— [6(20)[?) + 202/fNN(A) d)\} r-1,

Although the third term in this equation is infinite, the first two terms match the asymptotic variance

in Theorem 2.

2.2.2 Consistency

This section contains the derivation of Theorem 1, which is modeled on Walker [48], pp.
25-27, the equivalent result for equally-spaced sample times.
We first need to show
n(w, —w) = 0p(1). (2.19)
From the definition of the periodogram (2.6), and (2.2),

2

I,(v) = % En:ewtf{a cogwt;) + bsin(wt;) + €} . (2.20)
j=1

Rewriting
acogwt;) + bsin(wt;) = ce™ 4 c*em "

wherec = %(a —ib) andc* is the complex conjugate ef and defining

An(v) =) ¢ i By(v) = > et (2.21)
7=1 j=1
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we can expand (2.20) as
2
L) = = {l4u(@) + 2Re[An(~v) {eBu(v +w) + ¢ Ba(v — w)}]
+ |eBp (v + w) —I—C*Bn(v—w)\z}. (2.22)
We will look at the limiting behavior of,, (w) asn — oo, and compare it with that of

EmNY  sup  {L(v)}

|[v—w|>n—1\

where) can be arbitrarily small. Consider the expansion (2.22)atw. As E|A,, (v)[> = no?,
then
|4 (0)[* = O, (n). (2.23)

This resultandB,,(v)| < n gives
2Re[A,(—v) {cBn(v + w) + ¢* By (v — w)}] = 0,(n®/?). (2.24)
Regarding the third term in (2.22), note that
Var[ReB,,(w)] = O(n), Var[lmB,(w)] = O(n),
and soB,,(2w) = O,(n*/?). This with B,,(0) = n gives
|cBy(2w) 4 ¢* B, (0)|? = ”Zz(az +b2) + 0,(n*?). (2.25)

Substituting (2.23),(2.24), and (2.25) into (2.22), the limiting value of the periodograre-ab is

n

I, (w) >

(a? + b?) + 0, (n*?). (2.26)
Now we consider the behavior &f (n, \) asn — oo:

Lemma 1 Consider the jittered cosine model of Section 2.1.
(a) Under assumption (2.10)

sup |4, (v) [ = 0,(n?). (2.27)
vE[0,Q]
(b) Under assumption (2.11)
n2
plim  sup |eBu(v+w)+c*By(v—w)|? < Z(az +b%) (2.28)

P70 y—w|>n—1A
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Using Lemma 1 and (2.22), we see that
. 1
p lim_ n"1K(n,\) < E(a2 +b?).
So with (2.26) we obtain
lim P[K(n,\) < I,(w)]=1

which, as\ can be arbitrarily small, is equivalent to (2.19).
The consistency dfi,,, b,, 52) is shown, with only minor changes, in Walker [48], p.27.
This completes the proof of Theorem 1.

Proof of Lemma 1.

(a) We need to show that for any constant 0,

lim P | sup |A,(v)>> an] =0.

"o uelo,q]
First we divide[0, Q] into r,, subintervals
-1
l Q,i ], =1 ...,7n,

L Tn Tn

R =

and lety; = (I — 3)Q/r,, the center point oR;. Then

P | sup |A,(v)|> > sn?| <r,P lsup\An(v)\z > an] . (2.29)
ve[0,Q] vER,
Consider the derivative
d 2 d S w(t;—
%‘An(’l})‘ = % %;l ejeke (t] tk)

Jrk=1

Thus the absolute value of the derivative satisfies

2
< (n+24) {Z\eﬂ} “p,,
j=1

noting thatD,, is a random quantity not depending enThus from (2.29), we obtain the further

AP

dv

bound
2 2 2, Q 2
P| sup |[4,(v)|*>sn°| < r,P [\An(w)\ +-—D, >sn ]
vE[0,Q] 2ry

2 2
ro P [\An(vl)ﬁ S L p an > srg” ] . (2.30)

IN

2
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Using the Markov Inequality and (2.10),

2
P[\Anm)\ >%] < oElAuw)l
< anElal+nin—1)0%
< o (2:31)
for some finite constart. Similarly,
srpn? [ srn n? ]
5
Q(n + 20)\>/? [ = ]
< (771 ) |25 |
< M(ﬁ)s/z (2.32)

for some finiteM.
Thus from (2.30), (2.31) and (2.32), and choosing= n%/5,

L M 5/2
sup |A,(v)]2>sn?| < ZT”Z n3 5
ve[0,Q)] s s5/ Zrn/

which establishes (2.27).

(b) To establish (2.28), we need to find< 1 such that lim_,., 7'(n, A, s) = 0, where

2
T(n, A, s) ' p sup  [eBn(v+w) + ¢ Bu(v —w)|? > =

2 2
b%) | .
ISY 4 (a + )

lv—w|>n=
Parallel to the approach in (a), we divide the interfvat'), Q] into r,, equal length subintervals
{R;} with center pointgv;}. The derivative of the function being maximized is

d
ZoleBa(v+w) + ¢ Bu(v —w)|?

d < o . e . )
— d_ ew(t] tk){cewt] —|—C*e wt]}{c*e iy _|_Cewtk}
v .
J.k=1

n
= Z ’i(tj _ tk)eiv(tj—tk){ceivtj + C*e—ivt]-}{c*e—ivtk + Cewtk},
J,k=1
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and so the absolute value of the derivative satisfies

n
20 < N Ity -t (a® + 0P
jk=1

< (n+20)n?(a®+ bv?). (2.33)

eBu(v +w) + ¢ Bu(o — w)

Thus by using the subinterva{sz;} and the derivative bound (2.33), we can boln@, A, s) by
a sum of probabilities

Tn 2
T(n,\,s) < S P lsup B (v + w) + ¢* By (v — w)[2 > 2 (a? + b)
1=1 vER; 4

Tn

2(,.2 2
< Yp [\cBnm )+ Balu - )P > R o B 2A>}] .
=1 n

As |cBy(v+w) + c¢* By (v — w) |2 < 3(a? + 02){| B, (v + w)| + | B, (v — w)|}2, we can simplify
the above to

T(n A s) <3P [{\%Bn(v +w)| £ [2Bu(v — w)[12 > s — i—Q(n—i—ZA)] L (@34
=1 n

Next we look at the behavior @8, (v). The mean of3,,(v) is

A sin() (2.35)

Sin3)

E[Bu(v)] = ¢(v) Y_ e = p(v)
j=1
In order to evaluate (2.34), we need to boyalB,, (v)|. By (2.11) and (2.35), and as
[sin(=) /nsinz)]| < 1,
there existsy,, < 1 such that

sup |LEB,, (v)| < -

|v|>m

Also by Walker [48], p.26, fo small enough so thdsin(A/2)/(\/2)}2 > 1/x?,

sup | 2EBu(v)| <
n=IAL|v|<7

sin(3
nsin(z) |

For all suchy, the function sifi5-) /() is strictly increasing with. Thus for alln > 2,

n

sin(3) sin(3)
nsin(;n) = Zsir(z%) <t
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So combining the above bounds and setting= sup{~x, | sin(3)/2sin(%)|}, we obtain

sup [LEB,(v)| <y <1l (2.36)

[v[Zn~1A

Thisis only a crude bound, as for£ 2k7 andk € Z, E[B,,(v)] = O(1). For arbitrarily
smalln, e > 0, andn > n, = {esin(n/2)} 1,

|ILEB,(v)| <€, |v—2kmw|>n, keZ. (2.37)

Asw # kr, k € ZT, v+ w andv — w cannot simultaneously be integer multiples af. 2
Further, letting) satisfy|w — kx| > n, k€ Z7, then from (2.37) eitheftEB,, (v + w)| < e or
|LEB, (v — w)| < e. Together with (2.36), this gives

|2EB, (v + w)|+ [2EB,(v —w)| <y +e€ Vo. (2.38)
Also, defineBY (v) = By (v) — EB,(v), where BB,,(v) = ¢(v) Y71 €*/. Then, using
the Markov Inequality,
E[| BR(v)|]
n4ﬂ4

En: E[‘ei’l}t]’ _ ¢(’U)ewj‘2‘ewtk o qb(v)e“’k\z]

Jrk=1

IN

P(|BS(v)| > pn]
1

S n4—ﬁ4
16

< o (2.39)

def

Now we return to (2.34). Let us choosgx > 0 so thats = () + 3¢)? + a < 1, and

setr, = nlogn. Then using (2.38) and (2.39),

n—oo

lim T'(n,\,s) < nIEnoo;PH%Bn(w +w)| + |2 By (v — w)| > yx + 3¢

< nIEnoog:lPH%Bg(w +w)| > € + P[|2B2(v; — w)| > €

32r
< lim —— =
— n—oo n2et 0’

which completes Lemma 1(b).
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2.2.3 Asymptotic Normality

In this section we provide the proof of Theorem 2. Following Walker [48], pp.28-31,

we define

Un(0,8,) = 2 — 235 {0rCos(uty) + BSin(ot,)} + 2 (0 + 47).

j=1 j=1

This function is minimized at = a,,, 8 = by, andv = &,,. Use of the mean value theorem yields

~

(Un)a = (Un)anan (@ = @n) + (Un)anb, (b = bn) + (Un)ayw, (0 — 0n), (2.40)

where (Uy,), denotesoU,,(«, 3,v)/0c, (Up)ap denotesd?U,, (o, 3,v)/0adp, and so on, and
(an, by, wy,) is some point on the line segment joinifwg b, w) and(a,, 3n, Wy). Similarly

(Un)b = (Un)bnan (a - &n) + (Un)bnbn (b - Bn) + (Un)bnwn (’U) - wn)
Un)w = (Un)wnan(@ = an) + (Un)w,b, (b — Bn) + (Un)wnw, (W — ). (2.41)

Now we look at the first order partial derivativesi@f. Firstly,

(Un)a = na-— zzn: Yj Coqwtj)

=1
= na—2ay_cowt;)®—2b) _sin(wt;) cogwt;) — 2 ¢; cogwt;)
=1 =1 =1
= —a)_coq2wt;) — by _sin(2wt;) — 2> e; cogwt;), (2.42)
=1 i=1 i=1

and similarly

(Un)y = bY_cog2wt;) —a)_sin2wt;) — 2 ¢;sin(wt;),
J=1 Jj=1

j=1
(Un)w = —2aby _t;coq2wt;) + (a® — b?)> t;sin(2wt;) — 2bY t;e; cowt;)
j=1 j=1 j=1
—I—Zathej Sin(wtj). (243)
j=1
Defining
V = [V17 V27 V37 V4]T

n23 " [cog2wt;), sin(2wt;), €; cofwt;), €; sin(wt;)] T,
j=1
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W = [W17 W27 W37 W4]T

n
= n_?’/ZZ[tj cos(2wtj), tj sin(Zwtj), tjej cos(wtj), tjej Sin(wtj)]T,
j=1

we can write (2.42) and (2.43) as

—-a -b -2 0
—1/2 —1/2 . a
n Un ar) T Unb - \%
[ AU, n AU { L
WU = [ ~2ab (@17 -2 2a |W. (2.44)

We need to find the limiting distribution ofV, W), first calculating the means and
covariances. The mean bf is

E[Vi] = n_l/zzn:{Regb(Zw) cog2wj) — Im¢(2w) sin2wj)}
j=1

= 07,

asw # kmr, k € ZT. Using similar working on the other elementsif one can obtain

nILmoo E[V] = [0,0,0,0]". (2.45)
Consider the mean ¥/,
EWa] = n ¥ ReE[t;e!]

j=1

= 0 ¥2)" Re{jé(2u)e® — Elge2h])
j=1

— 0323 j{Reb(2) co82u) — Im(2u) sin2uj)} + O(n~H2)
=1
_ O(n—l/Z)’

remembering thap;| < A. Extending these ideas to the remaining elemeni¥ @ives
lim E[W] =10,0,0, 0. (2.46)

The (1,1) term of the variance matrix bfis

Var[Vy] = n‘li {E[cog(2wt;)] — E?[cog2wt;)]}
=1
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= 01y [+ Reb(dw) cosiauj) — Imi(dw) sin(dug))

J=1

— {Rep(2w) cog2wj) — Imep(2w) sin(zwj)}ﬂ
= (1~ 19(20)P) + 5 {Rep(4w) — REG(2w) + |m2¢(2w)}§n: cos(4wy)

j=1
+0(n™h),
and so
11— |p(2w)|? kr ke 2+,
lim Var[Vy] = #(1=lo(2w)l), kw7é 2 M€ (2.47)
Nl 1 (1+ Rep(4w) — 2Re2q5(2w)) L w=E k=135,

Similarly, VaiWW1] can be calculated by

var[iWy] = n‘?’zn: {E[t; cog(2wt;)] — E?[t; cog2wt;)]}

= n—?’f:jz [%{1+ Rep(4w) cog4ws) — Ime(dw) sin(4w;)}
j=1
— {Rep(2w) cog2wj) — Ime(2uw) sin(2wj)}? + O(n™?),

so that

F(1—lo(2w)P), w2 ke ZT,

2.48
%(1+Regb(4w)—2Re2q§(2w)), w:%“,kzl,3,5,..., (2.48)

nIEnoo Var[Wl] = {

Similar working applied to the other elements of the variance-covariance matfix of) yields
Var[V] = 1A, Vari] = LA, and CoyV, W] = 1A, where

1—[6(2w)|?) I 0
A-peopr o]
0 o2l
A= L (2.49)
Y O k
, w=Tk=1305,...,
0 o2l

I is the 2x 2 identity matrix, and¥"is defined in (2.15).
Now considen” V + 1T W, where), n are vectors fronk* such that 0< AT A +7n"n < co. Then

lim ENV 49 W] = 0,

. 1 2 1
lim Var\Tv +Tw] = EAT/\A + 21AT/\n + énT/\n. (2.50)
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Expressing”V + "W = 37_; X, where

X; Y M2 cog2wt;) + Ao sin(2wt;) + Ase; CoSwt;) + Aae; sin(wt;)}

+n~3/2¢;{n1 cog2wt;) + nz2 SiN(2wt;) + n3e; cofwt ;) + nae; sin(wt;)},
the sum of third absolute moments(of; — EX;) satisfies

n
SEX; —EX;[2 < n"Y2E|L + M|e|?
j=1

for some finite constants, M. Thus the{ X} satisfy the Lyapounov condition (Billingsley [7],

p.371),
im YT EIX; - EXGP? -
n—oo Y714 Var[X;]3/2 ’

and ATV + nTW converges in distribution to a Normal distribution with mean and variance

given in (2.50). As convergence in distribution of a vector-valued random variable is implied by

convergence of all linear combinations of its terms (Billingsley [7], p.397), the joint distribution of

V., W converges to

ol [ I A
R

0
with A given in (2.49).
Returning to (2.44) and using the above result, after some calculation we find that

1 1 3

[n"2(Un)a, n”2(Un)s, 0~ 2(Un)uw)

converges to a multivariate normal distribution with mé@y®, O] and variance

{202+ 3(a?+4%) (1 - |p(2w) D) } T, w#E ke zt
1 1
ly 1y 2.51
20 +C | 2 4 | (T, w="% k=135,..., (251)
AR

wherel™, C is defined in (2.15).
Next consider the second order partial derivatives in (2.40) and (2.41). It is trivial to see that
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Also,

(Un)anwn = ZZyjtjsin(wntj)

j=1
= ath sin((wy, +w)t;) + ath sin((wy, —w)t;) — bth coy(wy, + w)t;)
j=1 j=1 j=1
+ bztj COQ(wn - ’U))tj) + ZZGjtj Sin(wntj). (253)
j=1 j=1

We will apply the mean value theorem to the real and imaginary pars$ of) and B, (v), where
An(v), By (v) are defined in (2.21). AgA? (v)| = O,(n®) and|B.(v)| = O(n®), applying the

mean value theorem gives

ithei(w"_w)tf = B,(0) +0,(n"HO(n?)
j=1

m
= 7 + Op(nz)v
ithei(w"'H“)tf = B, (2w) + 0,(n"HO(n?)
j=1
= Op(nz)v
0y eitjent = Al (w) + op(n~HO(n?)
j=1
= o0,(n?), (2.54)

remembering thaw,, — w = 0,(n~1) from Theorem 1. Inserting these results into (2.53) yields

pnIEnoo n_z(Un)anwn - g (255)
Similarly, as
(Un)bnwn = —ZZyjtj COi’wntj)
j=1
= —bth sin((wy, + w)t;) — bth sin((wy, —w)t;) — ath coy(wy, + w)t;)
j=1 j=1 j=1
— ath COQ(wn — ’U))tj) — ZZGjtj COi’wntj),
j=1 j=1

we obtain

p lim 072U, = — (2.56)

n—oo

NI &
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Now,
U wpw, = ZZyjtj {an cowpt;) + by Sin(wyt;)}
= (aan, + bbn)fjltjz cos(wy, + w)t;) + (aay, + bbn)fjltjz cos (wy, — w)t;)
+ (anb + abn)f:ltjz» sin((wy, + w)t;) + (ab, — anb)thz» sin((wn, — w)t;)

+2a, Y _ejt5 cofwyt;) + ZbRZeJt sin(w (2.57)
—1

Applying the mean value theorem #f/ (v) and B! (v) as above gives

n ) n?’
thzez(wn—w)tj - ? + op(n3),
n .
j=1
n .
S = oy(nd)
j=1

and so from (2.57), remembering th&t = a + 0,(1) andb,, = b+ 0,(1),

2, 12
p Jim (U, = (2.58)
Thus if we define
n_l(Un)anan n_l(Un)anbn n_z(Un)anwn
from (2.52),(2.55),(2.56) and (2.58), we obtain
plim [, =T, (2.59)

n—oo

with I defined in (2.15). A$ is nonsingularl,, is also nonsingular with probability tending to 1

asn — oo. So for largen we can re-express (2.40) and (2.41) as

[

NI

(an — ), n2 (by — b), n2 (i — w)] = = [n72(Un)as 072 (Un)p 02 (Un)ur, | T2t (2.60)
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We showed that the limiting distribution of the vector on the right hand side of (2.60) is multivariate
normal with zero mean and variance given in (2.51). So use of the Continuous Transformation
Theorem (Barndorff-Nielsen & Cox [3]) with (2.59) shows

[nY2(d, — a), nY?(by, — b), n¥?(ib, — w)]

tends in distribution to a multivariate normal distribution with mean zero and variance given in
(2.13) and (2.14). This completes the proof of Theorem 2.

2.2.4 Extensions

Theorems 1 and 2 can be extended in a number of natural ways: considering frequencies
that are multiples ofr, including a constant in the response model, and estimating multiple

frequency components.

Frequency Multiple of 7

Proposition 1 Assume the conditions of Theorem 1, exceptvsetkn for some integek. Then
Q) if w=0,plim,_ o nw, =0;
(2) otherwiseplim,,_. n{w, (Mmod 2r)} = n{w (mod 2r)}.

Proof.
(1) Following the proof of Theorem 1, the result equivalent to (2.26) is

I,(0) = 2a®n 4 O,(n'/?).
Lemma 1(a) still applies, and Lemma 1(b) becomes

p lim  max |¢B,(v)+ c¢*B,(v)|? < 2a°n. (2.61)

00 fu[Zn A

As the left hand side of this is

p lim  max a?B,(v)?

00 fu[Zn A
using (2.34),(2.36) and (2.39) gives (2.61) and completes the proof of (1).
Note that the estimates (2.8) are no longer consistent, in fact tendi2g @ o2 — a?] in
probability. If instead the estimates are obtained by regresgging cogwyt;), sin(w,t;) (where
there is no estimate dfif w,, = 0), then consistency is preserved. Hannan [22] shows that for
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equally-spaced times and = 0, there exists finita* such thatw;, = w for all n > n*; thisis
because the periodogram has a local maximum exactly @t 0. A result of this type may be
obtainable for jittered sampling times.

(2) For the casev = kx, k # 0, the periodogram has the value (as- co)
I(w) = 2n|ep(2km) + ¢*|? + O, (n1/?). (2.62)

The periodogram is also orderat the frequencies) + k27, k € Z. Without loss of generality,

assume that is an even multiple of-, w = k27. Then atw = 27,
L(v) = 2n|ed((I + k)27) + c* o (I — k)2m) 2 + O, (nY?), (2.63)

which depending of, b, ¢(.)) is not necessarily smaller than (2.62) asymptoticallyz$as hot
always consistent, but using the methods in the proof of Lemma 1(b), it is possible to show

p lim max  |cB,(v+w) + ¢* B, (v — w)|? < maxn?|co((1 + k)2r) + c¢*o((1 — k)2n)|?,
=00 jy—i27|>n 1A lez
ez

which completes (2) fow = k27. A similar approach is used far = (2k + 1). 0

Subtracting out the series mean

Proposition 2 Suppose that the conditions of Theorem 1 appligept that the response model is

yj = m+ acojwt;) + bsin(wt;) + ¢;.

Define§; = y; —y, y = >77_1 y;, and estimate the parametefrs, a, b, o] as before, except
replacingy; in the estimation formulae k;. Then the results of Theorems 1 and 2 apply to these

estimates.

Proof. Let I,,(v) be the periodogram for the mean-corrected data, i.e.

2 2
fn(v) - 5

n
> gt
=1

Then the difference between the original and mean-corrected periodogram is

~ 2 _ 4
Tav) = In(0) = Z[7Ba(0)? - ~Re

n
yBy, (’U)Z yje_wtf} )
=1
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As I,,(v) is invariant under change of origim can be set to zero for simplicity. Now

y = n HeBa(w) + ¢ Ba(~w)} +n7) ¢
j=1
= Op(n_l/z)v
By (v) = O(n), and}__; yje~™% = O,(n), where theD(.) are uniform forv € [0, Q]. Thus
[ (v) = In(v) = Op(n*'?)

uniformly, and the rest of the proof of consistency follows as in Theorem 1. Asymptotic normality
is obtained using a similar approach Gp(a, b, w) (Walker [48],p.35). O

Several-Frequency Case

Instead of the simple harmonic model (2.2), consider the regression function

P

Y; = Z{al Coqwltj) + b sin(wltj)} + €. (2-64)
=1

Quinn [33] and Wang [47] study estimation of the number of termddr equally-spaced sample
times. Under the jittered sampling model and fixe@n estimation procedure can be constructed
which gives consistent estimatedef, b;, w;| forl = 1, ..., p. Conditions (1) and (2) of Theorem 1

are required, as well as assuming the parameters come from the space defined by

af+bf>a5+b5>...> a2+ b2 >0, (2.65)

w; € 10,Q], wy + wy, # k2r, forl,mel,....p, ke Z. (2.66)

Note that the latter includes the conditian # k7, k € ZT. The periodogram (2.6) has the
limiting behavior

2

In(v) = % Ep: {Can(’U + wl) + CTBn(v - ’U)l)} + Op(nl/z)v (267)
=1

wherec; = 3(a; — ib;) parallels the notation in Theorem 1. Thigv) is O,(n'/?) everywhere
but near the frequencies
tw+k2r, l=1,...,p, k€ Z,

and the condition (2.66) ensures that not more than one of the terms in the sum in (2.67) can be of

ordern.
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Let the estimate ofv1, w1 ,,, be the frequency ifD, Q] that maximizes the periodogram.
The condition (2.65) ensures that this tends towargdmstead of one ofv,, . . ., w,,. In estimating
the rest of the frequencies, the estimates must not be too close together, otherwise they would
all tend to the frequency with the largest amplitude. For equally-spaced observation times, the
required condition is (Walker [48], p.32; Brillinger [11], p.282)

lim  min n|w —wy,| — .
n—00 [;mel...p

For the jittered observation times, we also need to keep an estimate from being too close to the
pseudo-alias frequencies of other estimates. So4oP, . . ., p definew ,, as that frequency in

(Vi vt Dpp+k2n| >en % m=1,...,1-1 ke 2}

that maximized,, (v), wherec is a positive constant. Also defining
A 2 A A 2 o
ain = gz Yj COWint;), bim = 52 yj SIN(Wint;),
: =

the results of Theorems 1 and 2 apply to the estimgies,, 5z,n, W), L=1,...,p}.

Alternatively, equivalent results should be achievable by subtracting out the fitted signal
at one frequency before estimating the next, although verification of this is not presented here. In
other wordsy1 ,, is estimated as above, but foe= 2, .. ., p, 1w ,, iS estimated by maximizing the
periodogram calculated on the data

-1
yi =y = > {aun o) + by SiN(Win)}-

m=1
2.3 Maximum Likelihood Estimate of Frequency

In this section we derive asymptotic properties of the maximum likelihood estimator of
frequency for the simple harmonic model and randomly jittered sample times. The main results
are presented in Section 2.3.1 and the derivation given in Section 2.3.2. We find that the maximum
likelihood estimate is consistent far # k7 and is asymptotically efficient with variance which
is lower than that of the periodogram estimate. In Section 2.3.3 we discuss the eager and
extend the asymptotic results to the multijiequency model.

Assume the simple harmonic model (2.2) with IID errors and randomly jittered sample
times (2.4). Assume also that the distribution of the jitter variabledoes not depend on the
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parameterga, b, w, 0. Then assuming the probability densitiesegfand §; are known and
denoted by (e) andh(6), and if we definer; = [y;, t;], the probability density of; is

fi(z530) = g(y; — acogwt;) — bsin(wt;)) h(t; — ). (2.68)

Then for# in a suitable parameter spa@ the maximum likelihood estima{®LE) of 6, 0,,, is
any# € O such that

I fi(zs:0) = sup]] £i(aji 7). (2.69)
j=1 TEG)j::L

Under normality of the observational noise, maximizing the likelihood is equivalent to

minimizing the residual sum of squares

En:{yj — acoqwt;) — bsin(wt;)}?.
j=1

Thus maximum likelihood theory can be used to study the behavior of the least squares estimate
under normality. Other noise distributions lead to different estimates; for example, if the noise is
assumed to come from the Laplace distribution

1
9(6) = Ee_|6|/07

then the MLE is obtained by minimizing the sum of absolute residuals

Z\yj — acojwt;) — bsin(wt;)|.
j=1

2.3.1 Asymptotic Results
Theorem 3 Consider the jittered cosine model of Section 2.1, With®

O = {[a,b,w]: a®+ % € (m, M), w e (m,M), w¢ [kr —m, kr +m]fork € Z*}, (2.70)
wherem > 0 can be arbitrarily small and\/ arbitrarily large. Also assume

(1) For somep > 0, the probability density of;, denoted;(e), satisfies

/

(2) The characteristic function @¥, ¢(.), satisfies

/ 2 2
%(e) +pg(e) de < 00; / [g—;gl/z(e)] de < 0. (2.71)

Vn >0, sup|e(t)| < 1. (2.72)

[t|>n
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Then the maximum likelihood estimate has the following properties:
(i) 6, is consistent.
(i) 6, is asymptotically normal with meahand covariance matrix given by
Cov[NY2(g, — 0)] = 2171, (2.73)

whereN = diag[n/?,n*/?,n3?], T is defined in (2.15) and

1
I= /g’ €)2—— de,
e
the information in density. Further, the convergence is uniformfy any compact set in
e.

(iiiy There exists a matri%,, so thatd,, is asymptotically efficient for loss function$W,, (7 —6)),

wherer is an estimate of andw(.) is a loss function with a polynomial majorant.

Comments

e The variance of the periodogram estimate is asymptotically larger than that of the least
squares estimate. Under normality distributed noise, Theorem 3 shows that the asymptotic
distribution of the scaled MLE (also the least squares estimate in this case) is given by

2402
3/2,~

where = denotes convergence in distribution. This is the same asymptotic distribution
as for equally-spaced times (Walker [48]). In comparison, we saw in Theorem 2 that the
asymptotic distribution of the periodogram estimate of frequency is

n®2p,, = N wL“Z 6{1— |6(2w)|?) | . 2.75
n =n—oo ,(a2+b2)+{ |p(2w)|7} (2.75)

The additional term in the variance of the periodogram estimate depends on the jittered sam-
pling distribution through the value(2w)|, which suggests that the periodogram estimate
is sensitive to variability in the sample times, while the MLE is not.

¢ Under the conditions of the theorem, proper{igs(iii) are also valid for certain Bayesian

estimators; see Ibragimov & Has'minskii [24], p. 191 for more details.
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e In the definition of®, the bounding ofi>+ b2 away from 0 andx, and the bounding ab

away from multiples ofr is necessary to show uniformity of convergence.

e The requirements of conditiofl) exclude discrete and partially continuous noise distribu-

tions, and ensure the smoothness of the likelihood surface.
e AsinTheorem 1, conditio(2) prevents the RSS at the pseudo-aliasest k27 from being
as small as that at the true frequency

2.3.2 Derivation of Results

The central tool in this proof is Theorem I111.4.1 of Ibragimov & Has'minskii [24], p.

191. Denote Fisher’s Information Matrix by

d:li‘j

) _ D (s (o7
1;(0) / [ fi(z5:0)] [ & fi(25,0)] Fi(z;:0) (2.76)
and the information from the first observations by
=Y _I;(0). (2.77)
j=1

Sometimes$¥2 = W2(n, 0) is used when the context is clear.
To make use of the result of Ibragimov & Has’minskH2 must be positive definite for

# € ©, and the following conditions satisfied:
(A) Denoting|A| = supy_1 [A\TAX],

lim suptrW>2 =0, lim sup |W;1W2(n, 1)W1 < co.
N0 pe@ N0 g 1o

(B) For somep > 0 andu € R3,

‘2—1—0

lim supZE‘ 210n fi(z;;0)]" Wrtu|” " =0.

" 60 ]
The next two conditions use a sequen¢e) — oo asn — oo:

© fl/2 x4; 6) is twice continuously differentiable with respectoand as» — oo,
J

2
sup  sup Z/‘wnlgszfl/z (5,0 + Wrtu) ;1‘ dxj:O()‘(n)_Z)'
0€0 |u|<>\(n
¢9+l|Jn uE@
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(D) For somes > 0,

2

inf inf Luﬁ§ﬁ/ 12530+ Wite) — £ %(s; > 0.

Inf |u||<nA(n |Wo| (2,0 + W tu) — [ (x; 0)} dxj >0
0+¥, luco

(These correspond to relations (4.2), (4.8), (4.9) and (4.4) in Ibragimov & Has’minskii.)
In order to check these conditiond?, W2, W, , and¥, 1 must first be calculated. From
(2.76) and (2.68),
coSwtj) coswtj)sinwt;) t; cogwt;){bcoswt;) — asinwt,)}
I;0)=1E * sir?(wt ) t; sinfwt;){bcoswt;) — asinwt;)} |,
* * t5{b cogwt;) — a sinwt )}
wherel is defined in the statement of the theorem. Thus the [1,1] elemé#t o

n

[lvi}ll = Z E[cog (wt))]

- éi 1+ Rep(2w) cof2wj) — Ime(2w) sinRw;) }
— SI1+0(1)

asn — oo, becausev # k7. Note also that thé(.) is uniform foré € ©. Similar working for

the other elements P2 leads to

n+0(1) O(1) bn2+0(n)
W%:é * n+0(1) —%n?+0(n) |,
* * 2+b n® + 0(n?)
which simplifies to
W2 _ é NY2Ir 4 om) NV2, (2.78)

where again th@(.) are uniform ford € ©. Note that¥? is positive definite for? + b2 # 0 and
w # km, and uniformly positive definite fof € ©. This implies

W2 = pr-1N-1/2 {r—l + O(n—l)} N-Y2 (2.79)

where as before th@(.) are uniform ford € ©. Some tedious calculations give the equivalent
results for¥,, andW,, 1, the symmetric square roots 8 andw,,2:
202+ +0(n7Y)  ab+0O(n7h bv/3a2+3b2 + O(n71)

% a?+20? +0(n™Y) —av3a2+302+0(n"Y) |, (2.80)

* * 31/2 5 (a +b2)3/2 +O(1)

1
g[’n

a2+ b2

n =
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\/Z a?+2b> +O(n~1t)  —ab+0O(n™ —3m~t+0(n=2)
-1 aZ—I—IZZ * 202402+ O(nY)  3an~l+0(n?) :
* * n~1v3a2+-302 + O(n=2)

(2.81)
with O(.) uniform for ¢ € ©.
Consider condition (A). Firstly,

271

W, ? = — 5 {n 1(5a%+5%) + O(n %)},

and so lim,_ o SURce tr¥;;2 = 0 as required. Secondly,
-1
_ _ n _
LPnlLPZ(n, T)Lpnl = mA{rT + O(n 1)}AT,
where

O(nl/z) O(nl/z) O(nl/z)
A= O(nl/Z) O(nl/Z) O(nl/Z)
O(n—l/Z) O(n—l/Z) O(nl/z)

So|W, W2 (n, 7)WL = O(1) uniformly for 6, 7 € ©. This completes condition (A).
For condition (B), consider

/ — coqwt;)
21 f;(z;;0) = %(yj — acoswt;) — bsinwt,)) — sinwt,) :
atj Sin(wtj) — btj COi’wtj)
and so
24 / 24p
E|[gnfi(z:0) W[ = E %(61) O(n~Y?)
g/ 2+p
= Cn Y P2E 5(61)

for some finite constant’, uniformly for 6 € ©. Taking p to be the same as that in (2.71),
condition (B) is established.
In condition (C), letr = [«, 3, v] be a shorthand fat + W, 1u. As

1/2 . .
2 £ 3w m) = hY2(t; — §) g 2(y; — acoguty) — Bsin(ut;)),
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the[1, 1] element is

YV2(wir) = WYt — j)i(e;) co(ut;),

8a2’)

using the notatioy = 2¢%%(¢), j = 259%%(¢). Similar working on the other elements of
ijl/z(xj, 7) yields

i(e) dley) nfale;) +gle)}
2 @) = YA - HOW |« i) nfale) + )} |
* « n?*{g(e;) +i(e)}
and thus

2 . . —
9t 2 12 o < = ) i) + i) O ).

So for allg, 7 € ©, there exists a consta@tsuch that

Z / T I

IN

%/ h(t; — 3) ile;) + d(e;)Pda;

< © [13R +lie) R de

So taking\(n) = n!/? and using (2.71), condition (C) is verified.

In condition (D), the summation term can be rewritten as
2
z [ty =) [ {2005 = s(t570) = 60 = stesi N} ey

wherer = 0 + W, lu ands(t;; 0) = acogwt;) + bsin(wt;). As s(t;;6) is bounded fo¥ € O,
by Ibragimov & Has’minskii [24], p.195, there exists a const@niniform ford, € © such that

/{gl/z(yj — s(t;; 7)) — g¥?(y; — 8(%9))} d(y;lt;) > C{s(t;; ) — s(t;; 0)}>

Thus condition (D) can be verified by showing

o 5 o
Jnf |u|'<nj( |Wnl™ ZE[{stj,T s(t5:0)y2] > 0.

9—}—‘1—',1 ue®

Further, agW¥,,| = = O(n~%/2%), the above is equivalent to showing for sohe- 0,

inf inf BN"E PN (a2 '
529 |u|l<n>\(n) n jz:l [{S(tj’ 7_) s(tj’ 0)} } > 0
6+W, luco
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Looking at (2.81)# + ;. 1u can be replaced by + n=Y/2uy, b+ n=Y2up, w + n~3/%ug], and so
condition (D) can be verified by showing

inf inf ANTE 5 7) — s(t5;0))2 . 2.82
inf  inf on jzl {s(t;;m) = s(t;;0)}?] >0 (2.82)
0+NY2ucO

Lemma 2 Lett;, j =1,...,n be distributed according to randomly jittered sampling (2¢he
anumber in(0, 1), and define

A, ={0=1a,b,w] €O, T=[a,3,v] €O |la—a|+[b—F] +njw—v|>n"}.

Then there exists a finite constaritfor which

inf > E [{acowt;) + bsin(wt;) — acos{ut;) — Bsin(vt;)}?| > Cnt 2. (2.83)
SettingA(n) = n~“tY/2in Lemma 2, with 0< ¢ < £ andB < 1 — 2¢, condition (D) is
verified. Thus from Theorem 4.1 of Ibragimov & Has'minskij, is consistent an&’,, (,, — ) is

asymptotically normal with mean zero and unit variance matrix. It is apparent from (2.80) that the
asymptotic normality result is not changed by replacigwith

20>+ ab b\v/3a2+3b2
. * a?+2b%2  —a\/3a2+3b2?
* * %(az—l—bz)?’/z
This gives the variance matrix (2.73), and completes Theorem 3.
Proof of Lemma 2. Define

%
~
3

H(0,7) = fj E [{a cogwt;) + bsin(wt;) — acogut;) — Asin(vt;)}?]

9

P o
_ ZZ E‘(Cezwt]- + C*e—zwt]-) _ (,Yewt]- + ,)/*e—wt]-)
j=1

in whichc = a + bi andy = o + 3i. Havingf, 7 € © means that@ and 2 are bounded away
from 2k7. Hence with some working{ (6, 7) can be rewritten as

HO,1)= g (\6\2 + MZ) —Re ey p(w — v)Zei(w_”)j + cyo(w + ’U)Ze“wﬂ)j + O0(1),
=1 =1

(2.84)
where theD(1) is uniform for, r € A,,.

Consider the following cases i, :
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() |w—v| < in71,

(i) In~1¢ < |w—v| <m,

(i) |lw—v—Fk2r|<m, k==+142 ..,
(iv) lw+v—k2r| <m, k==+1,4%2, ...
(v) all otherw,vin A,.

Under casdi), 373 e/ = n + O(1) andg(w — v) = 1+ O(n~17°) (Billingsley [7], p.
354). As in this case + v is bounded away from2r, 3/, e (“+v)7 = O(1) So from (2.84)

HO,7) = 2(a®+ b+ o?+ B%) — nReey™] + O(1)

= S{la—a)*+ (- 0% +0(1).

SN

N

Asla—al+ |b— 3| > in~¢, one of|la — af, |b — 8] must exceedn . Hence

1
H(O,7) > 3—2n1_25 +0(1), (2.85)

where theD(.) is uniform for6, 7 € A,,.

The remaining four cases use the bound (from (2.84))

cyd(w + ’U)Ze“wﬂ)j
=1

+0(1).

(2.86)
For casd(ii), w + v is again bounded away frokPr, and so)_7_; ewtv)i = O(1). Also,

H(6,7) > 3 (e + 11?) -

C’)/*¢(’U) N ,U)Zei(w—v)j
=1

n

j=1

n
§ :eivj

j=1

sup

%n_1_€<|v|<m

Using a Taylor series argument, this is boundeda (il — 4i8n—25) for largen. So substituting this
into (2.86),
n —2¢
H(0.7) > 3 (lel+ 17[2) = lellvIn(1— n=%) + O(1),

and completion of the square fpy| gives

1
H(,7)> 9—6\6\2?11_25 +0(1). (2.87)
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For casdiii), w + v is bounded away from2r, so
n
H(0.7) > 5 (I + 1° = 2elllé(w—v)]) + O(1)
n2 2
> gl {1-low—v)l?} +0(),
completing the square as before. By (2.72)w — v)| is uniformly bounded away from 1, and so

there exists a constant such that (6, 7) > Cn + O(1). Case(iv) is done in the same way. In

case(v) bothw + v andw — v are bounded away from2r and so

H(6,7) = 3 (| + 11?) + 0(1).

So combining case$)—(v) completes the lemma. O

2.3.3 Extensions

The model in Theorem 3 can be extended by considering frequencies that are multiples
of = and by allowing the model to contain several periodic components.

Frequency Multiple of 7

The methods of Theorem 3 are not directly applicabledot k7, because the lifting
value ofW(n, ) is not continuous at these points. For these values, the information of the first
observations is described by

[ | 1ron@w)  ér(2w) 3(1+pr(2w)) — 301 (2w)
_1 _1
NT2WIN"2 =5 # l-gp2w)  —4(1-¢r(2w))+5er(2w) | +O(D),

* * %(1—¢R<2w>> 2(1+¢r(2w))
(2.88)

wheregr(.) andg;(.) are the real and imaginary partsaf(f.). If W2 is nonsingular and the MLE
is consistent, one would expect the variance of the estimates to tend to#pidsVhenw = 0,b
can be taken equal to zero without loss of generality, and the information matrix becomes

n 0 O
I
* x 0

with no information on eitheb or w. This is not surprising fob, and forw, it could mean that

the frequency estimate exhibits more rapid convergence of the type discussed in Hannan [22]. For
nontrivialw = kx, condition(2) ensures that? is invertible, and it would be interesting to know

if the parameter estimates behave like those in Theorem 3.
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Several-Frequency Case

Using the response model (2.64), results equivalent to Theorem 3 can be achieved for
each of the vectorga;, b;, w;]. Assume conditiongl) and (2) of Theorem 3, and define the
parameter vectaf € © by

0= [ala b, wy, . . -, ap, bp7 wp]v

where the parameter spa®ds described by
q < a%—l—b%, a]%—l—b; < Q, alz_l—l—blz_l < alz—l—blz—q, l=2,...,p,

wy € (q,Q), wy + wy, € 2k — 2q,2kn+2q], ,mel,....p, k€ Z,

whereq > 0 can be arbitrarily small an@ arbitrarily large.

Under the above conditions, the information from the firgtbservations is

N M +OR)NE  Nio(hNE . NBod)NE ]
w1 x Nz(Fa+O0(L)N2
"2 . . . NzZO(L)Nz
. . x NZ(T,+0(1)Nz
wherel; is defined by

10 4

=1 1 -4

alZ—I—bl2

* %k 3

Conditions(A), (B) and(D) (from the proof of Theorem 3) are satisfied as before, anditond
(D) is dependent on the following generalization of Lemma 2.
Lemma 2* Consider the several-frequency model given above, and define o0, 1) and

T = [Ctl, /617 U1, ..., Qp, /6p7 vp]’

P
A, = {0,7 €0: > {lar—ay| + |by — Bi| + n|wy —v|} > n_e} .
=1

Then there exists a finite constaritso that

n p
Tf Z E lZ{al cos(wltj) + b sin(wltj) —qq COi’Ultj) -0 Sin(’l)ltj)} > Cnt2. (2.89)

=1 =1
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Defining H (¢, 7) to be the outer summation term in (2.89), one can obtain

P

n
H(0,7) = > > (el +1ml?)
=1

p n n
— 3" Re|crpdtor—vm) > eI 4 oyt vg) Y e rtem)
I,m=1 j=1 =

(2.90)

The casey_) | njw; — v| < %n‘e works exactly the same as in the proof of Lemma 2. The

ordering of the{a?+ b7} in the parameter space ensures that permutinfutifedoes not lead to an
equivalent fit. Although there arg@2terms in the summation ovérm in (2.90), having, 7 € ©
ensures that only of these can simultaneously grow faster tliai1). [If a term involvingw; is
growing withn, then all other terms involving; areO(1); the same applies for thg,.] Thus

P

/4
n
H(b,7) 2 5 > (el + 1ul?) = D le |y |y, £ om,)]
=1 k=1

n . .
Zez(wlk :l:’l)m,k )J
=1

where{l;} and{my} are each permutations of 1.,p. So case splitting as in Lemma 2, and
for each pairfw;, , v, ] either completing the square or using a Taylor expansion, Lemnig 2
completed.

Thus under regularity conditions, the MLE is consistent, asymptotically normal with
meand and variancéV;,; 2, and asymptotically efficient for a suitable family of loss functions.

2.4 Simulation Study

In Sections 2.2 and 2.3, consistency results were shown for the jittered cosine model with
w # km, but forw = kx the periodogram estimates were sometimes inconsistent and behavior of
the MLE was not derived. In this section we present simulations using the jittered cosine model in
order to investigate convergence of the estimates for frequencies at or near multiplesdf in
cases for which the estimates are known to be consistent, in order to to compare the distribution of
the estimates for finite samples with the asymptotic distribution. We also performed simulations
using real observation times to see if the behavior of the estimates for these times was consistent
with the behavior for the jittered sampling model.
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Summary of Results

Using data generated from the jittered cosine model, we found that the finite sample
distributions of the periodogram and maximum likelihood estimates were consistent with the
asymptotic values for two frequencies that are not integer multiples afid for two sample
sizes. For three frequencies that are multiplesrothe MLE appeared to be consistent while
the periodogram estimate was sometimes apparently inconsistent, tending towards a pseudo-alias
frequency. In cases when the periodogram estimate was inconsistent, the range of true frequencies
about a multiple ofr for which the periodogram estimated the pseudo-alias instead of the true
frequency drops in length with at rate approximately 2.

In simulations using sample times from one of the MACHO light curves, the periodogram
estimate of frequency was sometimes inconsistenufor k7w while the MLE appeared to be
consistent. For a frequency that is not a multiplerothe maximum likelihood and periodogram
estimates had similar variances, but the periodogram estimate had large bias. This suggests that
the uncompetitive performance of the periodogram for random sample times comes from a bias
that is caused by the unevenly-spaced times.

In general, the maximum likelihood estimate performed better than the periodogram

estimate, with lower MSE and apparent consistency at the frequanciegr.

2.4.1 Times Sampled from the Jittered Model
Data Generation

Data were simulated from the jittered cosine model of Section 2.1, with the observational
noise generated from a normal distribution with mean zero and variegfitae MLE is the least

squares estimate under this model. The variapies were generated from a uniform distribution

11
G
enough to collect astronomical data. For each given combination of parameter|[valyes o2,

over| |; this model was chosen to mimic the approximately eight hours a day in whichitis dark
100 datasets of size 200 observations were generated; the parameter estimates were calculated
using the first 25, 50, 100 and 200 observations in turn. These sample sizes were chosen to span
typical values for variable star data. The periodogram estimates were obtained by maximizing the
periodogram over some ranff Q] as in Section 2.2. To obtain the least squares estimates, for a
given frequency € [0, Q] the valuegy; were regressed on 0@s;), sin(vt;) to obtain estimates

n,v, bnv; fOr v = 0 the regression was on a vector of ones @ngwas taken to be zero. Then the
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residual sum of squares
SSL(U) - Z{yj - én,v COS(’Utj) - Bn,v Sin(’l)tj)}z
j=1

was minimized for € [0, Q], giving w,,, ar, andb,. The maximization of the periodogram and

the minimization of the RSS are computationally difficult, and issues relating to this are discussed
in Section 3.2. Maximization or minimization was done using the two-stage optimization scheme
described in Section 3.2. In the first stage, the function is optimized over a grid of frequency
values spaceg%n‘1 apart on the intervdD, Q] (wheren is the number of observations used in the
estimation). This gives rough estimates of the local optima of the function. The five best optima,
vm, m = 1,...,5, are further refined using grids spacgghson ' apart overfv,, — gn "t

U + 2—10n_1]. These specifications correspond to the valuel§ = [0, Q], r1 = 20,r, = 20,000,

M =5,andd = 1—10n_1 in the notation of Section 3.2. Optimization using a more computationally
intensive method/ = 20,6 = n!) for a limited number of examples gave identical estimates

to those using the above method. This suggests that the frequency estimates using this method

should be accurate withif\olo—oon—l.

Frequency not near a multiple ofr

Asymptotic distributions of the parameter estimates were presented in Sections 2.2 and
2.3 for frequenciesv # km, but little is known about the distributions of the parameters for finite
sample size. We performed simulations for a couple of frequencies to compare the observed
distribution of the estimates with the asymptotic distribution.
Example 1. Frequency equal ta.4x.

Simulations were run for a constant amplitude- > = 1 and noise variance? = 0.04,
but with five choices of phase, specified hyb] equal to[1, 0, [J5, 75, [0, 1], [~ 75, 75] and
[—1,0]. Table 2.1 shows the bias divided by its standard error, variance, and MSE of the scaled
estimates of frequency from maximum likelihood(?w,,) and the periodogram®/2%,,) for the
five combinations of parameters. These values are displayed for estimates calculated at sample
sizes of 50 and 200; the data in the £ 50” row of a given model is a subset of the data in the
‘n = 200" row.

The variances of the maximum likelihood estimate agreed closely with the asymptotic
variance. Using Theorem 3, the asymptotic variance of the scaled estifiate, is 0.96 for
each of the 5 parameter combinations. The sample variances ranged between 0.77 and 1.23. As a
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Table 2.1: Bias, variance, and MSE of the scaled maximum likelihood and periodogram estimates
of frequency, for 5 values @&, b] and sample sizes of 50 and 200 observations. The true frequency
is w = 2.47 and the noise variance ¢& = 0.04.

Maximum Likelihood Periodogram

a,b n Bias/SE Var. MSE Bias/SE Var. MSE
1,0 50 -0.33 1.23 1.23 0.72 5.85 5.88
200 0.51 0.78 0.78 0.98 5.92 5.97

ﬁ, ﬁ 50 0.21 1.20 1.20 0.00 7.55 7.55
200 -0.56 1.18 1.19 0.53 6.92 6.94
0,1 50 1.02 0.74 0.74 2.05 5.64 5.88
200 0.95 1.13 1.14 0.14 6.84 6.84

;—;, ﬁ 50 -0.56 1.01 1.01 -0.95 6.37 6.42
200 2.31 0.74 0.77 2.69 5.98 6.41
-1,0 50 1.27 1.05 1.06 0.78 7.12 7.16
200 0.23 0.93 0.93 0.37 5.89 5.90

sample variance calculated over 100 values has approximatély?a99) distribution, wherer?

is the unknown variance of the variates in the sample, the acceptance region of a 95%-level test of
Ho: 72 = 78 versus H : 72 # 72 is [0.747&, 1.307&]. For variance 0.96 this is [0.71,1.25], and

so the 10 sample variances are consistent with the asymptotic variance for the maximum likelihood
estimates. This verifies the %/2 rate of convergence of the frequency estimate and suggests that
the asymptotic covariance matrix can be used in the calculation of confidence intervals and tests
of hypothesis. The biases in the frequency estimate were generally not large, resulting in the MSE
being virtually identical to the sample variance. One of the biases was largef-thatandard

errors (where the standard error is calculated from the estimated variance), but as the standard error
it corresponds to was unusually small, this does not seem a concern.

The asymptotic variance of the scaled periodogram estimtad,, is 6.63, using
Theorem 2, and the acceptance region of a 95%-level test of this variance against a two-sided
alternative is [4.9,8.6]. All of the sample variances of the periodogram estimates fell in this
interval, and so the observed variances are again consistent with the asymptotic value. A couple of
the biases were larger than 2 standard errors, but again these correspond to unusually low variance

estimates. O
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Table 2.2: Bias, variance, and MSE of the scaled maximum likelihood and periodogram estimates
of frequency, for 2 values @&, b] and sample sizes of 50 and 200 observations. The true frequency
is w = 0.57 and the noise variance é8 = 0.04.

Maximum Likelihood Periodogram
a,b n Bias/SE Var. MSE Bias/SE Var. MSE
1,0 50 -0.62 0.73 0.73 -0.02 1.54 1.54
200 0.57 0.81 0.81 0.01 1.65 1.65
0,1 50 -0.77 0.89 0.89 0.39 2.24 2.24
200 -0.46 0.66 0.66 0.16 1.67 1.67

Example 2. Frequency equal to7.

Simulations were run witta, b = [1,0] and [0, 1] and noise variance? = 0.04, in
order to compare the observed distribution with the asymptotic one whisna multiple of 7.
Table 2.2 shows the bias, variance, and MSE of the scaled frequency estimates from maximum
likelihood and the periodogram for the two parameter combinations and two sample sizes: 50
and 200 observations. The asymptotic variance of the scaled MLE of frequency is 0.96, and
the acceptance region for testing this variance at the 95% level is [0.71,1.25]. One of the sample
variances (0.66) fell outside these bounds and the other three look low on average. Itis possible that
the finite sample variances approach the asymptotic value more slowly-a§, but care should
be taken as this may be a spurious result of multiple tests. Nevertheless, the sample variances were
of the correct order of magnitude and were close to the asymptotic values. None of the biases were
large and so the MSEs were identical to the variances in this case.

The asymptotic variance of the scaled periodogram estimates is 2.00, calculated using
Theorem 2. This gives acceptance region of [1.5,2.6], and all of the sample periodogram variances
fell within these bounds. As in the MLE case, the biases were quite small. O

Frequency Equal to a Multiple of ©

Simulations were performed to demonstrate the inconsistency of the periodogram and to
investigate the behavior of the least squares (MLE) estimator.
Example 3. Frequency equal t@r.

Simulations were performed witfu, b] = [1,0] and [0, 1] and noise variance? =
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Table 2.3: Mean squared error of frequency estimates from maximum likelihood and the peri-
odogram. The true frequency was= 27 and the MSE was calculated about the apparent limiting
frequency,w.. The figures in parentheses are the number of outlying points not included in the
MSE calculation. Note: In the first column of MSE values, the omitted values were clustered about
the value 0; in the third and fourth columns they were clustered aboahd Gr respectively.

Model with [a, b] = [1, 0] Model with [a, b] = [0, 1]
MLE PG MLE PG
Observations Wy = 27 wy =0 Wy = 27 Wy = 4m
25 1.35e-4 (6) 0.00e+0 3.23e-5(9) 3.42e-4(3)
50 1.61e-5 0.00e+0 5.66 e—6 (2) 4.12e-5(1)
100 1.32e-6 0.00e+0 6.28e-7 4.59e-6
200 1.90e-7 0.00e+0 8.56 e-8 5.62e-7

.04. The frequency estimates were obtained by optimization of the periodogram or RSS over
v € [0,3.51x]. Table 2.3 shows the mean squared error of the frequency estimates from the 100
datasets simulated for each combination of parameters. The MSE is calculated about the apparent
limit in probability of the estimates as becomes large, as the estimates did not always appear

to converge to the true values. The frequency estimates are often clustered about a few distinct
values. For example, Table 2.4 shows the sorted frequency estimates corresponding to the MSE
in the third column of the first row of Table 2.3; most of the values are within 0.015 of the true
frequency 2, but nine are in the region of# In all cases, outlying estimates were clustered about
values that differed from the true frequency by a multiple of Z'his is hardly surprising, as in

the proof of Theorem 1 the periodogram is found to be of ordat the frequenciesw + kx but

of orderOp(nl/Z) elsewhere; equivalent results appear in the proof of Lemma 2 for the MLE case.
Asn gets large, these competing values must appear with decreasing frequency for the estimate to
be consistent.

The MLE of frequency appears to be consistent for both valués, 6f; the number of
estimates at a competing frequency quickly drops to zero, and the MSE is tending to zero with
order of approximately.—3. Inspection of the estimates ff, b] also suggest convergence to the
true values for least squares. In Section 2.3.3 it is suggested that if the least squares estimates are
consistent, the limiting distribution dVl/Z(é — 6) could be normal with zero mean and variance
matrix W2, whereW2 was given in (2.88). This would parallel the behavior provendog kn.
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Table 2.4: 100 maximum likelihood estimates of frequency from samples of size 25, for the jittered
cosine model withv = 27 and|a, b] = [0, 1].

6.270 6.270 6.272 6.272 6.272 6.272 6.273 6.273 6.274 6.274
6.274 6.275 6.275 6.275 6.276 6.276  6.277 6.277  6.277  6.277
6.278 6.278 6.278 6.278 6.278 6.279 6.279 6.280 6.280 6.280
6.280 6.281 6.281 6.281 6.281 6.281 6.281 6.281 6.281 6.282
6.282 6.282 6.282 6.282 6.282 6.283 6.283 6.283 6.284 6.284
6.284 6.284 6.284 6.284 6.284 6.284 6.284 6.284 6.284 6.284
6.285 6.285 6.285 6.285 6.285 6.285 6.285 6.286 6.286 6.287
6.287 6.287 6.287 6.287 6.287 6.287 6.287 6.288 6.288 6.288
6.288 6.288 6.289 6.289 6.289 6.290 6.290 6.292 6.292 6.294
6.296 12535 12538 12.547 12553 12553 12555 12.568 12.582 12.594

All of the observed variances were consistent with the theoretical values from the inverse of the
information matrix, and all but one of the observed means were consistent with the theoretical zero
value.

The periodogram estimates did not appear to be consistent for this example, ot
[1,0], all of the frequency estimates were identically zero; this lack of variability may seem
surprising, but should not as the periodogram had a local maximum exactly at zero. Why is the
frequency estimate tending towards zero? From (2.63), the periodogram at zero has limiting value

I,(0) = 2n|$(27) + $(2m)[> + Oy (n'/?),

so by substitutings(2r) = 0.8270, %IR(O) has a limiting value of 5.471. Similarly, using
(2.62) and¢(47) = 0.4135, the limiting value of%[n(27r) is 3.996, which explains why the
periodogram is maximized at= O rather than» = 2. The periodogram also seems inconsistent
for [a, b] = [0, 1]; in this case the estimate was converging towards the vatue 4 |
Example 4. Frequency equal tor.

Table 2.5 shows the equivalent results for the model wits 7. For [a, b] = [1, 0] the
MLE of frequency converged rapidly to the true value. The variance of the observed estimates
for n = 200 was consistent with the theoretical value given in (2.88), suggesting that the inverse
information can be used as a variance estimate even wherkr. The periodogram estimate of
frequency also converged rapidly to the true value.
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Table 2.5: Mean squared error of frequency estimates from maximum likelihood and the peri-
odogram. The true frequency was= 7 and the MSE was calculated about the apparent limiting
frequency,w.. The figures in parentheses are the number of outlying points not included in the
MSE calculation. Note: In the third column of MSE values, the omitted values are clustered about
the values 3 and 5r, while those of the fourth column are clustered aboub8ly.

Model with [a, b] = [1, 0] Model with [a, b] = [0, 1]
MLE PG MLE PG
Observations Wy =T Wy =T Wy =T w, = 5w
25 5.17e-4 8.67e-5 3.38e-5 (50) 1.11e-3 (44)
50 4.14e-5 9.24e-6 3.75e-6 (42) 9.36 e-5 (45)
100 6.91e-6 1.11e-6 4.88 e-7 (35) 1.48 e-5 (38)
200 7.26e-7 1.52e-7 4.51e-8 (20) 1.46 e—6 (38)

For [a,b] = [0, 1] the MLE seems to be converging slowly to the true frequency: for
n = 200, 20% of the estimates are clustered aroundThe variance of the observed frequency
estimates forn = 200 (calculated omitting the 20 outliers) was lower than that suggested by (2.88),
but this could be due to bias from the omission of the outlying values. The periodogram frequency
estimates are clustered mainly around = 5x, but there are a group of estimates around the
value 3r which do not become less common agets large. The expected limiting value of
the periodogram at the frequencies3r and 5r is 1, (3r) — 0.342,17,(57) — 0.342, and
%In(w) — 0.060, showing why the valuesrand 5r both appear with stable proportionsragets
large. O
Example 5. Zero Frequency.

In this example onlyja, b] = [1, 0] was used, as settirlg# 0 makes no difference to
the model. Both the maximum likelihood and periodogram estimates of frequency converged to
the true value forv = 0. Two of the maximum likelihood estimates were clustered neafio
n = 25, but otherwise all of the estimates of frequency were closely clustered around the true
value. The MSE for the MLE was 5.67 e—4 for= 25, 8.72 e-5 fon = 50, 1.91 e-5 fon = 100,
and 2.80 e-6 fon = 200, which is approximately— convergence. About 40% of the maximum
likelihood estimates of frequency were identically zero for all sample sizes, suggesting tat SS
often has a local minimum at = 0. By contrast, the periodogram estimates of frequency were

all identically zero for each sample sizystrating rapid convergence of the type discussed in
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Hannan (1971). Estimates ff, b] seemed consistent using maximum likelihood and inconsistent
using the periodogram. O

In summary, the least squares(maximum likelihood) estimate of frequency appeared
consistent for the three frequencies used. There is no guarantee that this applies fer at
and combinations ofa, b], and it would be interesting to prove consistency for this case. From
this limited investigation, it is plausible that least squares estimates that are consistent for
have asymptotic variance equal to the inverse of the information matrix of the observations. The
periodogram was sometimes consistent and sometimes not, depending on the valugsanid
although not illustrated here, also depending on the shape of the characteristic fgiiction

Frequency Close to a Multiple ofr

It has been shown above that the periodogram estimates are consistentfbf, and
may be inconsistent fav = k. In this section we discuss the behavior of the periodogram when
the true frequency is close tor.

The periodogram at frequeneycan be expressed as

In(v) = 2|cEBp (v + w) + ¢"EBy (v — w)‘z + Op(nl/z)a

where the order term is uniform far € [0, Q]. This is shown by an argument similar to that
preceding (2.26). A$,(v) is of ordern at the true frequency, and the frequency estimatds”
obtained by maximizing the periodogram, study of the maximum of

Jn(v) = 2|cEBy(v+w) + ¢"EBy (v — w)|?
2

— 2 (ot )3T 4 (o — )l

j=1
should give information on the behavior @f, for largen. In Theorem 3 it was shown that the
maximum likelihood estimate has uniform convergence if the true frequency is bounded away from
the multiples ofr. The same is true of the periodogram estimates, but a stronger result can be
obtained: the estimates are uniformly consistent for a parameter space in which the frequency may

approach one of the valués asn — oo. For a givem, consider the parameter space
0, = {[a,b,w]: a®+b*c (m, M), w € [0, M], |w— kx| >n(n), Vk € Z},

in whichm > 0 can be arbitrarily small)/ can be arbitrarily large, angln) tends to zero slower
thenn=1, i.e. lim,_., nn(n) = co. Inconsistency in the frequency estimate can arise when both
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of the terms inJ,, (v) are of ordem; the proof of Theorem 1 shows that if only one of these terms
can be of orden for a givenv, then the frequency estimate is consistent. fFer ©,,, if one of

v+ w, v —w is closer tham(n) from a multiple of 2r (a necessary but not sufficient condition
for ordern behavior), then the other is at leagt:) away from all multiples of 2. Without loss

of generality, lety — w be withinn(n) of a multiple of 2r. Then for large,

‘ sin(n(v +w)/2)
nsin((v+ w)/2)

n . .
3 v
j=1

< [sin(n(n)/2)| ™,

which by the definition of)(n) is o(n). So if one of the terms id,, (v) is of ordern, the other is of
order uniformly inferior ton. Thus the periodogram estimate of frequency is uniformly consistent
for 6 € ©,,, and uniform consistency fdu, b] follows. This means that as increases, one can
estimate frequency closer and closer to multiples @fithout sacrificing rate of convergence, as
long as the frequency approactiesat a rate slower then™?.

For a given sample size and parameter values, it is informative to see how close the true
frequency must be tér in order to cause problems with the estimation. This is illustrated by a
couple of examples.

Example 6. Frequency near2r.

In this examplea, b] = [1,0] and the true frequency is = 27 (1 + n), wheren is
small. If n = 0, the values oft.J,(2rn) and .7, (2r(1 + n)) are 5.471 and 3.996, so we
expect the periodogram frequency estimate to be in the neighborhood of zero if the variance of
the periodogram is sufficiently small. fis larger then zero theﬁJn(ZWn) and%Jn(Zw(l +1))
are 1368+ O(n~1) and 2000+ O(n~1), but theO(.) term is not uniform for; > 0 and the
convergence can be quite slowulfs very close to zeray,, should be in the vicinity of zero; if
is sufficiently largeaw;, should be in the vicinity of 2. How should we specify the change-point
between the two? One way is to find a valuendior which the frequency estimate is close to
v = 2w and tov = 0 equally often. For the given model with sample size equal to 25, numerical
computations find that the local maximum.gf(v) nearv = 0 and the local maximum of,, (v)
nearv = 27 are of equal height foj = 0.01. So forn = 0.01, one expects the frequency estimate
to be in the vicinity ofv = 2r andv = 0 equally often, depending on the noiseljf(v). [The
location of the local maximum does not have an explicit form, but as the fun&ign + w) is
ordern atv = —27), B, (v — w) is ordern atv = 27y, andB,,(.) is smooth near its maxima, the
local maximum of/,,(v) near zero will usually fall in the intervél-27n, 27rn]; similarly, the local
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maximum ofJ,, (v) nearv = 27 usually falls in[2r (1 — n), 27 (1 + n)].]

Table 2.6 shows the ratio of the local maximunigfv) near the true frequency21+-n)
to the local maximum of/,,(v) near the competing frequenay = 0, for sample sizes =
25,50, 100,200 and for four values af. The firstn value is 0.01 as mentioned above, and the rest
decrease in factors of two; these were chosen to see how the ratio behaaifged like:
asn — oo. Along the diagonal of the table the ratios are approximately one. For larger values of
n at a given sample size, the ratio is greater than one; for smaller valugls isfless than one.

Thus the interval of frequencies for which the maximunygpfv) is near O instead of near the true
frequency decreases in length likel. [The rate is noexactlyn—1; the values ofy for which

the ratio is exactly unity are 0.01 for = 25, 0.051 forn = 50, 0.0026 fom = 100 and 0.013

for n = 200.] The values in the upper-right of the table are identical, but this is an artifact of the
values ofy andn chosen; for example, fof = 0.01 andn = 75 the values of the ratio is 1.432.

Table 2.7 shows the number of periodogram frequency estimates from 100 simulated
datasets that were in the vicinity of the true frequency- 27(1 + n) instead of near zero. They
were obtained for the same valuesoéndy used in Table 2.6; two levels of noise variance were
used,c? = .04 ando? = .16. The combinations af andy for which the ratio in Table 2.6 was
less than one gave estimates that were all near zero (in fact, they were identically zero because the
periodogram has a local maximumeat= 0). Similarly, the combinations for which the ratio was
greater than one gave estimates that were almost all close to the true frequency. When the ratio was
close to one, the frequency estimates were clustered about the true and competing frequencies. For
n = 25 andn = 50, the proportion of estimates close to the true value was about one-half, but for
the two larger values af this decreased, to 44/100 far= 100 and 37/100 for, = 200. There
seem to be two explanations of this: fer= 100, 200, the ratio is smaller than fer = 25, 50;
and asn — oo the variability of the periodogram becomes small, so the maximization of the
periodogram will be more sensitive to small differences in the heiglif, 6f) for different values
of v. The results were consistent over the two levels of noise variance used. Overall, studying
the maxima of/,,(v) gives a clear indication of the behavior of the frequency estimate if the true
model is known. O
Example 7. Frequency nearr.

In this model, the true frequency i8 = n(1 — n) for n small, and[a,b] = [0.2, 1].

The values of%Jn(w) and %Jn(37r) are 0.1634 and 0.2325, so whegn= 0 the periodogram
frequency estimates should convergetdr8stead ofr. Forn larger than zeroq,% Jp(m(1—n))and
%Jn(37r — ) are equal to D8+ O(n~1) and 142264 O(n~1) respectively and the frequency



Table 2.6: Ratios of the local maximum df,(v) nearv = 2r to the local
maximum near = 0, for the jittered cosine model withh = 27 (1 + 7),
[a, b] = [1,0] andd; uniformly distributed ovef—32, 1].

T 6'6
Ratios
n n=25 n =50 n =100 n = 200
0.01 1.006 1.462 1.462 1.462
0.05 0.763 0.987 1.462 1.462
0.0025 0.737 0.762 0.978 1.462
0.00125 0.732 0.737 0.761 0.974

Table 2.7: Number of periodogram frequency estimates (out of a possible 100)
in the vicinity of 2r, for data simulated from the jittered cosine model with

w = 2r(1+ 1), [a,b] = [1,0] anddy uniformly distributed ovef—£, ]. The
periodogram was maximized overe [0, 3x], and two levels of observational
noise variance were used.

Number out of 100
n o2 n =25 n =50 n =100 n = 200
0.01 0.04 53 99 100 100
0.05 0.04 0 50 100 100
0.0025 0.04 0 0 44 100
0.00125 0.04 0 0 0 37
0.01 0.16 55 97 100 100

0.05 0.16 0 52 99 100
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estimate should converge to the true value. Table 2.8 shows the ratio of the local maximy(m)of
nearv = 7 to the local maximum of/,,(v) nearv = 3r, for n = 25,50, 100, 200 and four values
of n decreasing by factors of two, chosen so that the ratios along the diagonal are close to one. As
1 or n increase the ratio becomes greater than one, and as they decrease it becomes less than one,
but note that the increase or decrease is not monotoni@imdr. The corresponding number of
frequency estimates that were in the vicinity of the true frequency are shown in Table 2.9. For
each value of), 100 datasets were generated from the model with noise varignee0.04, the
periodogram frequency estimates were calculated ower|0, 3.2x], and the number out of 100
that were close te = 7(1—n) was reported. The results are consistent with those in Example (a):
ratios substantially larger than one led to estimates all close to the true value; ratios less than one
had all estimates near the competing frequency(&kcept for a few cases for = 25, when
the variability in the periodogram was larger); along the diagonal, the counts were close to 50%,
and slightly larger than this when the ratio was slightly larger than one. So as in Example (a),
the observed behavior of the frequency estimates from the periodogram agree with the behavior
predicted by looking aff,,(v). O

In summary, the behavior of the periodogram estimate of frequency can be predicted for
frequencies close to multiples ofif the parameter$a, b, w] and the characteristic functia#.)
are known. In these two examples, the region of frequencies around a multipfeiodvhich the
estimated frequency was not close to the true value decreased withrortlelhis agrees with
the theory shown above that the frequency can be uniformly estimated on a frequency space that
approaches the multiples ofif the rate of approach is of order shower than'.

2.4.2 Times from Real Life

Earlier in this chapter, consistency and asymptotic normality results were presented for
the jittered cosine model which show that the periodogram can be inconsistentfder and is
less efficient than maximum likelihood. However, the jittered observation model is unrealistic in

several ways:

e Thereis exactly one observation per day, while in reality there might be multiple observations

taken per night, or no data collected for a few days.

e The range of times each day in which observations are taken is constant over time, but the

time period each day in which it is dark enough to collect data changes with the time of year.
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Table 2.8: Ratios of the local maximum df,(v) nearv = 7 to the local
maximum near = 3, for the jittered cosine model withh = 7(1 — 7),
[a, b] = [0.2, 1] andé; uniformly distributed ovef— 32, 1].

GG
Ratio
n n =25 n =50 n =100 n = 200
0.0062 1.051 1.721 1.400 1.421
0.0031 0.275 1.020 1.708 1.400
0.00155 0.271 0.268 1.005 1.701
0.000775 0.457 0.277 0.264 0.997

Table 2.9: Number of periodogram frequency estimates in the vicinity, of
for 100 datasets simulated from the jittered cosine model with 27(1+ n),
[a,b] = [1,0], andd; ~ U[—-%, §]. The noise variance wag* = 0.04, and the
periodogram was maximized overc [0, 3.27].

Number out of 100
n n=25 n =50 n =100 n = 200
0.0062 62 100 100 100
0.0031 5 65 100 100
0.00155 0 0 57 100
0.000755 7 0 0 49
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Figure 2.5: Time of night plotted against date for the times of 200 observations from the red band
of star 77043:4317.

e Observation times on different days are assumed independent, while in real life there may

be systematic patterns in the viewing schedule.

Thus it is possible that the results using the jittered model are not useful for real-world data. We
present simulations using observation times from one of the MACHO light curves to compare the
behavior of the periodogram and maximum likelihood estimates with that under the jittered model.
The observation times used are taken from the red band of star 77043:4317. In keeping
with the simulations in Section 2.4.1, a sequence of 200 observations was used, spanning the
243-day period from December 27, 1992 until August 27, 1993. The time of night at which these
observations were taken ranged between 6:08pm and 6:00am. Figure 2.5 shows the time of day
plotted against date for these 200 times. The distribution of the times differs from the jittered

model in a number of ways:

e The span of time of day observed varies with the season; near the Winter solstice (December
21) the span of times is less than eight hours, while in the middle of Summer (the Summer
solstice falls near Day 170) the observation times span a 12-hour period.

e There is a substantial period of time during the night in which no measurements were taken,
and this varies with the time of year; this corresponds to the times when the Large Magellanic
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Cloud is either below the horizon or too close to the horizon for clear viewing.

e Over the 243-day observation period, there were 102 days (43%) on which no data was
collected. A single observation was taken on 87 of the days (36%), two observations were
taken on 51 days (21%) and there were three days on which three or more observations were
made. This gives an average sampling rate of 0.82 observations per day.

Data Generation

Simulations were performed as described in “Data Generation” in Section 2.4.1, except
that instead of generating the observation times from the jittered sampling modeb;with
U[—%, %], the observations times in Figure 2.5 were used. So while previously the set of 200
observations times varied over the 100 simulated datasets, in these simulations the observation

times are fixed while the observational noise varies.

Frequency Not Near a Multiple of .

Simulation results are presented in order to compare the bias and variance of parameter
estimates from the two methods in an example in which they both converge to the true parameters.
Example 1. Frequency equal to2.47, continued.

Data were generated from the model (2.2) with- 2.4, [a, b] = [1, 0], [0, 1], and using
the observation times from Figure 2.5. The variance of the observational noise?wa®.04.

Table 2.10 displays the bias, variance, and MSE of the unscaled frequency estimates from maximum
likelihood and the periodogram under this model. In all cases, all the frequency estimates were
close to the true values, with the MSE converging to zero with rate approximatély The
periodogram has a higher MSE than the MLE in almost every case, but the difference is less
pronounced than in the simulations with the jittered model, when the ratio of the variance of the
periodogram estimates to the variance of the MLE was about 7. The variances of the maximum
likelihood and periodogram estimates are almostidentical, but the bias in the periodogram estimates
is much larger, falling well outside th&2 SE bounds in each case. This differs from jitiered
sampling simulations, in which the biases were negligible but the variance differed between the
maximum likelihood and periodogram estimates. In the jittered model simulations, the observation

times were random, while in the simulations of this section the sampling times were fixed. The
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Table 2.10: Bias, variance, and MSE of the maximum likelihood and periodogram estimates of
frequency, for true frequenay = 2.4r and 2 values ofa, b]. The noise variance is> = 0.04 and
the observation times are those of Figure 2.5.

Maximum Likelihood Periodogram

a,b n Bias/SE Var. MSE Bias/SE Var. MSE

1,0 25 -0.6800 5.53e-05 5.56e-05 -37.60 5.41e-05 8.17e-04
50 -0.0245 4.27e-06 4.27e-06 3.93 3.30e-06 3.82e-06
100 -1.0300 5.06e-07 5.12e-07 -8.65 5.75e-07 1.00e-06
200 -0.2040 7.71e-08 7.71e-08 3.92 7.22e-08 8.32e-08

0,1 25 0.6440 6.33e-05 6.36e-05 38.60 3.6le-05 5.75e-04
50 0.2290 3.71e-06 3.71e-06 -420 5.11e-06 6.01e-06
100 1.6800 7.30e-07  7.50e-07 741 6.07e-07 9.40e-07
200 0.7190 7.37e-08 7.41e-08 -2.26  7.71e-08 8.10e-08

variances of the frequency estimate under fixed and random sampling times are related by
Var[w,| = E[Var{wy|t1, . . ., t,]] + Var[E[wy,|t1, . . ., t,]],

in which w,, denotes an estimate of at sample sizex. Since the variances of the periodogram

and maximum likelihood estimates are virtually identical when conditioning on the sample times,
the increased variance of the periodogram estimate under the unconditional model is due to a
large value of VAE[w,|t1, . . ., t,]]. Thus the periodogram estimate has bias that depends on the
random sampling times, confirming our supposition in Section 2.3.1 that the periodogram estimate
is adversely affected by variability in the sampling times, while the MLE is not affected in this

fashion. O

Frequency a Multiple of .

Simulations were performed to see if the periodogram estimate appears to be inconsistent
for some frequencyw = km, as was the case for the jittered model, and to compare this with the
behavior of the MLE.

Example 3. Frequency Equal to 27, continued.
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Table 2.11: Mean squared error of frequency estimates from maximum likelihood and the peri-
odogram, for frequency = 2, [a, b] = [1, 0] and |0, 1], and observation times from Figure 2.5.
The MSE was calculated about the apparent limiting frequangythe figures in parentheses are

the number of outlying points not included in the MSE calculation. Note: In the first and third
columns of MSE values, the omitted values were clustered about Oraresgectively, while the
omitted values in the second and fourth columns were in the neighborhoad of 2

Model with [a, b] = [1, 0] Model with [a, b] = [0, 1]
MLE PG MLE PG
Observations Wy = 27 wy =0 Wy = 27 Wy = 4m
25 3.16e-4 (1) 0.00e+0 7.10e-5(3) 5.54 e—4 (25)
50 6.18e—6 0.00e+0 3.00e-6 4.95e-6
100 1.26e-6 0.00e+0 5.59e-7 4.84e—6
200 7.79e-8 0.00e+0 (1) 7.17e-8 NA (100)

Table 2.11 displays the mean squared error of the maximum likelihood estimates from
the model (2.2) withw = 27, [a, b] = [1,0] and |0, 1], and variancer? = 0.04, using the actual
observation times described above. For both valuds,df, the MLE appears to be converging
to the true frequency. The periodogram estimate does not appear to converge to the true value
in either case: fofa, b] = [1, 0] all but one of the estimates are identically zero (similar to what
was observed in Table 2.3), while for, b] = [0, 1] the estimates were mainly clustered about the
values Zr and 4r but did not seems to be converging to one of these in particular. a
Example 4. Frequency Equal tor, continued.

The results from the equivalent simulations with= 7 are presented in Table 2.12.

For both values ofa, b], the maximum likelihood estimate of frequency appeared to converge
to the actual value, with the MSE falling with rate approximatety?. For [a,b] = [1,0], the
periodogram estimate did not seem to be converging, with 71 out of 100 estimates clase to 5
for n = 100, but all 100 estimates close te 8r n = 200. Also, the MSE does not seem to be
decreasing witl. Forla, b] = [0, 1] the estimates seem to converge to the true value, if slawly.
Example 4. Frequency Equal tor, continued.

Simulations were run withw = 0 and[a, b] = [1, 0]. Both the maximum likelihood
and periodogram estimates converged to the true frequency. Thirteen of the maximum likelihood
estimates were clustered nearfdr n = 25. The MSE of the maximum likelihood estimates was
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Table 2.12: Mean squared error of frequency estimates from maximum likelihood and the pe-
riodogram for frequencyw = w, where the MSE was calculated about the apparent limiting
frequency. The observation times came from Figure 2.5, and the noise varianeé wag.04.

Note: In the first column of MSE values, the omitted values were in the neighborhoadwhile

the omitted values were in the vicinity af in the second column and close to zero in the third
column.

Model with [a, b] = [1, 0] Model with [a, b] = [0, 1]
MLE PG MLE PG
Observations Wy =T Wy = 3T Wy = T Wy =T
25 6.36e-5(28) 3.40e-3(55) 6.37e-5(1) 6.58e-4
50 2.48e—6(8) 4.67e-5(19) 3.17e-5 9.24e-6
100 4.64e-7 (5) 3.45e-5(71) 4,72 e—6 1.07e-5
200 4.74e-8 1.63e-5 1.97e-7 2.72e-6

7.36 e-4 forn = 25, 4.30 e-5 fon = 50, 7.75 e-6 fon = 100, and 1.76 e-6 for = 200 (omitting
the outlying values for, = 25), which is approximately— convergence. Approximately 70%
of the MLEs were identically zero at each sample size. The periodogram had perfect estimation,
with all estimates identically zero for all sample sizes, showing fast convergence as discussed in
Hannan [22]. O

The simulations using = 0, 7w, 2r demonstrate that the periodogram applied to actual
observation times can give estimates that do not converge to the true values, as was predicted by
studying the jittered model. So use of the jittered observation model for investigating theoretical
properties seems to be supported by simulations using actual collection times from astronomical
data. The MLE seemed to converge correctly for both frequencies, suggesting that the MLE should
be used instead of the periodogram for unequally spaced observation times, if the time sampling
had periodic effects and the curve of interest is a simple cosine with gaussian-like errors.

2.5 Estimation Using Semiparametric Models

The previous sections discussed the estimation of frequency when the response function
is sinusoidal. Regular periodic variation in time series can have a functional form quite different

from this, and the semiparametric model (2.1) is often more appropriate. In this section we first
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discuss complications that arise when the semiparametric model is used and introduce the concept
of variance bounds for semiparametric models. We consider the variance bound of the frequency
estimate for two sampling models in which the sampling times are independent. In Section 2.5.1
we derive the information bound for the frequency estimate under a model in which the range of
the sampling times grows with, and show that the bound is the same i known except for
its phase, and in Section 2.5.2 we propose a variance bound for the frequency under the jittered
sampling model.

The frequency is not identifiable under the semiparametric model unless there are addi-
tional conditions on the periodic functien If both s and

s*(u) = s(ku)

are in the function spacg, then the model with periodic functiari and frequency%w is identical

to the model with periodic functionand frequencyw. We call%w asubharmoniof w. In order

that the frequency be identifiable, we define the fundamental frequency to be the largest frequency
out of the group of frequencies that give identical models. A related complication is that of the
harmonics If the Fourier decomposition af{wt) has a large component at the frequehay then

the model with this frequency might explain the data almost as well as the model with frequency
Just as the pseudo-aliases + k& were a complicating factor under the simple harmonic model,
pseudo-aliases of the harmonics and subharmonics will play a role in the semiparametric model.

Information Bound in Parametric Models

Suppose that we have random variablgs;j = 1, .. ., n, and that the probability density
ofz;is f;(x;; 0), whered is a parameter vector from spa®e Suppose also that Fisher information
of the firstn observations is again denoted W¥(n, ) and that,2¥?(n, §) converges td (9) as
n — oo, wherer,, is a scaling factor. Then under regularity conditions, the variance bound for the
estimators is defined by the following: For all estimatérs= {7,,} of 6 for which r,,(7,, — 0)
converges uniformly to a normal distribution, the asymptotic variance satisfies

2(0,T) = lim Varlr,(T,, —6)] > 1710), (2.91)

where the inequality is in the sense of ordering of nonnegative-definite matricés) is the
information boundor estimation of, and an estimatadf is asymptotically efficierift and only if
equality holds in (2.91), but calculation of the information bound does not guarantee that efficient

or even uniformly normal estimators exist.
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Information Bound in Semiparametric Models

Suppose now that the parameters of the moddbarg], in which# is a parameter vector
as before and- is an infinite-dimensional parameter from sp&elet 7' be an estimator of
which converges uniformly to a normal distribution, agig be a finite-dimensional subspace of
G. Then ifI(0, G; G) is the limiting information off for this submodel under scaling,, under

regularity conditions the asymptotic variancergf7,, — 0) satisfies
3(0,G,T)>17Y0,G;G)

for parameters witl € G. Combining this over all such finite-dimensional subspaggswe
define the information bound férunder the semiparametric model by
I740,G) = sup{17%0,G; G)},
Gy
and under regularity conditions, estimat@rsf 6 that converge uniformly to a normal distribution
over [©, G] have asymptotic variance bounded by*(#, G). Just as for the parametric model,
existence of this bound does not guarantee existence of an efficient estimator or even of one that is

uniformly convergent with scaling,.

2.5.1 Sampling Without a Day-Effect

We use this model to study the behavior of the frequency estimate when the range of the
sample times grows like, and there are no periodicities in the sampling distribution. For given

the sample times are modeled as
tj = nuy, j:l,...,n, (292)

where theu; are 11D from a distribution on some closed intery@lb] with densityh(.) that does
not change withm. As the distribution of the sample times now dependswpnve introduce
the triangular array notation: For eaghdenote the sampling times by, t,2, . . ., t,, and the
probability density ot,,; by h,;(t), which under the model (2.92) is

g (1) = Lh(31). (2.93)

The responses and observational errors are similarly denoteg;bgnde,,;, and the response

model (2.1) for givem becomes

Ynj = s(wnuj) + €nj, 7=1...,n. (2.94)
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Note that this is equivalent to a model with IID sample timgs= u;, and with frequency that

grows proportionally ta.

Proposition 3 Consider the response model (2.94), and assume the following:

(1) The errorse,; are IID with densityy(e) independently oft,; }, and for some > 0,

/

(2) The probability density of1, h(u), is continuous fow € [a, b] with bounded derivative, and

2+p 62 2
g(e) de < 0, / lﬁgl/z(e)] de < 0. (2.95)
€

7 (e
(0

Var [uj] > 0.

(3) The regression curve comes frons, the set of periodic functions with period one that have
uniformly-bounded second derivatives, and that sayféty(u)zdu > m for somem > 0.

(4) The parametef = w comes fron® = (m, M), wherem > 0and M < co.
Then over the parameter spaie, S|,

(@) If s is known except for its phase, the information bound for estimatianisf

1 -1
I Yw,s) = {IVar[ul]/o s’(u)zdu} (2.96)

with scaling factorr,, = n%/2, where[ is the amount of information in the densife).

(b) If the regression functiom € S is unknown, the information bound for estimation.ofs the
same as ir(a).

Comments:

e Although calculation of the information bound does not prove existence of asymptotically
efficient estimates, the asymptotic variance of an efficient estimatori®fno larger if the
shape of is unknown than if it is known. This is surprising, as one expects to pay a penalty
for not knowing the shape of the function.

e If the periodic function and its phase are known, the information bound is

I_l(w) = {I E[u%] / s'(u)zdu}_l,
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which is usually smaller than the bound for the unknown case. This bound is not invariant
under shifts in the time axis, because knowing both the shape and the phase of the curve
means that the curve is known at time zero, which is like having an additional observation

with no noise at = 0.

If the noise is normally distributed, the information bound is inversely proportional to the
square of the signal-to-noise ratio, as one would expect: if the cuimas amplituded and
the noise variance is?, the information bound is proportional ¢ /A.

The information bound is inversely proportional to the variance of the sample times. For
example, ifus comes from a uniform distribution over the interf@lC], the scaled variance
of an efficient estimator ab is proportional to 1C?. Thus to minimize the variance of the

frequency estimate, observation times should be sampled over the widest possible range.

For a given signal-to-noise ratio, the asymptotic variance of an efficient frequency estimator
is smaller for regression curves with larger derivatives, through the vayjeb(fu)zdu. This
means that periodic functions with jagged or unusual shapes, instead of causing problems

with the estimation, should yield frequency estimates with smaller variance.

The variance bound for subharmonics of the true frequency is equivalent to that at the true
frequency. Suppose that the response function has frequendyh periodic curves(t).

This is indistinguishable from the model with frequencyk and curves(kt), wherek is a
positive integer, but the information bound for estimatioma$ the same in each case. The
frequenciesv/k are known asubharmonicsand|w, s| is not identifiable when botk(¢)

ands(kt) are in the function spacs.

Proof of Proposition 1.
(a). This situation can be modeled as

Ynj :s(wnuj+p)+€nj7 j:]-vvnv

with parameter vectoé = [w, p], wherep is the unknown phase; the probability density of
Tnj = [Ynj, uj] is
fnj (@3 0) = g(ynj — s(wnu; + p))h(u;). (2.97)

The Fisher information of the first observations is

ns' (wnu; + p)? n2ujs' (wnuj + p)?

* n?u5s' (wnuj 4 p)?

W2(n,0) =IE , (2.98)
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wherel is defined previously. The expectationsdfwnus + p)? under the sampling model (2.92)

is

b
E[s'(wnu1 4 p)?] = / s’ (wnu + p)2h(u)du
a+EtL

[nw(b—a)
nw /

— > / . s’ (wnu + p)2h(u)du
k=0 “oTne

|rao(b—a)] wr il
- > {h(a—l— n%)/ . sl(wnu—l-p)zdu—l-O((nw)_z)} :
a+——

k=0

nw

(2.99)
as boths’ and®’ are bounded|fz| stands for the largest integer less than or equaf tdenote
o & (u)2du by ||'||2. Then
, , 1 [nw(b—a)] k .
E / — / _— . —
[s" (wnug + p)°] 817~ > hla+—=)+0(n™)

k=0
= |IlIP+0o(n™),

and similar working for the other terms in (2.98) yields
Els' (wnua)?us] = Efug] ||s'|]> + O(n™1),

E[s' (wnua)*uf] = E[uf] [|s'||* + O(n ™).

In all three formulae, the order term is uniform forbounded above zero, and so the information

aboutf in the firstn observations is

n+0(1) n?Elug] + O(n)

Wi (n,0) = I||||?
* n3E[u?] + O(n?)

This matrix is invertible for Vawu,] > 0 and||s’||? # 0, with inverse

* n_?’

-1, _ =21
W‘Z(nﬁ)—{IHS’HZVar[ul]}‘l{n fa “1]

and inverse symmetric square root

9

[ =12 _Ln—s/z
]}—1/2 Ha \/E
*

1_ W2 32
A

W=L(n,0) = {I||s||?Var[us
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in which z1f = E[ua), p, = E[u3], and the inferior order terms have been omitted.

Having calculated the limiting inverse information, we need to confirm that it acts as a
variance bound for estimates éf Under conditiongl) — (4), this model is regular in the sense of
Ibragimov and Has’'minskii [24]. In order to verify the information bound, the remaining property
required is local asymptotic normality (LAN), defined in Ibragimov & Has'minskii, p. 120. LAN
is shown by Theorem I1.6.1 of Ibragimov & Has’'minskii, which requires the conditions:

(I) For somey > 0 andu € R?,

2+6
\ —0.

lim Enj E \ [21n fi(z;;0)]" Witu
1

(I For anyk > 0,

2

lim sup /‘wnlgjzfl/z zj,0+ W, tu) ;1‘ dx; = 0.
n—>oo| |<k

These are virtually the same as conditigB$ and (C) in the proof of Theorem 3, and can be

shown without difficulty in the same way. Thus LAN is satisfied, and estimatoos ¢ for

which NY/2(T;, — 6) converges uniformly to a normal distribution (whe¥e= diagn, n°]) have

asymptotic variance bounded by

n—oo

)
lim NY2@=2(n, ) N2 = {I Varua] ||s'|[} { Y } ’
* 1

which completes the proof ¢&).

(b). Bickel, Klassen, Ritov, and Wellner [6], pp. 108-110, derives the information for the periodic
regression model with IID sample times under normality. If we adapt their arguments to data in
a triangular array, and to noise with a general probability density, the information in the first

observations for the estimation 6= w is
W2(n, 0) = InE[s' (nwug)?(nut — E[nua|w])?, (2.100)

where Ht,,;|w] is defined by

& |

D he—oot nj + )hnj(t nj + )
2 koo nj( nj t 5) 7

Elt,;] = (2.101)
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which is the expectation df,; over all the values of that have the same phase with respect to
frequencyw. For the modet,,; = nu;,
N e oo (u1 + %)h(ul + %)
ZZOZ—OO h(ul + %)
= nE[ug) + O(w™?),

Elnuijw] =

and so asv is bounded above zero,
W2(n, 0) = In3E[s' (nwu1)?(uy — E[ui))?] + O(n?).

The expectation term is calculated as in ga)tand the scaled informatiorm3W?(n, §) converges
uniformly to

I Varfu] ||s'||?,

which is continuous inv ands and nonsingular. This completes the regularity conditions, and as
LAN follows by Proposition 11.1.2 of BKRW(b) is satisfied. O

2.5.2 Sampling from the Jittered Model

In this section we present a conjecture about the information bound for the frequency
under randomly jittered sampling.

Conjecture 1 Consider the semiparametric response model (2.1) under jittered time sampling,
and assume conditior{%), (3), and(4) of Proposition 1, as well as

(2*) The probability density aof1, h(9), is continuous ofi—A, AJ.
Then over the parameter spaie, S|,
(@) If s is known except for its phagethe information bound for estimation afis
Varin®/2w,] > 12{1|s|2} . (2.102)

2 is the average squared derivative of the

gl
w

Here, w,, is a regular estimator ofv and ||s

periodic function at the sample times, defined by

n
||s'[12 = lim E[ Z (wt; + p)?

(b) If the periodic functiors € S is unknown, the information bound for estimationuofs the
same as ir(a).
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Comments:

e Support for this conjecture comes from consideration of the case in whies ap-term

Fourier decomposition, wheis'||2, takes the values

5 s (u)2du, w irrational
. 2
515 =1 25k /s (% +tutp) h(wdu, w=4% 1€z kel .. 2,
o 8 (u)?du, otherwise
(2.103)

It can be proven that the frequency bound
1
Varn¥2uw,] > 12(T / S ()2 du} !
0
is valid for w bounded away fron{é, le Z,kel, ..., 2p}, but(2.102) cannot easily be
proven at the excluded frequencies because of the discéiesin ||s'||2. This situation is
discussed in Quinn and Thomson [34] for equally-spaced times.

For generak € S, ||5'||2 is possibly discontinuous at the rational frequencies, and bounding
w away from all the rationals is not possible. Nevertheless, most of the discontinuities in
||s'||2, will be small and (2.102) should be an approximate lower bound on the precision of

the frequency even if a rigorous proof is not possible.

If (2.102) is valid, how do we interpret the role (9'||2, for the rational frequencies?s'||2,

can be smaller or larger tha;f@1L s'(u)? du, depending on the sampling distribution and the
shape and phase ef Thus an estimator of frequency can be either more or less efficient at a
rational frequency than at the irrational ones. This is illustrated by the jittered cosine model

((2.2),(2.4)): Under normality of the observational noise, the variance bound is

2402 ¢ 2 p21—1 &
Var[n3/2w | > (zﬂ)z{a + b5}, w £ s
T 2L {024 07 + (0 aP)pn(2w) — 2abgr(2w)} T, w=k,

(2.104)

where 02 is the noise variance andr() and ¢;() are the real and imaginary parts of

the characteristic function af. This agrees with the asymptotic variancewfiven in
Theorem 3 forw # k/2, and with the inverse of the information matrix (2.88) foe= k/2.
If the sample times are almost equally-spacgel,2w) ~ 1 andg;(2w) ~ 0, giving

24052
(2m)?

I Yw;a,b) ~ {262} w =&,
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and so the frequency is estimable with smaller variance at these frequericies i, and

larger variance otherwise.

Combination of this conjecture and Proposition 3 suggests a variance bound for more general
models,
Var(w,] > n~H{IVarlt] ||s'|[2} (2.105)

in which Vart] is the variance of the observation times. For sampling times uniformly

distributed over the intervd0, n], the variance bound (2.105) becomes
12
Varfw,] = S {11]s'|2}

the same as for the jittered model in (2.102), and so the jittered model acts like uniform

sampling for largen.
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Chapter 3
Application

The objective of this chapter is to discuss practical methods for estimating frequency,
using the MACHO light curves as an illustration. Numerous estimation methods are motivated
and described in Section 3.1, and computational issues having to do with the optimization in
these methods are discussed in Section 3.2. In Section 3.3, we apply these estimation methods to
the examples of Chapter 1 and evaluate their performance. Section 3.4 presents the results of a
simulation study which compared the precision of the estimation methods in a humber of realistic
situations. The final section contains a brief discussion of some interesting topics that were not

able to be covered in this dissertation.

3.1 Estimation Methods

There are many different methods for estimating frequency under the semiparametric
model. These methods need to be evaluated with regard to our main objective: the fast and precise
estimation of the frequency which best describes the dependency in the data. As discussed in
Chapter 1, these methods must satisfy this objective even when part of the curve has not been
sampled, the curve is non-sinusoidal or even multimodal, or when the measurement noise is
substantial. In this section we motivate and describe several frequency estimation methods, which
will be evaluated in Sections 3.3 and 3.4.

We assume that the light curve of the periodic variable stars in the MACHO database
satisfy the general periodic model (2.1) in which the measurement errors are distributed indepen-
dently of each other and of the sampling times. Assume alsa flias mean zero and variance

sz», of which we have an estimaﬁé.
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Cosine Methods

Even when the appropriate model is the general periodic regression model (2.1), we can
try to estimate the frequency using the simple harmonic model (2.2). The Fourier decomposition
theorem states that any function that is periodic with frequanayan be decomposed into a
potentially infinite series of simple harmonic components at the frequeheies € Z. If the
largest Fourier component occurs at one of the harmonic frequencies, then cosine methods will
tend to locate this frequency instead of the fundamental frequency. Fullerton [21] notes that the
largest component in the Fourier decomposition of light curves of stars in Keplerian orbits usually
occurs at the fundamental frequency, with the notable exception of eclipsing binary stars. Thus
cosine methods should identify the correct frequency in the light curves for a majority of periodic
variable stars.

As discussed in Sections 2.2 and 2.3, the periodogram and least-squares are the usual
methods for estimating the frequency using the simple harmonic model. The behavior of the
periodogram in estimating frequency is discussed in Deeming [16], and this method is often
referred to as th®eeming Periodogrann the Astronomy literature. The advantages of the
periodogram are that it is quick to calculate and that the effect of the sampling times on the
estimation is completely described by the spectral window. Disadvantages of the periodogram are
that the variance of the frequency estimate is larger than when using least-squares, and that the
estimate can be inconsistent for certain frequencies while it appears that the least-squares estimate
is consistent at these frequencies (see Section 2.4).

Both of these factors suggest that least-squares estimation be used instead of the peri-
odogram. A version of the periodogram that is equivalent to least-squares was introduced by Lomb
[29] and Scargle [36] and is known in the Astronomy literature as the Lomb-Scargle periodogram.
Press and Rybicki [32] have developed an algorithm which rapidly calculates the Lomb-Scargle
periodogram at an equally-spaced collection of frequencies, through the use of fast Fourier trans-
forms. This method does not permit the use of weights and so is only appropriate when the data
have variances that are not overly heterogeneous. Calculated as either a minimization of RSS or
as a maximization of the Lomb-Scargle periodogram, the least-squares estimate can be calculated
more rapidly than most of the other methods that we will discuss. The poor fit of the cosine to the
periodic function can be expected to affect adversely the precision of the frequency estimate, and
so these methods may be inappropriate for multimodal curves such as those exhibited by eclipsing

binary stars.
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Fourier Decomposition

Instead of modeling the periodic function by the simple harmonic model, we can model

the shape of the curve more accurately by usipgerm Fourier decomposition

P
yj = ag+ Z{ak coq2rwt;) + by Sin(2rwt;) } + €. (3.1)
k=1

For a given frequency, one can estimaiay, ax, b, by weighted linear regression, yielding fitted
valuesyj,. Define the frequency estimate from this method to be the frequeney(0, Q] that
minimizes the RSS .

SS(0) =3 Sy — ) (3.2)

j=1"°j

This method is discussed in Quinn and Thomson [34], who derive the asymptotic properties of
the estimate for equally-spaced sample times. This method has the advantages of providing an
improved fit to the periodic function at a given frequency, which should improve the frequency
estimate, and that the basis functions in the regression equation (3.1) are naturally periodic, which
simplifies the computations. A possible difficulty with this method is that as the basis functions at
the higher harmonics are highly oscillatory, there may be spurious oscillations present in the fitted

light curvey; ,.

Cubic Splines

Another method for fitting brightness as a function of phase at a given frequency is
the use of periodic regression splines or smoothing splines. We specifically consider the case of
periodic cubic splines. A functios() on the interval0, 1] is a periodic cubic spline witknotsat
ty, k=1,...,pif it satisfies the following:

1. In each intervalt,_1,t;], £k = 1,...,p+ 1(to = 0,t,41 = 1), s is given by a cubic

polynomial.

2. The functions and its derivatives of first and second order are continuous everywhere in
[0, 1] and satisfy the periodicity constraints

sW0)=sV(1),1=0,1,2
Periodic smoothing splines are discussed in the context of spectral estimation in Cogburn and

Davis [14] and Wahba [46]. The use of cubic regression splines in the estimation of frequency is

discussed in Akerlof [1].
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We propose to use cubic regression splines to estimate the frequency as follows. For
each trial frequency, calculate the phasgs = wt; mod 1. Calculate fitted values fat by
modeling brightness as a cubic spline of phase, using the B-spline basis of De Boor [15] for good
numerical stability. Then define the frequency estimate to be the frequency that minimjze$ SS
overv € (0,Q]. Some care must be taken in the choice of knots. There should be enough knots
so that the function shape can be successfully approximated by the spline basis, but not so many
knots that overfitting becomes a problem. Akerlof [1] uses knots that are equalttgéplong the
phase interval. This can cause numerical difficulties, since the data may be unevenly scattered in
phase space and one or more of the B-spline basis functions may not be supported by the data.
We suggest placing the knots at the phase quantiles for equalbedprobaitities. This puts
the basis functions where there is the most information and ensures that the basis functions are
supported by the data. Because a small change of frequency can lead to a change in the relative
ordering of the phase values, and the knots are places dilg@sarithe phase values, a tiny change
in frequency can lead to a change in knot positions and a jump in the RSS. This is discussed further
in Section 3.2.

Cubic splines are better able to model small features in the periodic curve, due to the
restricted domain of the B-spline basis functions, but it is not certain that this will lead to a more
precise estimate of frequency.

Smoothers

Another method for fitting the brightness as a function of phase at a given frequency
is a smoother, such as a running mean or a running linear regression. McDonald [30] discusses
estimation of frequency by use of a smoother based on split linear fits. We will be considering fitting
y; usingsupersmoothera variable-span smoother based on running linear smooths described in
Friedman [20]. Supersmoother performs three running linear smooths of thépdaga) with
long, medium and short span length. It then does a local cross-validation to determine what span
length gives the best fit at each phase value. As the cross-validation is done on the absolute
residuals instead of the squared residuals, it makes more sense to define the frequency estimate by
the frequency that minimizes the sum of absolute residuals (SAR),

"1
SAR.(v) = > —~lyj = i,

=1

where they;,, are the fitted values from supersmoother at frequency
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The supersmoother method should produce a good fitted curve for a large variety of
curve shapes, since it is able to adjust the span length as required by the data and makes no explicit
assumptions about the shape of the curve. As it is a smoother, the fitted curve is defined only at the
observed phase values, which may be inconvenient. The SAR curve will not be continuous, since
a change in the ordering of the phase values (caused by a tiny change in frequency) will change
which points are in the local linear regression for a couple of phase values. The change in the SAR
will be small, however, as the fitted values only change at a couple of sample points.

Measures of Dispersion

All of the above methods are based on finding the frequency for which the fitted values
j,» best agree with the observed valggsThe final class of methods do not produce fitted values
for the brightnesses at a given frequency, but instead calculate a measure of dispersion of the data
in the phase space and seek to minimize this over frequency.

A simple example of this is th&tring-length methoddescribed in Dwortesky [18]. For
a given frequency, this involves producing the phase plot of the data and joining the points from
left to right with line segments. The frequency estimate is the frequency that minimizes the string
length

n

STR.(v) = Y AWi1 — ¥} + (p)41 — P22
=1

Here,y; andp; are the response and phase values sorted by phase and theyjaluasdp;, .
are the same ag andpj. There are a number of difficulties with this method. The string-length
depends on differences in phase as well as in response, and so a change of variable in either could
lead to a different frequency estimate. Additionally, use of the difference in phase causes biasing
in favor of periods for which the points on the phase interval are clustered together.

There are two alternative methods that seek to avoid the problems of the string-length
method. One of these is due to Lafler and Kinman [28] and estimates the frequency by minimizing

the quantity

in which s}fz is the estimated variance gf. This removes the two difficulties with the string-length
method, since it does not explicitly depend on the phase differences, but is still not completely
satisfactory as the difference between two points distant in phase is given the same weight as two
points close in phase. The other method is due to Renson [35] and estimates the frequency by
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minimizing the quantity

(i1 —v))?
Gt 52054 — p))2 + 07

REN, (1) = 3 G
j=1

in which b is a quantity chosen so that the differen{ga%l — p}f)2 + b2 should not be too small.
82

my
and A is the amplitude of the signal. This method gives higher weight to comparisons between

Renson recommends taking = wheres? is the standard error of the measurement noise
brightnesses when the corresponding phases are close.

All of these methods have relatively short computation times and require no assumptions
on the shape of the periodic curve, except that it be continuous. The measytesamkd REN, (v)
behave like the RSS for the model in which the fitted valueyfois y; . ,, which has as many
parameters as observations. Thus it is possible that these methods will not perform well when the

measurement noise is too large.

Stellingwerf PDM

Another method based on a measure of dispersion and used by astronoPleasés
Dispersion Minimization (PDM)introduced by Stellingwerf [43]. This is a modification of the
Whittaker periodogram (Whittaker and Robinson [49]) in which the phase interval is divided into
a number of bins, the mean response is calculated for each bin, and the frequency is chosen to
minimize the RSS of the one-way analysis of variance based on these bins. The Stellingwerf
method introduces additional bins, which are the original bins shifted in phase by a certain amount;
the set of shifted bins are calleccaver For example, the Stellingwerf method with two covers of
five bins yields the bin intervals [0,0.2], [0.2,0.4], [0.4,0.6], [0.6,0.8], [0.8,1], [0.1,0.3], [0.3,0.5],
[0.5,0.7], [0.7,0.9], and [0,0.0]J0.9,1]. The overlapping bins are introduced to reduce the edge
effects in the Whittaker periodogram. The PDM method should behave similarly to an estimation
method based on a fixed-span smoother, and makes more assumptions about the shape of the
function than the Lafler and Renson methods, through the choice of the number of bins and number

of covers.

3.2 Global Optimization

All of the estimation methods discussed in the previous section calculate the frequency

estimate by maximizing or minimizing a function of frequency over an interval on the real line. Let
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Figure 3.1: Weighted RSS of the cosine model plotted against frequency, for the blue band of star
77009:64163.

us call this function thebjective functionlIn this section, we describe some of the complications
that arise in this optimization and propose an optimization scheme.

Suppose that we want to minimize an objective functidifv) over the frequency
interval [a, b] (maximization is considered by minimizing the negative of the objective function).
The objective functions of the above frequency estimation methods have many local minima,
making global minimization difficult. As an example, consider the least-squares estimator of the
cosine model. Figure 3.1 shows the weighted RSS (3.2) for the data of Figure 1.7, plotted over
the frequency range [0,5]. There is a clear global minimum at the frequeney1.91, which
corresponds to the period 0.52715 shown in the phase plot in Figure 1.8. There are also a very
large number of local minima, the most deep of which correspond to the pseudo-alias frequencies
+w + k. More generally, there can also be deep local minima at the subharmonic frequencies
w/k, the harmonic frequenciesk, and the pseudo-aliases of these as well. Together with the
presence of observational noise, there is no guarantee that the deepest minimum corresponds to
the fundamental frequency, and so a number of the deepest local minima should be checked for
quality of fit.

Another complication is that for some frequency estimation methods, the objective



85

Supersmoother Spline
" S/ gl
gt S\
’
14
o0 8
\
S ,/
=y Sr
S o
0.69275 0.69285 0.69295 0.69305 0.69275 0.69285 0.69295 0.69305
Frequency Frequency
Lafler/Kinman - Modified Spline
= 3
- (=}
."l
1] "
Ell 2
¥ S| = ~
> ’
- - o e
~ ¢ ~
- -_J‘_M” -\_‘_.“. 8 L
§ L . \ .u‘m v.-" .\r-\_‘-'. . (=] . . . .
0.69275 0.69285 0.69295 0.69305 0.69275 0.69285 0.69295 0.69305
Frequency Frequency

Figure 3.2: Objective functions for the supersmoother, Lafler, spline, and modified spline methods
for a simulated data set on the frequency interval [0.69275,0.69305].

function may be discontinuous. The objective functions for the cosine and Fourier methods are
continuous, but those of the other methods of Section 3.1 are not. Figure 3.2 shows the objective
functions for four estimation methods calculated on simulated data, displayed over the frequency
interval [0.69275,0.69305]. In the upper-left of the figure is the SAR from the supersmoother
method; note the small discontinuities in the curve. The Lafler measure of dispersion is shown in
the lower-left of the figure; the discontinuities in the objective function are much more pronounced
than in the supersmoother method. How do these discontinuities come about? As the frequency
changes, the phase values also change according to the relatiant mod 1. For both of these
methods, the discontinuities occur at a frequency at which the ordering of two phase points changes.
The discontinuities in these objective functions can be seem more clearly in Figure 3.3. The upper
plot shows the SAR function from the supersmoother method plotted over the frequency interval
[0.69288,0.69292], and the lower plot shows the Lafler measure of dispersion over the same range.
The Supersmoother SAR function is piecewise continuous, whild.fkidunction is piecewise
constant.

A different kind of discontinuity is presented by the periodic spline method. The upper-

right plot of Figure 3.2 shows the RSS from the periodic spline method. A cubic spline with eight
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Figure 3.3: Objective functions for the supersmoother and Lafler methods for a simulated data set
on the frequency interval [0.69288,0.69292].

interior knots was used, with the knots placed at the tjlemof the phase vector. Note that there
are fewer discontinuities in the curve than for the supersmoother or Lafler methods, but that the
size of the jumps is larger. These jumps occur when a small change in frequency causes a phase
value to change from one end of the interval [0,1] to the other. Since the knots are placed at the
quantiles of phase, this makes the position of the interior knots change and alters the fitted values
at almost all of the points. To reduce this non-continuous behavior, we shall use a modified form
of knot placement: the interior knots are placed at a weighted average of the ordered phase values
near the quantile in such a way that the change in knot position is continuous in frequency. The
RSS from this modified spline method is shown in the lower-right of Figure 3.2. Although the RSS
curve is continuous, it is still not smooth, which may cause difficulties in the optimization.

There are many methods available for solving our optimization problem: finding the
global optimum over some interval on the real line. These are dividedigterministic methods
such as minimization over a grid of points, gmdbabilistic methodssuch as the gradient descent
method with a large number of random starting values. An overview of various deterministic and
probabilistic global optimization methods is given in Dixon and $zEy]. These methods are

not guaranteed to find the global minimum without some conditions on the objective function. If
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a Lipschitz condition is satisfied, i.e., an upper bound exists and is known for the derivative of the
objective function, then there exist optimization methods that can find all frequencies for which
the objective function is within an arbitrarily small tolerance of the global minimum (Shubert [37],
Mladineo [31]). A similar method can be used when there is a bound on the second derivative of
the objective function (Breiman and Cutler [9]). Unfortunately, we saw above that the objective
functions can be pointwise discontinuous, and so for our problem we cannot prove that the global
minimum is attained.

We decided to minimize the objective function using a grid method. Although there is
no bound on the derivative of the objective function, other information is available on how fine
a grid is required to yield acceptable results. It was noted in Section 2.1 that the central peak
in the spectral window has width of approximatel§y 2, whereT is the span of the sampling
times. Thus the grid spacing needs to be shorter than this in order to find the function minima.
A grid spacing of7’~! corresponds to the Fourier frequencies, a collection of frequencies that
contains all the information about a time series if it is sampled at equally-spaced times with times
1,2,...,T. There is a limit to the amount of precision that can be attained by making the grid
very fine. Consider a grid with spacirﬂg“—l, in whichr is theoversampling rateompared to the
Fourier frequencies. In changing from some frequency to its neighbor on the grid, the difference in
phase between two points will change less tI})athus for an oversampling rate of= 1000, the
fits at neighboring frequencies will be virtually identical, as the change in relative phase from one
method to the other is less thqégo. Nevertheless, the frequency grid should be sufficiently fine
not to affect adversely the potentially high precision in the frequency estimates that was discussed
in Chapter 2. If a minimum variance bound has been estimated for the problem, as in Section 2.5,
the grid spacing should be smaller than the anticipated standard error of frequency.

We propose a two-stage grid minimization scheme. The objective function is first
minimized over a grid of frequencie;?'?‘T—1 apart, withr; chosen so that the deepest local minima
can be identified. This gives initial estimates of the best local minima of the function. Further grid
minimizations are then performed in the vicinjty,, — §/2, v,,, + ¢ /2] of the M best local minima
vm, m = 1 ..., M from the initial grid, with spacing}zT—1 fine enough not to interfere with
the precision of the frequency estimate. This scheme has the advantage of using only the fine grid
spacing near the minima, reducing computation time without loss of precision. The quantities that

have to be chosen when using this scheme are:

a,b The range of frequencies of interest. For the variable star data, this is known from properties
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of the stars.

., 7, The oversampling rates of the initial and fine grids. We found from informal simulations
using the MACHO data that; > 6 was required in order to find the five best local minima
of the full function among the best 20 local minima on the grid frequencies. The walue

can be chosen by considering the potential precision of the frequency estimate.

M The number of local minima of the function sampled on the initial grid that are refined by the
placement of a finer grid. We typically used 20 local minima.

6 The width of the finer grid about the initial estimate of a local minimum. Since the troughs are
expected to have width of approximatelyy 2!, a value likeI'~1 is a good choice.

This optimization method has been found quite effective in extensive use onthe MACHO
data. Previous frequency estimation programs in Astronomy have used single-grid minimization,
but we recommend the use of a two-stage minimization to achieve high levels of precision in the

frequency estimate without much of a penalty in computation time.

3.3 Example Analyses

We applied the methods of Section 3.1 (except the PDM method) to the example data of
Chapter 1, in order to compare their performance. The methods that were used are:

C1 Cosine model estimated by least-squares.

C2,C4,C6 Fourier decomposition method with 2, 4, and 6 terms in the expansion. The 2-term
model (5 parameters) was chosen as the minimum model that should correctly identify an
eclipsing binary, and the 4-term (9 parameters) and 6-term (13 parameters) models were
chosen because they were of moderate and high complexity.

S5,59,S13Periodic cubic spline method with 5, 9 and 13 knots over the phase interval [0,1], using
the modified knot placement described in Section 3.2. The number of knots were chosen so
that the number of parameters was the same as in the Fourier decomposition models to allow

direct comparison of these methods.
LF,RN Lafler and Renson measure of dispersion methods.

SM Estimation using Supersmoother.
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Optimization of the objective function for each method was done using the two-stage
scheme of Section 3.2 witla, b] = [T~%, 5], 71 = 10,7, = 200, M = 20, ands = T~L. For a
typical data set with 300 observations taken over a 400-day period, this method requires calculation
of the objective function at 20,000 frequencies in the first stage and at 4000 frequencies in the
second stage. Running this as optimized code on a SPARC-10 workstation gave the following

computation times (CPU time in seconds):

Cl C2 C4 C6 S5 SS9 S13 LF RN SM

100 180 370 620 290 340 360 70 80 370

For each data set and estimation method, the deepest four local minima of the objective function

were inspected and the fundamental frequency identified among them.

Summary of Results

e Each ofthe estimation methods was able to provide an estimate of the fundamental frequency,
which was usually found at the global minimum of the objective function. The multiple
estimates of the fundamental frequency obtained from the various methods differed by only
0.1371, and most estimates fell in a range of length 03. As the estimates from
the Lafler and Renson methods were virtually identical we present only the Renson results,
giving nine estimation methods in all. Since these latter two methods differ only in how
they weigh points distant in phase, and these data sets were so large that large differences in

phase were rare, it was not surprising that the methods behaved similarly.

e The estimation methods behaved differently with regard to the best frequency estimates
that they chose. For strictly periodic and unimodal curves, the cosine method located the
fundamental frequency and its pseudo-aliases, the Fourier and spline methods located the
fundamental frequency and some subharmonics and aliases, and the nonparametric Renson
and supersmoother methods located only the fundamental frequency and its subharmonics.
For a strictly periodic but bimodal curve, the results were similar except that most methods
also located the first harmonie2 For a semiperiodic curve, the nonparametric models and
the high-parameter spline method also locéfed, which corresponds to the period that is

the span of the sampling times.
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Figure 3.4: Phase plots and fitted values of the red band of star 77021:1992 for the best four
frequency estimates using the cosine (C1) method.

Unimodal Periodic Curve

We performed analyses on the red band of the data displayed in Figures 1.1 and 1.2,
which is from a cepheid star with an approximately sinusoidal light curve. The fundamental period
is approximately 1.443 days and corresponds to frequengy0.693.

Figure 3.4 shows the phase plots of these data at the best four frequencies chosen by the
cosine (C1) method. The upper-left plot is that of the best estimate, the upper-right that of the
second-best estimate, and so on. The frequency estimate, corresponding period estimate, weighted
RSS, and weighted SAR are displayed along the top of each plot. For this method, the best
frequency chosen was the fundamental frequency with estimated.69293. The RSS dropped
rapidly at the other estimates, identified as the pseudo-aliases, 1l — w, and 2+ w.

Table 3.1 shows the corresponding results for all nine estimation methods, namely the
estimate of the fundamental frequengyaid the identification of the best four estimates chosen
by that method. By best, we mean the estimates corresponding to the deepest local minima of the
objective function. Since the spacing in the fine frequency grid is approximately 0.000012, the
frequency estimates are reported to 5 decimal places. The estimspas 0.04" 1 in frequency.

The more interesting part of the table is the identification of the best frequency estimates. The
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Table 3.1: Estimate of the fundamental frequency and identification of the best
four frequency estimates, for nine estimation methods applied to the red band
data of star 77021:1992.

Identification of Estimate

Method w 1st 2nd 3rd 4th
C1 .69293 w w+1 —w+1 w+2
Cc2 .69290 w w/2 w+1 w/2+1/2
c4 .69290 w w/2 w/4 w/3
C6 .69290 w/2 w w/3 w/5
S5 .69286 w w/?2 w/2+1/2 w+1
S9 69290 w w/2 w/3 w/4
S13 69290  w/2 w w/3 w/4
RN .69284 w w/2 w/3 w/4
SM .69288 w w/2 w/3 w/4

2-term Fourier decomposition model (C2) found the fundamental frequency and first subharmonic,
and then pseudo-aliases of these two frequencies. In comparison, the 4-term Fourier method (C4)
located only the fundamental frequency and its subharmonics, since it can model curves with up
to 4 maxima over the phase interval. The three spline methods behaved similarly to their Fourier
counterparts. Remember that we chose the number of knots to match the number of parameters in
the Fourier methods. The spline and Fourier methods with the same number of parameters usually
located the same frequencies in the same order. The two nonparametric methods, the Renson and
supersmoother methods, acted like the higher-parameter Fourier and spline methods in locating
the fundamental frequency and its subharmonics.

Similar analyses were done on data from Figures 1.4 and 1.8, which are both periodic
with unimodal curve shape. The results did not differ markedly from those above.

Bimodal Periodic Curve

It is more interesting to compare the estimation methods for a more complicated curve
shape: the eclipsing binary example of Figure 1.6. Table 3.2 shows the estimates of the fundamental
frequency and identification of the best four estimates for the nine estimation methods applied to

these data. The estimatesspan 0.07'~! in frequency, with an outlying estimate of .40454
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Table 3.2: Estimate of the fundamental frequency and identification of the best
four frequency estimates, for nine estimation methods applied to the blue band
data of star 77043:4317.

Identification of Estimate

Method w 1st 2nd 3rd 4th
C1 40463 2 2w+1 —2w+1 w
C2 40462 w 2w 2w+1 w+1/2
c4 40464 w w/2 2w 2w/3
C6 40465 w w/2 w/3 2w
S5 40454 w 2w 2w+1 w+1/2
S9 40465 w w/2 2w 2w/3
S13 40471 w w/2 2w w/3
RN 40467 w w/2 w/3 w/4
SM 40465 w w/2 w/3 2w

given by the 5-knot spline method (S5). The cosine method chose the first harmoag the
best estimate, followed by a couple of pseudo-aliases, with the fundamental frequency appearing
only as the fourth-best estimate. The phase plots and fitted values for this method are shown
in Figure 3.5. We see that as the cosine function does not provide a good fit to the data at the
fundamental frequency, it chooses frequencies that by visual inspection produce a much worse
description of the data. Thus the cosine model is a less useful tool for estimating frequency in data
of this type.

All of the other estimation methods correctly identified the fundamental frequency as the
best estimate, and chose the subharmonics and first harmonics for the other estimates. Figures 3.6
and 3.7 show the phase plots for the best four frequency estimates from the 4-term Fourier method
(C4) and the 9-knot spline method (S9), both of which contain nine parameters. Both methods
chose the fundamental frequency as the best estimate, and for the next-best estimates chose the
first subharmoniav/2, the first harmonic @, and the second subharmonic of the first harmonic
2w/3. The fit to the phased light curve at the fundamental frequency is reasonably good in both
cases. There is noticeable dkstion in the fitted curve which could be reduced by using a higher
number of parameters, but at the expense of additional computation time. Observing the phase
plots from these methods, we do not see that the spline method gives a better fit to the curve than
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Figure 3.7: Phase plots and fitted values of the blue band of star 77043:4317 for the best four
frequency estimates using the 9-knot spline method (S9).

the Fourier method with the same number of parameters as we had supposed. Nevertheless, the
spline method does have the advantage of smaller computation times, due to the band-diagonal
nature of the regression matrix. Figure 3.8 displays the phase plots of the best frequency estimates
using supersmoother. This method has computation times similar to those of the 4-term Fourier
and 9-knot spline methods, but the fitted curve is a much better description of the data at the
fundamental frequency, being less oscillatory and having a lower RSS. Supersmoother gives a
less satisfactory fit at the first harmonic, shown in the lower-right plot of the figure. The fitted
curve is similar to that from the Fourier and spline methods, but it not as smooth at the local level.
This is perhaps an unfair comparison, as no fitted curve can successfully describe the data at this
frequency.

The eclipsing binary example illustrates the practical benefits of using methods that are
able to successfully model curves of non-sinusoidal shapes. In section 3.4, we shall see that there
is also a penalty in precision for using the cosine methods to model data with a non-sinusoidal

curve.
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Figure 3.8: Phase plots and fitted values of the blue band of star 77043:4317 for the best four
frequency estimates using the supersmoother method (SM).

Semiperiodic Curve

The final example is that of a semiperiodic long-period variable star which was shown in
Figure 1.9. The methods that we are using are intended for use with strictly periodic functions, but
as semiparametric data occurs commonlyin practice, itis instructive to see how the methods behave
in this situation. Looking at the data, we see six maxima over the 400-day observation period,
suggesting an approximate period of 80 days. Estimates of this frequency and identification of the
best four frequency estimates for the nine methods are shown in Table 3.3. The estimates span
0.137'in frequency space, with an outlying estimate of 0.01258 from the Renson method. The
major difference between this example and the previous ones is that the frequency corresponding
to the span of the sampling times is located by the nonparametric methods and the high-parameter
spline method. Figure 3.9 shows the phase plots of the four best estimates using the supersmoother
method on these data. Note that the first frequency chosen corresponds to the entire data span, the
second is the first subharmonic, and only the third is the fundamental frequency. This could be
considered either a strength or a weakness of these methods. If the main objective is estimation
of the approximate periodicity, these methods are less suitable, as they prefer to fit a complicated

multimodal curve through long stretches of the data than to fit a simple but poorly-fitting curve
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Table 3.3: Estimate of the fundamental frequency and identification of the best
four frequency estimates, for nine estimation methods applied to the red band
data of star 78017:497. Note: There are three estimates that are unable to be
identified with a harmonic or pseudo-alias of the fundamental frequency. These
area = 1.0182,b = 0.9943, and:- = 1.0083.

Identification of Estimate

Method w 1st 2nd 3rd 4th
C1 .01285 w —w+1 a b
C2 .01282 w/2 w —w+1 —w/2+1/2
C4 01278  w/2 w/3 w/4 w
C6 01284  w/4 w/2 w c
S5 01290  w/2 w —w+1 —w/2+1/2
S9 01282 w/4 w/2 w c
S13 01289 711 w/2 w c
RN 01258 711 w w/2 b
SM 01289 11 w/2 w c
1: w=0.0025 p=400.12 rss= 1.414 sar=0.873 2:w=0.00639 p= 156.427 rss=4.088 sar= 1488
23 <3 N,
V. i
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3: w=0.01289 p=77.5803 rss= 8.443 sar=2.275 4: w=1.00834 p=0.991727 rss= 10.049 sar=2.572

Figure 3.9: Phase plots and fitted values of the red band of star 78017:497 for the best four
frequency estimates using the supersmoother method.
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through a short stretch of the data. The same reason makes these methods more suitable if the
objective is the most accurate but not necessarily periodic representation of the data. There are
also a number of frequency estimates that were not able to be identified as relatives of the 80-day
or 400-day periods, such as that of the fourth-best estimate in Figure 3.9. We suppose that these

are by-products of the semi-periodicity of the curve.

Conclusions

The choice of method for estimating frequency in practice depends on the particulars
of the estimation problem. The methods we used differ greatly in computation time, and that
alone may determine which methods are feasible. For curves that are periodic and unimodal over
the phase length, all of these methods worked well in estimating the frequency, but differed in
the fitted curve that was produced (or whether they produced a fitted curve at all). Some of the
higher-parameter models have the annoying property of occasionally choosing a subharmonic over
the fundamental frequency, since they can model the curve at these frequencies equally well. If
periodic function with multimodal curves over the phase length are expected, the cosine method
is less convenient, as are the Fourier and spline methods with too few parameters to approximate
the curve at the fundamental frequency. It is not clear which methods are most appropriate for
semiperiodic data; the choice of method depends on the objectives of the period search.

3.4 Simulation Study

In the previous section we saw how a number of estimation methods performed on some
example data with respect to location of the fundamental frequency and the quality of the fitted
curve. Itis also useful to know what kind of precision can be expected from these methods. We
present here results of a simulation study which examines the precision of these methods on some
typical datasets, and compares the variance of the frequency estimates with an estimated variance
bound.

Study Description

Three models were used in the simulation: a unimodal but non-sinusoidal curve, a
bimodal curve like that of an eclipsing binary star, and a curve with missing information due to

uneven sampling in phase space. These models were chosen to represent common data types
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Figure 3.10: Phase plots of two of the MACHO light curves with fitted curves from a periodic
smoothing spline. The upper plot is of the blue band of star 77017:379 at period 4.017 days, and
the lower plot is of the red band of the star 77048:2523 at period 2.917 days.

observed in the MACHO data. Two levels of noise variance were used with each of these models
to mimic typical high-noise and low-noise light curves in the MACHO data.

The curve shapes were obtained by fitting a smoothing spline to the phase plots of two
of the MACHO star data sets. Smoothing splines differ from regression splines by having knots
at each of the data points and by estimating the parameters through minimization of the sum of
the RSS and a term which penalizes roughness in the fitted curve; see de Boor [15], Ch. 14, for
more details. The raw data and fitted curves are displayed in Figure 3.10. The data in the upper
plot comes from the blue band of star 77017:379, a relatively bright cepheid variable star with
a fundamental period of approximately 4.017 days. The fitted curve was produced by fitting the
data with a smoothing spline that had knots at all of the data points and smoothing parameter
(Spar) of 6.7e-6. This was approximately equivalent to a 35-parameter fit, as the trace of the
regression projection matrix was 34.955. The data in the lower plot come from the red band of star
77048:2523, an eclipsing binary star with fundamental frequency of about 2.917 days. The fitted
curve is from a smoothing spline with smoothing parameter 1.4 e-5, approximately equivalent to
a 30-parameter fit. We decided to sacrifice quality of fit at the bottom of the troughs in order to
maintain a smooth-shaped curve at the plateaus. The fitted curves were shifted and scaled to have
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Figure 3.11: Phase plots of simulated light curves from model A at period 1.4432 days.

amplitude one, with maximum value of 0.5 and minimum value of -0.5. The same sampling times
were used for all the simulated data. They were a collection of 200 times spanning 243 days taken
from the red band of the data displayed in Figure 1.6.

The study used three combinations of curve shape and frequency, models A, B, and
C. Model A used the fitted values from the cepheid curve at period 1.4432 days, equivalent to
frequency 0.69290466. The frequency was chosen so that the observations covered the phase
interval approximately uniformly. Two levels of noise variance were used: a low-noise model in
which the errors were IID normal with SD=0.05, and a high-noise model with SD=0.20. Figure 3.11
shows typical simulated data from model A at the two noise levels. The upper plot is typical of
many of the cepheid light curves in the MACHO data and the lower plot looks like a typical RR
Lyrae light curve. Model B uses the fitted curve from the eclipsing binary data with period 1.4432
days. Typical simulated data from this model for the two levels of noise variance are shown in
Figure 3.12. Model C uses the fitted curve from the cepheid data with frequency 0.5. As this is
a 2-day period, data is only available over about half of the phase interval. This frequency was
chosen to see how the estimation methods behaved when there were large gaps in the phased data,
and to compare the precision attained in this model with that in model A, which has the same curve

shape but a different frequency. Typical simulated data from model C at the two levels of noise
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Figure 3.12: Phase plots of simulated light curves from model B at period 1.4432 days.

variance are shown in Figure 3.13.
Itis useful to know what order of precision is expected for these models. Combining the
ideas in Sections 2.5.1 and 2.5.2, we propose the variance bound

—102

Var[w] > W, (3.3)

inwhicho?is the variance of the observational noise [¥as the sample variance of the observation
times, and &'(wt)?] is the average squared-derivative of the curve at the observation times. The
sample variance of the 200 times in these models is 5775, and the average squared-derivative of
the curve at the observations is 8.5 for model A, 16.9 for model B, and 3.1 for model C. Thus the

estimated variance bounds for the three models and two noise levels are as follows:

Model A ModelB Model C

0c=005 25e-10 13e-10 7.0e-10
0=020 41e-10 20e-10 110e-10

This means that the smallest standard error we expect for the frequency estimate is approximately
le-5.
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Figure 3.13: Phase plots of simulated light curves from model C at period 2 days.

The estimation methods used in this study were the same as those of Section 3.3, with
the addition of the periodogram method (PG). One hundred simulated data sets were generated for
each of the combinations of model and noise level. The objective function of each method was
minimized over a grid of 4000 frequencies spanning the intémwal 0.257 1, w + 0.2571], in
whichw is the known frequency arll = 24312 is the span of the sample times. The grid spacing
was chosen to be about40 of 0.00001, the smallest anticipated standard error of the frequency

estimate.

Summary of Results

¢ Relative performance of the estimation methods depended strongly on the model and noise
level. The Fourier methods consistently performed the best, as measured by the mean
squared-error (MSE) of the frequency estimate. Next best were the supersmoother and
spline methods, and the least-precise methods were the cosine methods and the Lafler and

Renson measures of dispersion.

e The 4-term and 6-term Fourier methods had the highest precision, closely followed by the

2-term method. The MSE from these methods ranged from being approximately equal to
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the estimated variance bound to three times the variance bound.

e The next most successful method was supersmoother, although its performance was not
consistent over the models and noise levels. Supersmoother did well when the periodic
curve had a complicated shape or when the noise was small, but did poorly under high

observational noise.

e The spline methods performed slightly worse than supersmoother over the simulation models,
but were not as adversely affected by high noise. Each of the spline methods performed
worse than the Fourier method with the same number of parameters, although the spline
models were more competitive under model C. The results were not consistent for spline
models with different numbers of knots; it is possible that this erratic behavior is caused by
the non-smoothness in the RSS curve that was discussed in Section 3.2.

e The least-precise methods were the cosine methods (the periodogram and least-squares
versions) and the Lafler and Renson measures of dispersion. The cosine methods suffered
from high bias (especially the periodogram) and high variance, while the dispersion methods
had low bias but highvariance. The Lafler and Renson methods performed almostidentically,
but the Renson method was a little maecurate under model C.

Comments

e Itis surprising that the Fourier methods performed significantly better than the spline meth-
ods, considering that they had the same number of parameters and showed similar fits in the
examples of Section 3.3. It would be interesting to see if similar results are obtained when
using smoothing splines instead of regression splines.

e There is a definite advantage to using methods that fit the periodic function more closely
than the cosine methods.

e The Lafler and Renson measure of dispersion methods were not competitive, due to their
high variance. In a comparative study of a number of estimation methods commonly used
in astronomy, Heck, Manfroid, and Mersch [23] found that the Renson and Stellingwerf
methods performed slightly better than the others. This suggests that the more precise but
computationally intensive Fourier expansion method could be used to improve the quality
of period estimation in astronomical data. It should be noted, however, that our simulations
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used data sets considerably larger than those commonly used in variable star analysis, and

our conclusions might not generalize to the general case.

e As the estimated variance bound was a good guide to the best precision attained in Models
A and B, and was a lower bound for the precision in Model C, it can be useful in choosing a

global optimization strategy for the estimation.

Model A

Table 3.4 is a summary of the results of the frequency estimation using the model A
simulated data. It presents the bias of the frequency estimate divided by its estimated SE, the
variance of the frequency estimate, and the mean squared-error, for the eleven estimation methods
and the two levels of observational noise. Boxplots of the frequency estimates are displayed in
Figure 3.14.

For the lower level of noise variance, the methods with the lowest MSE were the three
Fourier methods, the spline method with 13 knots, and the supersmoother method. The most
precise of these was the 6-term Fourier method which had an MSE of 4.0e-10, 1.6 times the
estimated variance bound of 2.5 e-10. The methods with the highest MSE were the periodogram
and the 5-knot and 9-knot spline methods; this was caused by large bias rather than large variance.
[The 5-knot method had especially high bias compared to its low variance.] The Lafler and Renson
methods also had low bias, but as they had the largest variance of any of the methods, they were
not competitive. As the number of parameters increases within a given method, one would expect
the bias to decrease and perhaps the variance to increase. At first glance this is not verified for
the Fourier methods, but looking at the raw biases, 1.27 e-5, 1.4 e-5, 2.1 e-5, and 8.7 e-6 for the 1,
2, 4, and 6-term expansions, then there is some indication that the bias is decreasing as parameter
size increases. In the spline methods, the bias seems to be decreasing and the variance seems to be
increasing as the number of knots increases.

For the higher variance case, the methods with the lowest MSE were the Fourier methods,
followed by the spline methods. The lowest MSE, 5.6 e-9 for the 4-term Fourier method, was 1.4
times the estimated variance bound of 4.1 e-9. Thus for both levels of noise, the estimated variance
bounds seem to be a good estimate for the attainable precision under the model. The Lafler and
Renson methods had the highest MSE due to their very high variance, while the spline models had

the largest bias.
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Table 3.4: Standardized bias, variance, and MSE of the frequency estimates for eleven estimation
methods on the model A simulated data.

SD =0.05 SD=0.20
Method Bias/SE Variance MSE Bias/SE Variance MSE
%1010 %1010 %1010 %1010
PG -16.7 6.4 24.1 -3.9 94 107
C1l -8.7 9.4 16.4 -1.7 129 132
C2 6.9 4.4 6.4 0.8 59 59
C4 -12.1 2.9 7.2 -3.9 50 56
C6 -4.8 3.3 4.0 -2.3 69 72
S5 68.5 1.2 59.3 11.3 33 76
S9 -27.7 45 39.0 -8.2 51 85
S13 4.7 6.3 7.6 -2.5 85 89
LF -0.7 16.6 16.5 0.0 257 254
RN -0.7 16.6 16.5 0.0 256 254
SM -1.9 6.3 6.4 -1.2 141 142
SD=0.05
8 [] [}
S _ == T T
g Tt TEREeE
Q T4 E . -
= PG c1 c2 c4 Ce 3 ®  s3  LF RN oV
SD =0.20
g ~ 1T e T
$ e g B
S PG C1 C2 Ca C6 S5 39 S13 I RN M

Figure 3.14: Boxplots of the frequency estimates for eleven estimation methods on the model A
simulated data.
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Model B

Table 3.5 summarizes the simulation results using model B, and Figure 3.15 displays the
boxplots of the frequency estimates. Under the low-noise model, the methods with the lowest
MSE were the 4-term Fourier, 6-term Fourier, and supersmoother methods, followed by the Lafler
and Renson methods. The best Fourier method has an MSE of 1.1 e-10 which was a little smaller
than the estimated variance bound of 1.3 e-10. The cosine models fared poorly for this model,
probably because the cosine curve is such a poor approximation of the bimodal shape in the data.
The periodogram was especially bad, with MSE 1500 times as large as under the best method. The
spline methods also did not perform well, having high bias and high variance.

In the high-noise case, the Fourier, 13-knot spline, and supersmoother methods had the
lowest MSE, with the lowest value of 2.5 e-9 for the 6-term Fourier method being 1.25 times as large
as the estimated variance bound. Again the cosine methods performed badly: the periodogram
had MSE 100 times as large as the best method, mostly due to high variance.

Model C

Table 3.6 shows the results of the model C simulations, and boxplots of the frequency
estimates are displayed in Figure 3.16. For the low-noise case, the lowest-MSE methods were the
4-term and 6-term Fourier methods and the high-parameter spline methods. The 4-term Fourier
method had MSE of 1.2e-9, 1.7 times larger than the estimated variance bound. Although the
higher-parameter Fourier and spline methods performed well, the 2-term Fourier and 5-knot spline
methods had surprisingly large bias. The cosine, Lafler, and Renson methods all performed poorly
in comparison to the best method. Note the difference in MSE between the Lafler and Renson
methods. In models A and B these methods behaved identically, but in this model, the Renson
method performed better. This is unsurprising, as the Renson method was intended to perform
well when the phase values are unevenly distributed on [0,1], as is the case for this model.

Theresults for the high variance model are alittle confusing. The methods with the lowest
MSE were the periodogram, Fourier, and lower-parameter spline methods. None of the methods
came close to the estimated variance bound of 1.1 e-8, but whether the methods are inefficient or
the bound is inappropriate is unclear. For the low-noise and high-noise cases, the periodogram had
very low variance but high bias. This may be related to the fast rate of convergence derived for
thew = 0.5 case in Hannan [22]. Again the Renson method did better than the Lafler method, but
neither were competitive. Supersmoother performed the worst of all these methods, mostly due to
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Table 3.5: Standardized bias, variance, and MSE of the frequency estimates for eleven estimation
methods on the model B simulated data.

SD =0.05 SD=0.20
Method Bias/SE Variance MSE Bias/SE Variance MSE
%1010 %1010 %1010 %1010

PG 36.5 111.4 1597.0 8.8 1383 2433
C1 9.0 47.8 86.2 0.8 688 685
Cc2 11.1 2.2 4.8 5.0 45 55
C4 95 1.7 3.2 3.9 38 43
C6 -0.2 1.1 1.1 2.3 24 25
S5 4.6 15.4 18.6 8.4 87 146
S9 14.5 23.4 72.2 5.8 145 193
S13 12.4 10.0 25.3 2.7 56 59
LF -0.2 4.5 45 1.4 102 103
RN -0.1 45 4.5 1.4 102 103
SM -25 2.2 2.3 0.5 55 55

- SD =0.05

g mn .

£ I — g =]

a C2 C4 C6 S5 S13 LF RN SM
3 SD =0.20
© = = == [— T — e —_ ]
C.l C2 C4 C6 S5 S13 LF RN SM

Figure 3.15: Boxplots of the frequency estimates for eleven estimation methods on the model B

simulated data.
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Table 3.6: Standardized bias, variance, and MSE of the frequency estimates for eleven estimation
methods on the model C simulated data.

SD =0.05 SD=0.20
Method Bias/SE Variance MSE Bias/SE Variance MSE
%1010 %1010 %1010 %1010
PG -117.5 2.2 305.7 -25.4 49 364
C1 -31.2 15.6 167.2 -6.1 368 501
C2 -41.8 8.6 157.6 -11.2 151 338
C4 -3.6 11.1 12.4 -1.1 367 368
C6 -0.2 15.4 15.2 -0.9 468 467
S5 -54.4 7.5 229.6 -8.0 265 432
S9 3.1 17.8 19.3 -0.3 454 450
S13 1.4 225 22.7 0.3 641 635
LF 0.5 153.0 151.8 -0.2 1015 1005
RN -0.7 85.9 85.5 -04 848 841
SM 0.2 38.6 38.2 1.3 1004 1010
- SD =0.05
2
o
g T —— =
Sl s B2 B T & T
PG C1 c2 ca C6 S5 39 S13 IF RN SM
. SD =0.20
. T e e e
S SR S A ' : '
e e T e s W =
g PG C1l C2 C4 C6 S5 SO S13 L.F RN SM

Figure 3.16: Boxplots of the frequency estimates for eleven estimation methods on the model C
simulated data.
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high variance.

3.5 Further Topics

Three aspects of the frequency estimation problem that we did not pursue in this research
are estimation of multiple periodicities, evolution of the phase and amplitude over time, and tests
of significance of the estimated frequency.

Estimation of multiple periodicities was discussed in atangential fashion in Sections 2.2.4
and 2.3.3, but there are many other interesting issues. The estimation problem is much more
complicated when several frequencies are estimated together. This can be simplified by estimating
and subtracting the largest component first, then estimating and subtracting the remaining periodic
components in turn. This method gives inferior estimates of the frequencies, however, and better
results can be obtained by using a cyclic descent method ( Bloomfield [8], pp. 20-25, and
McDonald [30], p. 673). In Fourier analysis of unequally-spaced time series, deconvolution
methods can be used to improve the estimation of the secondary periodic components (Schwarz
[41]).

Many phenomena have semiperiodic behavior which is not well-representable by a
harmonic component at a given frequency, due to changes in the phase and amplitude over time.
The long period variable star of Figure 1.9 is a good example of this. Estimation of changing phase
and amplitude for equally-spaced data can be achievedimplex demodulatiofBloomfield [8],

Tukey [45]), while MacDonald [30] proposes an estimation method for unequally-spaced times.

A pure noise time series may show large peaks in the periodogram or deep troughs in the
RSS, and tests of significance are needed to check that an estimated frequency is not the spurious
product of the observational noise and the spacing in the sample times. Fisher [19] derived a
test of significance of the largest peak in the periodogram for equally-spaced data, and this work
has been extended by many authors (Shimshoni [42], Brockwell and Davis [13], pp. 324-332.).
There is little in the literature for unequally-aged times, however. For the MACHO data, it is not
relevant to test the hypothesis of a periodic component against that of a pure noise series, since the
variable stars have been screened from the pure noise series on the basis of RSS about their mean.
Thus all of the series contain a systematic component, though not necessarily a periodic one. It
would be more useful to quantify the degree of periodicity in the data, on a scale from periodic to
semiperiodic to nonperiodic, but how this could be done is uncertain.
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