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ABSTRACT

F E U U S A D

by

James Dennis Reimann

Doctor of Philosophy in Statistics

University of California at Berkeley

Professor John Rice, Chair

This thesis studies estimation of the frequency of a periodic function of time, when

the function is observed with noise at a collection of unequally-spaced times. This research

was motivated by the detection and classification of variable stars in astronomy. Most of the

statistical literature on frequency estimation assumes equally-spaced times, but observation times

in astronomy are often unequally-spaced with a sampling distribution that contains periodic effects

due to being able to collect data only at certain times of day.

In Chapter 1 we describe the database of variable stars collected by the MACHO collab-

oration and present examples which illustrate the common types of variable stars and the nature of

the estimation problem.

In Chapter 2 we provide background material and give models for the periodic function

and sampling times. We derive the asymptotic behavior of frequency estimates based on peri-

odogram and least-squares estimation methods for sinusoidal periodic curves and sample times

that are randomly distributed about equally-spaced values, and evaluate these estimators using

a simulation study. We also discuss bounds on the variance of frequency estimates for general

periodic functions under two sampling models.

In Chapter 3 we outline various methods for estimating frequency in practice, apply these

methods to some example data, and compare their precision through the use of a simulation study.
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Chapter 1

Introduction

In this thesis we consider estimation of the frequency of a periodic function of time,

when the function is observed with noise at a collection of unequally-spaced times.

This research grew out of work on a problem in astronomy: the detection and classifica-

tion of periodic variable stars.Variable starsare stars in which the intensity of the emitted energy

changes over time, and inperiodic variable starsthe change of intensity is periodic over time. In

this chapter we describe the substantial collection of light curve data that has been collected by one

astronomical star survey. We summarize the common types of variable stars and present examples

of some of these stars to illustrate the nature of the estimation problem.

In Chapter 2 we provide some background material on frequency estimation in time

series and give models for the periodic function shape and the distribution of the sampling times.

We derive the asymptotic behavior of two frequency estimators under the assumptions that the

periodic function is sinusoidal and that the sampling times are distributed about equally-spaced

values, and evaluate these estimators using a simulation study. Finally, we discuss frequency

estimation for general periodic functions, obtain variance bounds for frequency estimators for two

sampling models, and propose a variance bound for other sampling schemes.

In Chapter 3 we outline various methods for estimating frequency in practice and charac-

terize the optimization problem inherent in these methods. We apply these methods to light curves

of variable stars, and compare their precision through a simulation study. Finally, we note further

issues in frequency estimation that were unable to be developed in this work.
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The MACHO Project

The data upon which this research is based were collected at the Mount Stromlo Ob-

servatory near Canberra, Australia, by the MACHO collaboration, a group of scientists from the

Center for Particle Astrophysics of the University of California at Berkeley, Lawrence Livermore

National Laboratory, and Mount Stromlo and Siding Spring Observatories of the Australian Na-

tional University. The collaboration is probing the halo of our galaxy in order to detect dark

matter in the form of Massive Compact Halo Objects, commonly known as MACHOs. These are

astronomical bodies that emit negligible visible light, such as dwarf or neutron stars, large planets,

and black holes. Detection of a MACHO is achieved by observing its gravitational lensing effect

on a chance background star as the MACHO crosses near the line of sight between the observer

and this star. In order to detect a sufficiently large number of MACHOs, the collaboration needs to

collect observations on an large number of distant stars over an extended period of time. Data are

being collected daily over a 4-year period (weather permitting), on approximately 8 million stars

in the Large Magellanic Cloud (LMC) and the bulge of the Milky Way. Approximately 250-300

observations have been collected per star over a 400-day observing period, and by the end of the

project there should be more than 1200 observations per star. This database is a valuable resource

for many other types of astronomical research. It is the most comprehensive catalog of stars in

the LMC and contains stars much dimmer than those covered by previous surveys. The length

of data-taking is unusually long compared to most star surveys, which permits a comprehensive

study of star variability, including long periods and transient phenomena. Over 40,000 variable

stars have been detected in the LMC data. The author has been collaborating with the MACHO

group on methods for estimating the periodicity of the periodic variable stars in this group, which

will be used to prepare a catalog of the estimated periods and amplitudes.

Data Collection

Observations are taken from the 1.27m “Great Melbourne” telescope at the Mount

Stromlo Observatory. The incoming light stream is split by filters into two color bands, a blue

band from 4500–6300 Angstroms and a red band from 6300–7600 Angstroms. Two large charge-

coupled device (CCD) cameras are positioned at the focal points of the streams;each camera

contains a 2×2 array of 2048× 2048 pixel CCD imagers. Each digitized image thus contains over

16 million pieces of information in each color band. The photon counts at each pixel are adjusted

to compensate for differing efficiencies between pixels; this is known asflat-fielding.
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The digital images are reduced to a collection of star brightnesses by a photometry

program “SoDophot”. It was designed for photometry (calculation of light intensity) on crowded

sky images, which is the case with the images from the LMC and the galactic bulge. Incoming light

from a point source is blurred by the atmosphere; the shape of the distribution of scattered photons

is called thepoint-spread function (PSF). SoDophot first fits a 7-parameter nonlinear model to the

scattered light for a collection of bright stars that are isolated from their neighbors on the image.

The seven parameters are the background intensity, the additional intensity at the center of the

star image (thestar intensity), and five parameters for modeling the shape of the point-spread

function. The pooled estimates of the five PSF shape parameters from the bright stars are used in

the estimation of the background intensity and star intensity for the remaining stars. As each star

intensity is estimated in turn, the fitted point-spread function is subtracted from the data before

the next star is fitted; if two stars have overlapping images, a bimodal estimation is done on the

two together. The intensities ofeach star are converted to fluxes to compensate for the observing

conditions of the night; this is done by comparing the intensity of non-varying bright stars with

their previously estimated value.

Error in the flux measurements can come from multiple sources, which can generally be

described asadditiveor multiplicative. The size of additive errors does not depend on the flux,

while the size of multiplicative errors is proportional to the flux. Poisson-like behavior in the

photon counts contributes additional error which is inversely proportional to the square root of

the flux. An estimate of the standard error of each flux measurement (combining all components

of error) is produced by the photometry program. The standard error estimates come from the

curvature of the residual sum of squares (RSS) surface for the estimation of the background and

star intensities, with a lower bound specified on the errors to prevent unrealistically low values.

There is reason to believe that the error estimates are appropriate for the weaker stars and are

slightly too large for the stronger stars. Systematic bias is also present in the flux measurements.

As this bias varies between stars but not within multiple measurements on the same star, this is not

a problem when considering changes in flux of a given star over time. There is prior evidence that

the noise in the flux measurements is correlated with theseeing conditions, which is the state of the

atmosphere that determines the shape and spread of the point-spread function. When the seeing

conditions are bad, i.e., the incoming light is severely blurred by the atmosphere, it is difficult to

resolve nearby stars and the quality of the flux estimate deteriorates. As seeing conditions a few

hours apart are effectively unrelated, and repeat measurements in the MACHO data are spaced at

least a few hours apart, the noise in the flux measurements can be considered independent. It is
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observed that the measurement noise is also approximately normally distributed.

Variable Stars

In order to find the variable stars in the overall population of stars, the average flux

of each star is subtracted from the sequence of measurements and the weighted residual sum of

squares (WRSS) is calculated. Stars are considered variable if the WRSS falls above a given value,

which changes with star baseline flux to compensate for the bias in the standard error estimates.

Up to the present time, this has yielded over 40,000 variable stars.

The most common types of periodic variable stars that will be detectable in the MACHO

data are eclipsing binaries, RR Lyraes, Cepheids, and Long Period Variables.Eclipsing binaries

are binary stars (two stars orbitingeach other) for which brightness variability occurs because one

star passes in front of the other in turn; as the stars may be of different brightnesses, the drop in

light flux depends on which star is in the front. These stars have periods of between 3 hours and 24

years, although 0.5 to 10 days is the most common range. The brightness changes in the remaining

classes of periodic variables is caused by periodic pulsation (contraction and expansion) of the

stars and their outer layers.RR Lyrae starsare the second most common class of known periodic

variable stars; they have periods in the range 0.2 to 0.9 days. There are two common types, RRab

stars which have an asymmetric signal and RRc stars which have a symmetric signal.Cepheids

are rare, very bright stars with periods of 1-70 days. The light curve has an asymmetric shape, and

rises more rapidly than it falls. Cepheids with periods of about 1 week tend to have a bump in the

descending part of the curve. For periods of about 10 days, the bump is at the peak of the curve, and

for longer periods it is on the rising part of the curve. The most common class of known periodic

variable stars are theLong Period Variables(LPVs). These are red giant stars with periods in the

range 30-1000 days. The period can vary by about 10% with accompanying changes in average

flux and amplitude of the harmonic component, and so these are more accurately semiperiodic

stars. Other types of periodic variable stars are not expected to be detected in any great number by

the experiment.

Examples

We present five examples of common types of periodic variable stars which illustrate

typical periodic curve shapes. The first star is a cepheid variable of magnitude 16.1 in the red band
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and of magnitude 16.5 in the blue band. [Themagnitudescale is a logarithmic measure of flux,

m = −2.5 log(f/fs),

wheref is the measured flux andfs is a standardization constant; note that weaker stars havelarger

magnitudes.] Figure 1.1 shows the brightness plotted against time for the two bands. There are

323 observations in the red band and 203 observations in the blue band. The observation times are

measured in days since January 2, 1992, and span approximately 400 days. There are substantially

less observations in the early part of the time period when the experiment was not yet running

smoothly, and indeed near day 250 there was no data taken for 25 days. The vertical axis, A-1, is

the ratio of the measured flux to a average flux for that star, shifted to have mean zero. This quantity

is correctly called thenormalized flux, but for convenience we shall refer to it as “brightness” in

the remainder of this document. At each point, the small dot represents the brightness estimate

and the two bars lie at the±1 SE values.

Denote the brightness and observation time of thejth observation byyj and tj for

j = 1, . . . , n. If the brightness (without noise) has a strict periodic dependence on time with period

p, then the brightnessy should also be dependent on the circular variablet modp, and a plot of

yj versus1
p tj mod 1 should describe the nature of the dependence ofyj on tj at periodp. We call

this thephase plotat periodp. Figure 1.2 shows the phase plot of the same star at period 1.44324

days. The phase axis has been extended by 0.2 units at each end so that the shape of the plot near

phase values zero and one can be seen more easily. Dependence ofyj on tj can be seen clearly in

these plots; the shape of the curve is approximately sinusoidal and there are few outlying points.

The second example is also a cepheid star, but is brighter than the first: it is of magnitude

15.3 in the red and 15.8 in the blue. Figure 1.3 shows the brightness plotted against time. The

standard errors are lower than in the previous example, and the error bars increase in length as the

measured flux increases. There appears to be four horizontal “bands” in each scatter plot. There

are 303 observations in the red band and 254 observations in the blue band. Figure 1.4 shows the

phase plot for these data at period 3.9862 days. The shape of the dependence of brightness on time

is non-sinusoidal and there are four gaps in the data between phases 0 and 1. These gaps are due

to the frequency of the oscillation: as the period is very close to four days, parts of the signal cycle

occur only during the day, when astronomical observations cannot be taken. Thus any method used

to detect and estimate periodicity in data of this type must handle missing information on parts of

the curve.

The third example is an eclipsing binary star of magnitude 16.4 both in the red and blue
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Figure 1.1: Brightness (normalized flux) plotted against time, for the red and blue bands of star
77021:1992.
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Figure 1.2: Phase plot of star 77021:1992 at period 1.44324 days.
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Figure 1.3: Brightness plotted against time for the red and blue bands of star 77010:788.
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Figure 1.4: Phase plot of star 77010:788 at period 3.9862 days.
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bands. The plots of the brightness against time are shown in Figure 1.5; there are 300 observations

in the red band and 305 observations in the blue band. Note that there is a skew in the observed

brightness: there are many observations with brightness close to zero, and a smaller number with

negative brightness, but few with large positive values. This is typical of eclipsing binary stars,

and provides a method of identifying them without even estimating the periodicity. Figure 1.6

shows the phase plot for period 2.47133 days. The curve shape is typical of eclipsing binaries:

the brightness is at a constant level while the two stars are side by side, with less light emitted

when one of the stars is positioned behind the other. The differing depths of the troughs is caused

by one star being brighter then the other; when the bright star is in front, the trough is less deep.

This signal shape can be more difficult to detect than a unimodal cycle shape, and a general period

estimation approach should be able to accommodate eclipsing binaries.

The fourth example is an RR Lyrae star which is much dimmer then the previous

examples. It has magnitude 19.1 in the red band and 19.5 in the blue band, which is very close

to the limit of resolution of the experiment. The plots of brightness against times are shown in

Figure 1.7; the red band had 304 observations and the blue band had 310. The error bars are

much wider than in the other examples, with standard deviation of about 0.1, compared with about

0.015 for the second example and about 0.02 for the first and third examples. This means that

the amplitude of the oscillation must be very large to be seen above the noise. The phase plots

for these data at period 0.52715 days are shown in Figure 1.8. The periodic dependence appears

clearly in the blue band but less strongly in the red band. RR Lyrae stars typically have periods of

less than one day, and so methods for detecting them must be able to search for periods well under

the sampling rate, which for these data is about one observation every two days.

The final example is a relatively bright LPV star, of magnitude 15.0 in the red band

and 16.2 in the blue band. Plots of the brightness against time are shown in Figure 1.9; there are

322 observations in the red band and 277 observations in the blue. The brightness varies slowly

over time and seems not to be strictly periodic, with changes in amplitude and baseline over time.

Because there are only a few cycles present in these data, many more observations are needed to

describe the non-periodic behavior of stars like this one.

In these examples, we have seen that the shape of the oscillation is not necessarily

sinusoidal, and that the curve may even be bimodal over a single cycle. We saw also that when

the period is close to a multiple of days, there may not be information available on all parts of the

curve, and that for stars such as RR Lyraes, the noise in the data can be large in comparison with

the amplitude of the oscillation. Finally, there is a class of stars which are obviously variable, but
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Figure 1.5: Brightness plotted against time for the red and blue bands of star 77043:4317.
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Figure 1.6: Phase plot of star 77043:4317 at period 2.47133 days.
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Figure 1.7: Brightness plotted against time for the red and blue bands of star 77009:64163.
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Figure 1.8: Phase plot of star 77009:64163 at period 0.52715 days.
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Figure 1.9: Brightness plotted against time for the red and blue bands of star 78017:497.

that are not perfectly describable by periodic functions.
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Chapter 2

Theory of Frequency Estimation

2.1 Introduction

In this chapter we determine properties of frequency estimation methods, including

consistency of the frequency estimate, rate of convergence, and influence of the sampling times on

the estimation. In its most general form, the periodic regression problem can be expressed as

yj = s(wtj) + εj, j = 1, . . . , n, (2.1)

in which tj denotes thejth sampling time,w is the frequency,εj is the measurement noise in the

jth observation,s is a continuous periodic function of period one, andyj is thejth brightness

measurement. This model is discussed in Bickel, Klassen, Ritov & Wellner[6], p. 107, which

presented it as an example of a semiparametric regression model and investigated its asymptotic

behavior. McDonald [30] also discussed this model, as well as estimation ofw by the use of an

edge-preserving smoother. In a different context, that of estimation of motion in meteorological

data, Brillinger [12] estimated the frequency of a periodic function of space and time and compared

the performance of Fourier and nonparametric (spline-based) approaches. There is little else in the

literature for the general model (2.1), but much work has been done on thesimple harmonic model,

yj = a cos(wtj) + b sin(wtj) + εj , (2.2)

and the generalization to multiple frequencies,

yj =
p∑

k=1

{ak cos(wktj) + bk sin(wktj)} + εj . (2.3)

Note that the above model withwk = kw is contained within (2.1) as the set of functionss that

can be expressed as ap-term Fourier expansion.
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Figure 2.1: The curvey = cos(0.211 2πt), as a dotted line, displayed withy = cos(1.211 2πt) in
the upper plot andy = cos(0.789 2πt) in the lower plot.

Background

Extensive theoretical work has been done on the simple harmonic model with equally-

spaced sampling times,

tj = j, j = 1, . . . , n,

beginning with Whittle [50]. Hannan [22] and Walker [48] formalized and generalized Whittle’s

results. These works used the periodogram as an approximation to least squares, and found that

the estimate ofw is consistent for frequencies in the range[0, π], that the asymptotic variance of

the frequency estimate is of ordern−3, and that the asymptotic variances of the estimates ofa and

b are of ordern−1. These results extend to the model with multiple harmonic components (2.3).

Hannan [22] also showed that the rate of convergence of the frequency estimate is faster thann−3

for w = 0, π (see Section 2.2.4 for further discussion).

The frequency estimation is restricted to the range[0, π] for equally-spaced times because

of aliasing. One frequency is an alias of another if the signals at the two frequencies have identical

values at the sample times. This is illustrated in Figure 2.1. The dotted line ineach plot is the

curvey = cos(0.211 2πt), plotted overt ∈ [0, 20]. The solid line in the upper plot is the curve

y = cos(1.211 2πt), and the solid line in the lower plot is the curvey = cos(0.789 2πt). The
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value of the curves at integer times is marked with a diamond, and is identical for the two curves in

each plot. The frequenciesw = 1.211 andw = 0.789 are thus indistinguishable fromw = 0.211

at these times. Indeed, this is true for all frequencies of the formw = ±0.211+ k, k ∈ Z , as

cos((±w + k)2πt) = cos(w 2πt) for integersk. Aliasing is also discussed in Bloomfield [8].

A few writers discuss sampling models for (2.2) other than equally-spaced times. Ivanov

[26] studies continuously-sampled time, and showed consistency of the least squares estimate of

frequency forw ∈ (0, Ω), Ω < ∞, with the asymptotic variance being of ordern−3. Kutoyants

[27] also considers the continuous-time process, as well as frequency estimation in the intensity

function of a point process. Isokawa [25] and Brillinger [11] study the frequency estimate obtained

from the periodogram for sample times generated by a point process that is stationary and mixing.

These works find that the frequency estimate is consistent for 0< w < Ω < ∞, and has asymptotic

variance of ordern−3. Thrall [44] derives spectral estimates for a sampling model in which the

probability of an observation being taken on a given day depends on the day of the week.

None of the above models are appropriate for our data, in which the sampling times are

not equally-spaced, but there is periodicity in the sampling distribution (as observations can be

taken only at night) that violates the mixing assumption for the point process model. We need to

know how the sampling scheme affects the frequency estimation and how this differs from what

occurs in the above models.

Spectral Windows

Consider the Fourier transform of the periodic regression functions. If s(wt) is a simple

harmonic component at frequencyw, then the Fourier transform ofs(wt),

F (v) =
∫ ∞

−∞
s(wt)ei2πvt dt,

is zero everywhere but atv = w andv = −w. We only have information abouts at the sample

timestj , and the discrete Fourier transform,

Fn(v) = 1
n

n∑
j=1

s(wtj)ei2πvtj ,

is a natural measure of the periodicity of the observed function.Fn(v) is related toF (v) by a

convolution result,

Fn(v) = F (v) ∗ δn(v)

=
∫ ∞

−∞
F (v − u)δn(u) du,
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whereδn, thespectral windowof timestj , is defined by

δn(v) = 1
n

n∑
j=1

ei2πvtj .

If s(wt) is a simple harmonic component with Fourier transformF (w) = c, F (−w) = c∗ and

F (v) = 0 otherwise, then

Fn(v) = c δn(v − w) + c∗ δn(v + w).

If the spectral window is significantly different from zero at frequencies other thanv = 0, then the

discrete Fourier transform will be large at frequencies other than atv = ±w. A typical spectral

window has a well defined peak atv = 0 with approximate width of 2T−1, whereT is the span

of the sample times, and numerous smaller peaks coming from the spacing of the sample times.

Deconvolution methods can be used to approximately remove the effect of the time sampling from

the discrete Fourier transform if the correct frequency of the harmonic components is known. One

implementation of this is the CLEAN algorithm (Schwarz [41]).

Figure 2.2 shows the modulus of the spectral window of 300 equally-spaced sample

times. There is a sequence of peaks of height one at the frequenciesv = 1, 2, 3, . . . with

smaller side peaks around the main peaks. Thus the modulus of the discrete Fourier transform of

a simple harmonic component at these times will have peaks of equal height at the frequencies

±w + k, k ∈ Z . Furthermore, the modulus ofFn(v) would be the same ifs was a simple

harmonic component with the same amplitude as before but now with frequency at any of±w = k,

and we see as discussed above that the simple harmonic components with these frequencies are

indistinguishable on equally-spaced times. For continuous data and a stationary and mixing point

process, the spectral window tends to zero everywhere but atv = 0, so aliasing effects become

unimportant asn becomes large.

What does this mean for our observation times? The spectral window of the 300

observation times of the red band of star 77043:4317 are plotted over the frequency intervals

[0, 5.5] and[0, 0.15] in Figure 2.3. There are significant peaks at the frequenciesv = k, but the size

of the peaks decreases withk. There are numerous smaller peaks visible which are larger than the

small peaks in the spectral window of the equally-spaced times. We see from this that the Fourier

transform of a simple harmonic component would have large modulus at frequencies±w + k,

with height decreasing withk. This means that a harmonic component at some frequency±w + k

would not have an identical Fourier transform to the signal with frequencyw, but that it would have
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Figure 2.2: Modulus spectral window of 300 equally-spaced sample times, displayed over the
frequency intervals[0, 5.5] and[0, 0.15].
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Figure 2.3: Modulus spectral window of 300 sample times of the red band of star 77043:4317,
displayed over the frequency intervals[0, 5.5] and[0, 0.15].
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peaks in the modulus for many of the same frequencies. We call this effectpseudo-aliasing(after

Scargle [36]) since the signals at these frequencies will not be identical to the signal at the true

frequency, as in aliasing, but will still be similar to this signal. Similarly, the frequencies±w + k

for k 6= 0 are calledpseudo-aliases.

Jittered Sampling Times

We need a model that captures the essence of this behavior: that there is a periodicity in

the distribution of the sampling times but that they are not equally-spaced. Consider the sampling

model in which the observation times are randomly perturbed about uniformly-spaced values,

tj = j + δj , |δj| < ∆, j = 1, . . . , n, (2.4)

where the{δj} are independently and identically distributed (IID) with probability density function

h, have mean zero, and are distributed independently of{εj}. This observation model is called

randomly jittered samplingin Beutler [4], and is also discussed in the context of spectral estimation

in Akaike [2]. As presented, the jittered sampling process is not stationary; it can easily be made

stationary by making the time scale arbitrary (e.g., by adding the sameU [0, 1] random variable

to all the sample times). The resulting process is not mixing because the autocovariance function

CNN (u) is periodic for largeu (This is discussed in more detail in the Comments of Section 2.2.1).

This model mimics astronomical observations which are taken daily but at varying times. This is

only a first approximation to real life, in which there can be multiple observations taken per night,

as well as stretches of days when no data can be collected due to bad weather. Nevertheless, it

captures the most important feature of the sampling: that the observations come from continuous

time with a strong day effect in the sampling distribution.

The modulus of the spectral window for 300 times generated from the jittered sampling

model withδi ∼ U [−1
6,

1
6] is displayed in Figure 2.4 over the frequency ranges[0, 5.5]and[0, 0.15].

The modulus spectral window takes on the value|φ(4πv)| at the frequencyv = k, k ∈ Z , where

φ(.) is the characteristic function ofh, and tends to zero otherwise asn gets large. The heights of

the side peaks are small when densityh has a large variance, are large whenh has a small variance,

and are of height one when theδj are identically zero (the equally-spaced case). Note that over

the range[0, 0.15], the spectral window looks more like that of Figure 2.2 than that of Figure 2.3.

This is because at the short frequencies (long periods), thejittered sampling is effectively equally-

spaced, with one observation per day, while the actual sampling times have varying numbers of



18

Frequency

M
od

 S
pe

ct
ra

l W
in

do
w

0 1 2 3 4 5

0.
0

0.
5

1.
0

Frequency

M
od

 S
pe

ct
ra

l W
in

do
w

0.0 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.
0

0.
5

1.
0

Figure 2.4: Modulus spectral window of 300 times generated from the jittered sampling model
with δi ∼ U [−1

6, 1
6], shown over the frequency ranges[0, 5.5] and[0, 0.15].

observations per day. Limitations of the jittered sampling model are discussed further in Section

2.4.2.

Much of the theory that we present is based on the simple harmonic model (2.2) with

parameter vectorθ = (a, b, w) satisfying

a2 + b2 ∈ (0,∞), w ∈ [0,∞), (2.5)

and in which the measurement noiseεj are IID with mean zero and varianceσ2. We call this

response model thejittered cosine modelwhen the sampling times are distributed as in (2.4).

Overview of the Chapter

The properties of frequency estimation under the simple harmonic model are investigated

in Sections 2.2–2.4. Frequency estimation based on the periodogram is discussed in Section 2.2,

and the maximum likelihood estimator is discussed in Section 2.3. Conditions are given for

consistency of the estimators and the asymptotic distributions of the estimates are calculated. Both

estimators are found to be consistent for frequencies in the space

w ∈ (0, Ω], w 6= kπ, k ∈ Z ,
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but the maximum likelihood method is asymptotically efficient while the periodogram estimator is

inefficient. We also discuss extensions to the simple harmonic model: the addition of a constant

term and consideration of several harmonic components.

Section 2.4 presents the results of simulations which evaluate the behavior of the peri-

odogram and maximum likelihood estimates at and near the frequenciesw = kπ, and compares

the observed finite-sample distribution of the frequency estimates with the asymptotic distributions

for frequencies not close tow = kπ. Two types of sampling times were used in the simulations:

simulated times from the jittered model (2.4), and actual times from one of the MACHO light

curves. The simulations found that the maximum likelihood estimator appeared to be consistent at

w = kπ while the periodogram estimator was sometimes inconsistent, and that the finite sample

distributions agreed closely with those predicted by asymptotic theory.

In Section 2.5 we discuss issues that arise in estimation using the semiparametric model

(2.1), derive variance bounds for frequency estimators for a couple of sampling models,and propose

an estimate of the best attainable precision of the frequency estimate under more general sampling

schemes.

2.2 Estimating Frequency Using the Periodogram

In this section we derive the asymptotic properties of a frequency estimate based on the

periodogram, defined by

In(w) =
2
n

∣∣∣∣∣∣
n∑

j=1

yj eiwtj

∣∣∣∣∣∣
2

. (2.6)

This is a natural extension to the definition of the periodogram for equally-spaced times, which

is the modulus-squared of the finite Fourier transform of the time series. Assume the simple

harmonic model (2.2) and that the errorsεj are IID with mean zero and varianceσ2. Define the

periodogramestimate of frequencyŵn on some interval[0, Ω] to be the frequency which maximizes

the periodogram on that interval,

In(ŵn) = sup
v∈[0,Ω]

{In(v)}. (2.7)

Further define estimators ofa, b andσ2

ân =
2
n

n∑
j=1

yj cos(ŵntj)
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b̂n =
2
n

n∑
j=1

yj sin(ŵntj)

σ̂2
n =

1
n




n∑
j=1

y2
j − In(ŵn)


 (2.8)

The periodogram was introduced by Schuster [38], who applied it to the analysis of various data

sets [39, 40].

The periodogram estimate is asymptoticallyequivalent to the least squares estimate under

certain conditions. If the errors are normally distributed and the distribution of the sample times

does not depend on the parameters, then the log-likelihood of the observationsy1, . . . , yn is equal

to

Ln(a, b, w, σ2) = −1
2
n log(2πσ2) − 1

2σ2SSn(a, b, w),

plus a constant term. Here, SSn() is the residual sum of squares (RSS)

SSn(a, b, w) =
n∑

j=1

{yj − a cos(wtj) − b sin(wtj)}2.

Thus the maximum likelihood estimate of[w, a, b] is obtained by minimizing the RSS, and we call

this theleast squares estimate. In comparison, the periodogram estimate is the estimate obtained

by minimizing Un, a modified form of the RSS

Un(a, b, w) =
n∑

j=1

y2
j − 2

n∑
j=1

yj{a cos(wtj) + b sin(wtj)} +
1
2
n(a2 + b2).

The difference between the RSS and Un is

Un(a, b, w)− SSn(a, b, w) =
1
2

n∑
j=1

{(a2 − b2) cos(2wtj) + 2ab sin(2wtj)}. (2.9)

This is uniformly O(1) forw bounded away from 0, π when the sampling times are equally-spaced,

and so the periodogram and least squares estimates are equivalent for this model. Ibragimov and

Has’minskii [24] found that the least squares estimate was asymptotically efficient forw 6= 0, π.

As the asymptotic variance they obtained was the same as that derived by Hannan [22] and Walker

[48] for the periodogram, the periodogram estimate is also efficient for equally-spaced times. For

sampling times distributed according to thejittered model (2.4), the difference (2.9) isOp(n1/2)

for w 6= kπ, and we will see in Sections 2.2 and 2.3 that the periodogram estimate has larger

asymptotic variance than the least squares estimate.
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In Section 2.2.1 we present consistency and asymptotic normality results for the peri-

odogram estimates under the jittered model; the proofs of these are given in Sections 2.2.2 and

2.2.3. We find that the periodogram estimate is consistent forw 6= kπ, and has asymptotic vari-

ance larger than that for equally-spaced times and which depends on thejittering distribution.

In Section 2.2.4 we discuss the casew = kπ, and extend the results of Section 2.2.1 to models

incorporating a constant term or multiple periodic components.

2.2.1 Asymptotic Results

Theorem 1 Consider the jittered cosine model (2.4), withθ ∈ Θ

Θ = {(a, b, w) : a2+ b2 ∈ (0,∞); w ∈ [0, Ω]; w 6= kπ, k ∈ Z}.

Also assume:

(1)

E |ε1|5 < ∞. (2.10)

(2) Denoting the characteristic function ofδ1 byφ(.),

∀η > 0, sup
|t|>η

|φ(t)| < 1. (2.11)

Then the estimators defined in (2.7) and (2.8) satisfy

p lim
n→∞nŵn = nw,

p lim
n→∞(ân, b̂n, σ̂2) = (a, b, σ2). (2.12)

Here,p limn→∞ denotes convergence in probability: we writep limn→∞ yn = an if, for all δ > 0,

lim
n→∞ Pr[|yn − an| > δ] = 0.

Comments

• Almost sure results of this type have been shown for equally-spaced observation times

(Hannan [22]), and should also be obtainable for the jittered model.

• Condition (1) is used in Lemma 1(a) to study the stochastic order of

sup
v∈[0,Ω]

|
n∑

j=1

εje
ivtj |2.
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We obtained the orderop(n2), but feel this could be improved. For equally-spaced sample

times, assumingσ2 < ∞ gives the orderOp(n3/2) (Walker [48]), and assuming E|ε1|r < ∞
for somer > 4 gives the orderOp(n logn) (Whittle [51]).

• Condition (2) is known asCramér’s condition, and ensures that the limiting value of the

periodogram at the true frequencyw is larger than the periodogram at the pseudo-alias

frequencies{±w + k2π, k ∈ Z}. Any probability measure having a nontrivial, absolutely

continuous component satisfies this condition (Bhattacharya & Rao [5],p.207).

Theorem 2 Under the conditions of Theorem 1,[n1/2(ân − a), n1/2(b̂n − b), n3/2(ŵn − w)]

converges in distribution to a multivariate normal distribution with zero mean and variance matrix

Σ given by

(a) For w 6= kπ
2 , k ∈ Z+,

Σ =
{

2σ2 +
1
2
(a2 + b2)

(
1− |φ(2w)|2

)}
Γ−1, (2.13)

(b) For w = kπ
2 , k = 1, 3, 5, . . .,

Σ = 2σ2Γ−1 + Γ−1C


 1

2ϒ 1
4ϒ

1
4ϒ 1

6ϒ


CT Γ−1. (2.14)

Here, the matricesΓ, C, andϒ are defined by

Γ =




1 0 b
2

0 1 −a
2

b
2 −a

2
a2+b2

3


 , C =




−a −b 0 0

b −a 0 0

0 0 −2ab a2 − b2


 ,

ϒ =


 1 + Reφ(4w) − 2Re2φ(2w) Imφ(4w)− Reφ(2w)Imφ(2w)

Imφ(4w) − Reφ(2w)Imφ(2w) 1− Reφ(4w)− 2Im2φ(2w)


 . (2.15)

Comments

Substituting the explicit value ofΓ−1 in (2.13) for case(a), the asymptotic variance of

the scaled frequency estimaten3/2ŵn is

24σ2

a2 + b2 + 6{1− |φ(2w)|2}, (2.16)
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and so the asymptotic standard error of ˆwn is of ordern−3/2. In addition to the usualn−1/2 rate

(due to averaging out of the observational noise), the additional ordern in the precision is due to

the lengthening of the series. For example, a signal of frequencyπ
2 goes through 2.5 cycles over a

ten-day period, and 25 cycles over 100 days. If one tries to fit a signal of frequencyπ
2 + δ to this,

it would be out of phase by 2.5δ at 10 days, and by 25δ at 100 days. Thus estimates based on the

longer estimation period should be 10 times more precise.

The comparable asymptotic variance matrix for the scaled periodogram estimate of

frequency for equally-spaced times (derived by Walker [48] and Hannan [22]) is

24σ2

a2 + b2 , (2.17)

and so the asymptotic variance for jittered sampling contains an additional term, 6{1− |φ(2w)|2},

which depends on the sampling distribution through the quantityφ(2w). [If we let |φ(2w)| ↑ 1,

the sampling distribution approaches that of equally-spaced times and the two variances (2.16) and

(2.17) agree.]

Case(b) is a little more difficult to interpret. The contribution to the variance from the

observation times comes through the variance of the sums
∑n

j=1 ei2wtj and
∑

j=1 tje
i2wtj . For

w 6= kπ/2, the variances of the real and imaginary parts of these are equal, but ifw = kπ/2, the

symmetry in the formulae is disturbed, leading to the complicated form in (2.14).

Another model in which the observation times are random is a point process that is

stationary and mixing (Isokawa [25] and Brillinger [11]). Denote the point process byN (dt), the

sampling rate byβ = E[(0, 1]], and the spectral densities ofε(t) andN (dt) by fεε(λ) andfNN(λ)

respectively. Then the asymptotic variance of the scaled periodogram estimates is given by

Σ = {4πfεε(w) + 4πβ−2(fεε ∗ fNN )(w) + π(a2 + b2)β−2fNN(2w)}Γ−1

+ 2πβ−2fNN (0)




0 0 0

0 a2 ab

0 ab b2


 . (2.18)

In the jittered cosine model,ε(t) is a white noise process with varianceσ2 which givesfεε(v) = σ2

2π .

If the time scale of the sampling is made arbitrary (for example, by adding the same U[0,1] variable

to all the times), then the jittered sampling is stationary with sampling rateβ = 1. The remaining

unknown term in (2.18) is the spectral density of the jittered sampling process,fNN(λ). The



24

autocovariance function of the jittered process,CNN(u), is equal to one atu = 0, and otherwise

CNN(u) =
∞∑

j=−∞

∫
h(t)h(t + u − j) dt−

∫
h(t)h(t + u) dt− 1

= p(u)−
∫

h(t)h(t + u) dt,

wherep(u) is a periodic function with period one and integral zero over(−∞,∞). Integrating
1

2πCNN (u) againste−iλu, we find that the spectral density of the jitter process is

fNN(λ) =
1

2π
{1− |φ(λ)|2} +

1
2π

∑
k 6=0

δ(λ − 2πk)
∞∑

j=−∞
|φ(2πk)|2,

whereδ() is the Dirac delta function, and sofNN (2πk) is infinite when|φ(2πk)| > 0.

Substitutingfεε, fNN , andβ into (2.18), the asymptotic variance of the scaled estimates

for w 6= kπ is

Σ =
{

2σ2 +
1
2
(a2 + b2)(1− |φ(2w)|2) + 2σ2

∫
fNN(λ) dλ

}
Γ−1.

Although the third term in this equation is infinite, the first two terms match the asymptoticvariance

in Theorem 2.

2.2.2 Consistency

This section contains the derivation of Theorem 1, which is modeled on Walker [48], pp.

25-27, the equivalent result for equally-spaced sample times.

We first need to show

n(ŵn − w) = op(1). (2.19)

From the definition of the periodogram (2.6), and (2.2),

In(v) =
2
n

∣∣∣∣∣∣
n∑

j=1

eivtj{a cos(wtj) + b sin(wtj) + εj}
∣∣∣∣∣∣
2

. (2.20)

Rewriting

a cos(wtj) + b sin(wtj) = ceiwtj + c∗e−iwtj ,

wherec = 1
2(a − ib) andc∗ is the complex conjugate ofc, and defining

An(v) =
n∑

j=1

εj eivtj , Bn(v) =
n∑

j=1

eivtj , (2.21)
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we can expand (2.20) as

In(v) =
2
n

{
|An(v)|2 + 2 Re

[
An(−v) {cBn(v + w) + c∗Bn(v − w)}]

+ |cBn(v + w) + c∗Bn(v − w)|2
}

. (2.22)

We will look at the limiting behavior ofIn(w) asn → ∞, and compare it with that of

K(n, λ)
def
= sup

|v−w|≥n−1λ

{In(v)}

whereλ can be arbitrarily small. Consider the expansion (2.22) atv = w. As E|An(v)|2 = n σ2,

then

|An(v)|2 = Op(n). (2.23)

This result and|Bn(v)| ≤ n gives

2 Re
[
An(−v) {cBn(v + w) + c∗Bn(v − w)}] = Op(n3/2). (2.24)

Regarding the third term in (2.22), note that

Var[ReBn(w)] = O(n), Var[ImBn(w)] = O(n),

and soBn(2w) = Op(n1/2). This withBn(0) = n gives

|cBn(2w) + c∗Bn(0)|2 =
n2

4
(a2 + b2) + Op(n3/2). (2.25)

Substituting (2.23),(2.24), and (2.25) into (2.22), the limiting value of the periodogram atv = w is

In(w) =
n

2
(a2 + b2) + Op(n1/2). (2.26)

Now we consider the behavior ofK(n, λ) asn → ∞:

Lemma 1 Consider the jittered cosine model of Section 2.1.

(a) Under assumption (2.10)

sup
v∈[0,Ω]

|An(v)|2 = op(n2). (2.27)

(b) Under assumption (2.11)

p lim
n→∞ sup

|v−w|≥n−1λ

|cBn(v + w) + c∗Bn(v − w)|2 <
n2

4
(a2 + b2) (2.28)
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Using Lemma 1 and (2.22), we see that

p lim
n→∞n−1K(n, λ) <

1
2
(a2 + b2).

So with (2.26) we obtain

lim
n→∞P [K(n, λ) < In(w)] = 1

which, asλ can be arbitrarily small, is equivalent to (2.19).

The consistency of(ân, b̂n, σ̂2
n) is shown, with only minor changes, in Walker [48], p.27.

This completes the proof of Theorem 1.

Proof of Lemma 1.

(a) We need to show that for any constants > 0,

lim
n→∞ P

[
sup

v∈[0,Ω]

|An(v)|2 > s n2

]
= 0.

First we divide[0, Ω] into rn subintervals

Rl =
[
l − 1
rn

Ω,
l

rn
Ω
]
, l = 1, . . . , rn,

and letvl = (l − 1
2)Ω/rn, the center point ofRl. Then

P

[
sup

v∈[0,Ω]
|An(v)|2 > s n2

]
≤ rnP

[
sup
v∈Rl

|An(v)|2 > s n2

]
. (2.29)

Consider the derivative

d

dv
|An(v)|2 =

d

dv

n∑
j,k=1

εjεk eiv(tj−tk)

=
n∑

j,k=1

εjεk eiv(tj−tk) i(tj − tk).

Thus the absolute value of the derivative satisfies

∣∣∣∣ d

dv
|An(v)|2

∣∣∣∣ ≤ (n + 2∆)




n∑
j=1

|εj|



2
def= Dn,

noting thatDn is a random quantity not depending onv. Thus from (2.29), we obtain the further

bound

P

[
sup

v∈[0,Ω]
|An(v)|2 > sn2

]
≤ rn P

[
|An(vl)|2 +

Ω
2rn

Dn > s n2
]

≤ rn P

[
|An(vl)|2 >

sn2

2

]
+ rn P

[
Dn >

srnn2

Ω

]
. (2.30)
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Using the Markov Inequality and (2.10),

P

[
|An(vl)|2 >

s n2

2

]
≤ 4

s2n4 E[|An(vl)|4]

≤ 4
s2n4{n E[|ε1|4] + n(n − 1)σ4}

≤ L

s2n2 , (2.31)

for some finite constantL. Similarly,

P

[
Dn >

srnn2

Ω

]
= P






n∑
j=1

|εj|



2

≥ srnn2

Ω(n + 2∆)




≤
(Ω(n + 2∆)

srnn2

)5/2

E






n∑
j=1

|εj|



5



≤ M

(
n

srn

)5/2

(2.32)

for some finiteM .

Thus from (2.30), (2.31) and (2.32), and choosingrn = n9/5,

P

[
sup

v∈[0,Ω]

|An(v)|2 > s n2

]
≤ Lrn

s2n2 +
Mn5/2

s5/2r
3/2
n

n→∞−→ 0,

which establishes (2.27).

(b) To establish (2.28), we need to finds < 1 such that limn→∞ T (n, λ, s) = 0, where

T (n, λ, s)
def
= P

[
sup

|v−w|≥n−1λ

|cBn(v + w) + c∗Bn(v − w)|2 >
sn2

4
(a2 + b2)

]
.

Parallel to the approach in (a), we divide the interval[n−1λ, Ω] into rn equal length subintervals

{Rl} with center points{vj}. The derivative of the function being maximized is

d

dv
|cBn(v + w) + c∗Bn(v − w)|2

=
d

dv

n∑
j,k=1

eiv(tj−tk){ceivtj + c∗e−ivtj}{c∗e−ivtk + ceivtk}

=
n∑

j,k=1

i(tj − tk)eiv(tj−tk){ceivtj + c∗e−ivtj}{c∗e−ivtk + ceivtk},
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and so the absolute value of the derivative satisfies∣∣∣∣ d

dv
|cBn(v + w) + c∗Bn(v − w)|2

∣∣∣∣ ≤
n∑

j,k=1

|tj − tk|(a2 + b2)

≤ (n + 2∆)n2(a2 + b2). (2.33)

Thus by using the subintervals{Rl} and the derivative bound (2.33), we can boundT (n, λ, s) by

a sum of probabilities

T (n, λ, s) ≤
rn∑
l=1

P

[
sup
v∈Rl

|cBn(v + w) + c∗Bn(v − w)|2 >
sn2

4
(a2 + b2)

]

≤
rn∑
l=1

P

[
|cBn(vl + w) + c∗Bn(vl − w)|2 >

n2(a2 + b2)
4

{
s − 2Ω

rn
(n + 2∆)

}]
.

As |cBn(v + w) + c∗Bn(v − w)|2 ≤ 1
4(a

2 + b2){|Bn(v + w)|+ |Bn(v − w)|}2, we can simplify

the above to

T (n, λ, s) ≤
rn∑
l=1

P

[
{| 1

n
Bn(v + w)|+ | 1

n
Bn(v − w)|}2 > s − 2Ω

rn
(n + 2∆)

]
. (2.34)

Next we look at the behavior ofBn(v). The mean ofBn(v) is

E
[
Bn(v)

]
= φ(v)

n∑
j=1

eivtj = φ(v)
e

i
2 (n+1)v sin(nv

2 )
sin( v

2)
. (2.35)

In order to evaluate (2.34), we need to bound| 1
n
EBn(v)|. By (2.11) and (2.35), and as

| sin(
nv

2
)/n sin(

v

2
)| ≤ 1,

there existsγπ < 1 such that

sup
|v|>π

| 1
n
EBn(v)| < γπ.

Also by Walker [48], p.26, forλ small enough so that{sin(λ/2)/(λ/2)}2 > 1/π2,

sup
n−1λ≤|v|≤π

| 1
n
EBn(v)| ≤

∣∣∣∣∣ sin(λ
2)

n sin( λ
2n)

∣∣∣∣∣ .
For all suchλ, the function sin( λ

2n)/( λ
2n) is strictly increasing withn. Thus for alln ≥ 2,

∣∣∣∣∣ sin(λ
2)

n sin( λ
2n)

∣∣∣∣∣ ≤
∣∣∣∣∣ sin(λ

2)
2 sin(λ

4)

∣∣∣∣∣ < 1.
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So combining the above bounds and settingγλ = sup{γπ, | sin(λ
2)/2 sin(λ

4)|}, we obtain

sup
|v|≥n−1λ

| 1
n
EBn(v)| < γλ < 1. (2.36)

This is only a crude bound, as forv 6= 2kπ andk ∈ Z , E[Bn(v)] = O(1). For arbitrarily

smallη, ε > 0, andn > n∗ = {ε sin(η/2)}−1,

| 1
n
EBn(v)| < ε, |v − 2kπ| > η, k ∈ Z . (2.37)

As w 6= kπ, k ∈ Z+, v + w and v − w cannot simultaneously be integer multiples of 2π.

Further, lettingη satisfy|w − kπ| > η, k ∈ Z+, then from (2.37) either| 1
n
EBn(v + w)| < ε or

| 1
n
EBn(v − w)| < ε. Together with (2.36), this gives

| 1
n
EBn(v + w)|+ | 1

n
EBn(v − w)| < γλ + ε ∀v. (2.38)

Also, defineB0
n(v) = Bn(v) − EBn(v), where EBn(v) = φ(v)

∑n
j=1 eivj. Then, using

the Markov Inequality,

P
[
|B0

n(v)| > βn
]

≤ E[|B0
n(v)|4]

n4β4

≤ 1
n4β4

n∑
j,k=1

E[|eivtj − φ(v)eivj|2|eivtk − φ(v)eivk|2]

≤ 16
n2β4 (2.39)

Now we return to (2.34). Let us chooseε, α > 0 so thats
def
= (γλ + 3ε)2 + α < 1, and

setrn = n logn. Then using (2.38) and (2.39),

lim
n→∞ T (n, λ, s) ≤ lim

n→∞

rn∑
l=1

P [| 1
n
Bn(vl + w)|+ | 1

n
Bn(vl − w)| > γλ + 3ε]

≤ lim
n→∞

rn∑
l=1

P [| 1
n
B0

n(vl + w)| > ε] + P [| 1
n
B0

n(vl − w)| > ε]

≤ lim
n→∞

32rn

n2ε4 = 0,

which completes Lemma 1(b).

2
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2.2.3 Asymptotic Normality

In this section we provide the proof of Theorem 2. Following Walker [48], pp.28–31,

we define

Un(α, β, v) =
n∑

j=1

y2
j − 2

n∑
j=1

yj{α cos(vtj) + β sin(vtj)}+
n

2
(α2 + β2).

This function is minimized atα = ân, β = b̂n, andv = ŵn. Use of the mean value theorem yields

(Un)a = (Un)anan(a − ân) + (Un)anbn(b − b̂n) + (Un)anwn(w − ŵn), (2.40)

where(Un)α denotes∂Un(α, β, v)/∂α, (Un)αβ denotes∂2Un(α, β, v)/∂α∂β, and so on, and

(an, bn, wn) is some point on the line segment joining(a, b, w) and(ân, b̂n, ŵn). Similarly

(Un)b = (Un)bnan(a − ân) + (Un)bnbn(b − b̂n) + (Un)bnwn(w − ŵn)

(Un)w = (Un)wnan(a − ân) + (Un)wnbn(b − b̂n) + (Un)wnwn(w − ŵn). (2.41)

Now we look at the first order partial derivatives ofUn. Firstly,

(Un)a = na − 2
n∑

j=1

yj cos(wtj)

= na − 2a
n∑

j=1

cos(wtj)2 − 2b
n∑

j=1

sin(wtj) cos(wtj) − 2
n∑

j=1

εj cos(wtj)

= −a
n∑

j=1

cos(2wtj) − b
n∑

j=1

sin(2wtj) − 2
n∑

j=1

εj cos(wtj), (2.42)

and similarly

(Un)b = b
n∑

j=1

cos(2wtj) − a
n∑

j=1

sin(2wtj) − 2
n∑

j=1

εj sin(wtj),

(Un)w = −2ab
n∑

j=1

tj cos(2wtj) + (a2 − b2)
n∑

j=1

tj sin(2wtj) − 2b
n∑

j=1

tjεj cos(wtj)

+2a
n∑

j=1

tjεj sin(wtj). (2.43)

Defining

V = [V1, V2, V3, V4]T

= n−1/2
n∑

j=1

[cos(2wtj), sin(2wtj), εj cos(wtj), εj sin(wtj)]T ,
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W = [W1, W2, W3, W4]T

= n−3/2
n∑

j=1

[tj cos(2wtj), tj sin(2wtj), tjεj cos(wtj), tjεj sin(wtj)]T ,

we can write (2.42) and (2.43) as

[n−1/2(Un)a, n
−1/2(Un)b] =


 −a −b −2 0

b −a 0 −2


V

n−3/2(Un)w =
[
−2ab (a2 − b2) −2b 2a

]
W. (2.44)

We need to find the limiting distribution of(V, W ), first calculating the means and

covariances. The mean ofV1 is

E[V1] = n−1/2
n∑

j=1

{Reφ(2w) cos(2wj)− Imφ(2w) sin(2wj)}

= O(n−1/2),

asw 6= kπ, k ∈ Z+. Using similar working on the other elements ofV , one can obtain

lim
n→∞ E[V ] = [0, 0, 0, 0]T . (2.45)

Consider the mean ofW1

E[W1] = n−3/2
n∑

j=1

Re E
[
tje

i2wtj
]

= n−3/2
n∑

j=1

Re{jφ(2w)ei2wj − E[δje
i2wtj ]}

= n−3/2
n∑

j=1

j{Reφ(2w) cos(2wj)− Imφ(2w) sin(2wj)}+ O(n−1/2)

= O(n−1/2),

remembering that|δj| < ∆. Extending these ideas to the remaining elements ofW gives

lim
n→∞ E[W ] = [0, 0, 0, 0]T. (2.46)

The (1,1) term of the variance matrix ofV is

Var[V1] = n−1
n∑

j=1

{E[cos2(2wtj)] − E2[cos(2wtj)]}
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= n−1
n∑

j=1

[
1
2{1 + Reφ(4w) cos(4wj)− Imφ(4w) sin(4wj)}

− {Reφ(2w) cos(2wj)− Imφ(2w) sin(2wj)}2
]

= 1
2

(
1− |φ(2w)|2

)
+ 1

2n{Reφ(4w)− Re2φ(2w) + Im2φ(2w)}
n∑

j=1

cos(4wj)

+ O(n−1),

and so

lim
n→∞ Var[V1] =




1
2

(
1− |φ(2w)|2) , w 6= kπ

2 , k ∈ Z+,

1
2

(
1 + Reφ(4w)− 2Re2φ(2w)

)
, w = kπ

2 , k = 1, 3, 5, . . . ,
(2.47)

Similarly, Var[W1] can be calculated by

Var[W1] = n−3
n∑

j=1

{E[tj cos2(2wtj)]− E2[tj cos(2wtj)]}

= n−3
n∑

j=1

j2
[

1
2{1+ Reφ(4w) cos(4wj)− Imφ(4w) sin(4wj)}

− {Reφ(2w) cos(2wj)− Imφ(2w) sin(2wj)}2
]
+ O(n−1),

so that

lim
n→∞ Var[W1] =




1
6

(
1− |φ(2w)|2) , w 6= kπ

2 , k ∈ Z+,

1
6

(
1 + Reφ(4w)− 2Re2φ(2w)

)
, w = kπ

2 , k = 1, 3, 5, . . . ,
(2.48)

Similar working applied to the other elements of the variance-covariance matrix of(V, W ) yields

Var[V ] = 1
2Λ, Var[W ] = 1

6Λ, and Cov[V, W ] = 1
4Λ, where

Λ =





 (1− |φ(2w)|2) I2 0

0 σ2I2


 , w 6= kπ

2 , k ∈ Z+,


 ϒ 0

0 σ2I2


 , w = kπ

2 , k = 1, 3, 5, . . . ,

(2.49)

I2 is the 2× 2 identity matrix, andϒ is defined in (2.15).

Now considerλTV +ηTW , whereλ, η are vectors from<4 such that 0< λTλ+ηTη < ∞. Then

lim
n→∞ E[λTV + ηTW ] = 0,

lim
n→∞ Var[λTV + ηTW ] =

1
2
λT Λλ +

2
4
λT Λη +

1
6
ηT Λη. (2.50)
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ExpressingλTV + ηTW =
∑n

j=1 Xj, where

Xj
def= n−1/2{λ1 cos(2wtj) + λ2 sin(2wtj) + λ3εj cos(wtj) + λ4εj sin(wtj)}

+n−3/2tj{η1 cos(2wtj) + η2 sin(2wtj) + η3εj cos(wtj) + η4εj sin(wtj)},

the sum of third absolute moments of(Xj − EXj) satisfies

n∑
j=1

E|Xj − EXj|3 ≤ n−1/2E |L + M |ε1||3

for some finite constantsL, M . Thus the{Xj} satisfy the Lyapounov condition (Billingsley [7],

p.371),

lim
n→∞

∑n
j=1 E|Xj − EXj|3∑n

j=1 Var[Xj]3/2
= 0,

and λTV + ηTW converges in distribution to a Normal distribution with mean and variance

given in (2.50). As convergence in distribution of a vector-valued random variable is implied by

convergence of all linear combinations of its terms (Billingsley [7], p.397), the joint distribution of

V, W converges to

N






0
...

0


 ,


 1

2Λ 1
4Λ

1
4Λ 1

6Λ




 ,

with Λ given in (2.49).

Returning to (2.44) and using the above result, after some calculation we find that

[n− 1
2 (Un)a, n− 1

2(Un)b, n− 3
2(Un)w]

converges to a multivariate normal distribution with mean[0, 0, 0] and variance




{
2σ2 + 1

2(a
2 + b2)

(
1− |φ(2w)|2)} Γ, w 6= kπ

2 , k ∈ Z+,

2σ2Γ + C


 1

2ϒ 1
4ϒ

1
4ϒ 1

6ϒ


CT , w = kπ

2 , k = 1, 3, 5, . . . ,
(2.51)

whereΓ, C is defined in (2.15).

Next consider the second order partial derivatives in (2.40) and (2.41). It is trivial to see that

(Un)anan = n, (Un)bnbn = n, (Un)anbn = 0. (2.52)
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Also,

(Un)anwn = 2
n∑

j=1

yjtj sin(wntj)

= a
n∑

j=1

tj sin((wn + w)tj) + a
n∑

j=1

tj sin((wn − w)tj) − b
n∑

j=1

tj cos((wn + w)tj)

+ b
n∑

j=1

tj cos((wn − w)tj) + 2
n∑

j=1

εjtj sin(wntj). (2.53)

We will apply the mean value theorem to the real and imaginary parts ofA′
n(v) andB′

n(v), where

An(v), Bn(v) are defined in (2.21). As|A′′
n(v)| = Op(n3) and |B′′

n(v)| = O(n3), applying the

mean value theorem gives

i
n∑

j=1

tje
i(wn−w)tj = B′

n(0) + op(n−1)O(n3)

=
in2

2
+ op(n2),

i
n∑

j=1

tje
i(wn+w)tj = B′

n(2w) + op(n−1)O(n3)

= op(n2),

i
n∑

j=1

εjtje
iwntj = A′

n(w) + op(n−1)O(n3)

= op(n2), (2.54)

remembering thatwn − w = op(n−1) from Theorem 1. Inserting these results into (2.53) yields

p lim
n→∞n−2(Un)anwn =

b

2
. (2.55)

Similarly, as

(Un)bnwn = −2
n∑

j=1

yjtj cos(wntj)

= −b
n∑

j=1

tj sin((wn + w)tj) − b
n∑

j=1

tj sin((wn − w)tj)− a
n∑

j=1

tj cos((wn + w)tj)

− a
n∑

j=1

tj cos((wn − w)tj) − 2
n∑

j=1

εjtj cos(wntj),

we obtain

p lim
n→∞n−2(Un)bnwn = −a

2
. (2.56)
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Now,

(Un)wnwn = 2
n∑

j=1

yjt
2
j{an cos(wntj) + bn sin(wntj)}

= (aan + bbn)
n∑

j=1

t2
j cos((wn + w)tj) + (aan + bbn)

n∑
j=1

t2
j cos((wn − w)tj)

+ (anb + abn)
n∑

j=1

t2
j sin((wn + w)tj) + (abn − anb)

n∑
j=1

t2
j sin((wn − w)tj)

+ 2an

n∑
j=1

εjt
2
j cos(wntj) + 2bn

n∑
j=1

εjt
2
j sin(wntj). (2.57)

Applying the mean value theorem toA′′
n(v) andB′′

n(v) as above gives

n∑
j=1

t2
je

i(wn−w)tj =
n3

3
+ op(n3),

n∑
j=1

t2
je

i(wn+w)tj = op(n3),

n∑
j=1

εjt
2
je

iwntj = op(n3),

and so from (2.57), remembering thatan = a + op(1) andbn = b + op(1),

p lim
n→∞n−3(Un)wnwn =

a2 + b2

3
. (2.58)

Thus if we define

Γn =




n−1(Un)anan n−1(Un)anbn n−2(Un)anwn

n−1(Un)bnan n−1(Un)bnbn n−2(Un)bnwn

n−2(Un)wnan n−2(Un)wnbn n−3(Un)wnwn


 ,

from (2.52),(2.55),(2.56) and (2.58), we obtain

p lim
n→∞ Γn = Γ, (2.59)

with Γ defined in (2.15). AsΓ is nonsingular,Γn is also nonsingular with probability tending to 1

asn → ∞. So for largen we can re-express (2.40) and (2.41) as

[
n

1
2 (ân − a), n

1
2(b̂n − b), n

3
2 (ŵn − w)

]
= −

[
n− 1

2(Un)a, n
− 1

2(Un)b, n
− 3

2 (Un)w,
]

Γ−1
n . (2.60)
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We showed that the limitingdistribution of the vector on the right hand side of (2.60) is multivariate

normal with zero mean and variance given in (2.51). So use of the Continuous Transformation

Theorem (Barndorff-Nielsen & Cox [3]) with (2.59) shows

[n1/2(ân − a), n1/2(b̂n − b), n3/2(ŵn − w)]

tends in distribution to a multivariate normal distribution with mean zero and variance given in

(2.13) and (2.14). This completes the proof of Theorem 2.

2.2.4 Extensions

Theorems 1 and 2 can be extended in a number of natural ways: considering frequencies

that are multiples ofπ, including a constant in the response model, and estimating multiple

frequency components.

Frequency Multiple of π

Proposition 1 Assume the conditions of Theorem 1, except setw = kπ for some integerk. Then

(1) if w = 0, p limn→∞ nŵn = 0;

(2) otherwise,p limn→∞ n{ŵn (mod 2π)} = n{w (mod 2π)}.

Proof.

(1) Following the proof of Theorem 1, the result equivalent to (2.26) is

In(0) = 2a2n + Op(n1/2).

Lemma 1(a) still applies, and Lemma 1(b) becomes

p lim
n→∞ max

|v|≥n−1λ
|cBn(v) + c∗Bn(v)|2 < 2a2n. (2.61)

As the left hand side of this is

p lim
n→∞ max

|v|≥n−1λ
a2|Bn(v)|2,

using (2.34),(2.36) and (2.39) gives (2.61) and completes the proof of (1).

Note that the estimates (2.8) are no longer consistent, in fact tending to[2a, 0, σ2−a2] in

probability. If instead the estimates are obtained by regressingyj on cos(ŵntj), sin(ŵntj) (where

there is no estimate ofb if ŵn = 0), then consistency is preserved. Hannan [22] shows that for
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equally-spaced times andw = 0, there exists finiten∗ such that ˆwn = w for all n > n∗; this is

because the periodogram has a local maximum exactly atw = 0. A result of this type may be

obtainable for jittered sampling times.

(2) For the casew = kπ, k 6= 0, the periodogram has the value (asn → ∞)

In(w) = 2n|cφ(2kπ) + c∗|2 + Op(n1/2). (2.62)

The periodogram is also ordern at the frequenciesw ± k2π, k ∈ Z . Without loss of generality,

assume thatw is an even multiple ofπ, w = k2π. Then atv = l2π,

In(v) = 2n|cφ((l + k)2π) + c∗φ((l − k)2π)|2 + Op(n1/2), (2.63)

which depending on(a, b, φ(.)) is not necessarily smaller than (2.62) asymptotically. So ˆwn is not

always consistent, but using the methods in the proof of Lemma 1(b), it is possible to show

p lim
n→∞ max

|v−l2π|≥n−1λ
l∈Z

|cBn(v + w) + c∗Bn(v − w)|2 < max
l∈Z

n2|cφ((l + k)2π) + c∗φ((l − k)2π)|2,

which completes (2) forw = k2π. A similar approach is used forw = (2k + 1)π. 2

Subtracting out the series mean

Proposition 2 Suppose that the conditions of Theorem 1 apply, except that the response model is

yj = m + a cos(wtj) + b sin(wtj) + εj .

Define ỹj = yj − ȳ, ȳ =
∑n

j=1 yj , and estimate the parameters[w, a, b, σ2] as before, except

replacingyj in the estimation formulae bỹyj . Then the results of Theorems 1 and 2 apply to these

estimates.

Proof. Let Ĩn(v) be the periodogram for the mean-corrected data, i.e.

Ĩn(v) =
2
n

∣∣∣∣∣∣
n∑

j=1

ỹje
ivtj

∣∣∣∣∣∣
2

.

Then the difference between the original and mean-corrected periodogram is

Ĩn(v)− In(v) =
2
n
|ȳBn(v)|2 − 4

n
Re


ȳBn(v)

n∑
j=1

yje
−ivtj


 .
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As In(v) is invariant under change of origin,m can be set to zero for simplicity. Now

ȳ = n−1{cBn(w) + c∗Bn(−w)}+ n−1
n∑

j=1

εj

= Op(n−1/2),

Bn(v) = O(n), and
∑n

j=1 yje
−ivtj = Op(n), where theO(.) are uniform forv ∈ [0, Ω]. Thus

Ĩn(v)− In(v) = Op(n1/2)

uniformly, and the rest of the proof of consistency follows as in Theorem 1. Asymptotic normality

is obtained using a similar approach onŨn(a, b, w) (Walker [48],p.35). 2

Several-Frequency Case

Instead of the simple harmonic model (2.2), consider the regression function

yj =
p∑

l=1

{al cos(wltj) + bl sin(wltj)} + εj . (2.64)

Quinn [33] and Wang [47] study estimation of the number of terms (p) for equally-spaced sample

times. Under the jittered sampling model and fixedp, an estimation procedure can be constructed

which gives consistent estimates of[al, bl, wl] for l = 1, . . . , p. Conditions (1) and (2) of Theorem 1

are required, as well as assuming the parameters come from the space defined by

a2
1+ b2

1 > a2
2+ b2

2 > . . . > a2
p+ b2

p > 0, (2.65)

wl ∈ [0, Ω], wl ± wm 6= k2π, for l, m ∈ 1, . . . , p, k ∈ Z . (2.66)

Note that the latter includes the conditionwl 6= kπ, k ∈ Z+. The periodogram (2.6) has the

limiting behavior

In(v) =
2
n

∣∣∣∣∣
p∑

l=1

{clBn(v + wl) + c∗l Bn(v − wl)}
∣∣∣∣∣
2

+ Op(n1/2), (2.67)

wherecl = 1
2(al − ibl) parallels the notation in Theorem 1. ThusIn(v) is Op(n1/2) everywhere

but near the frequencies

±wl + k2π, l = 1, . . . , p, k ∈ Z ,

and the condition (2.66) ensures that not more than one of the terms in the sum in (2.67) can be of

ordern.
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Let the estimate ofw1, ŵ1,n, be the frequency in[0, Ω] that maximizes the periodogram.

The condition (2.65) ensures that this tends towardsw1 instead of one ofw2, . . . , wp. In estimating

the rest of the frequencies, the estimates ˆwl,n must not be too close together, otherwise they would

all tend to the frequency with the largest amplitude. For equally-spaced observation times, the

required condition is (Walker [48], p.32; Brillinger [11], p.282)

lim
n→∞ min

l,m∈1...,p
n|wl − wm| → ∞.

For the jittered observation times, we also need to keep an estimate from being too close to the

pseudo-alias frequencies of other estimates. So forl = 2, . . . , p defineŵl,n as that frequency in

{v : |v ± ŵm,n + k2π| ≥ cn−3/4, m = 1, . . . , l − 1, k ∈ Z}

that maximizesIn(v), wherec is a positive constant. Also defining

âl,n =
2
n

n∑
j=1

yj cos(ŵl,ntj), b̂l,n =
2
n

n∑
j=1

yj sin(ŵl,ntj),

the results of Theorems 1 and 2 apply to the estimates{[âl,n, b̂l,n, ŵl,n], l = 1, . . . , p}.

Alternatively, equivalent results should be achievable by subtracting out the fitted signal

at one frequency before estimating the next, although verification of this is not presented here. In

other words, ˆw1,n is estimated as above, but forl = 2, . . . , p, ŵl,n is estimated by maximizing the

periodogram calculated on the data

yl−1
j = yj −

l−1∑
m=1

{âl,n cos(ŵl,n) + b̂l,n sin(ŵl,n)}.

2.3 Maximum Likelihood Estimate of Frequency

In this section we derive asymptotic properties of the maximum likelihood estimator of

frequency for the simple harmonic model and randomly jittered sample times. The main results

are presented in Section 2.3.1 and the derivation given in Section 2.3.2. We find that the maximum

likelihood estimate is consistent forw 6= kπ and is asymptotically efficient with variance which

is lower than that of the periodogram estimate. In Section 2.3.3 we discuss the casew = kπ and

extend the asymptotic results to the multiple-frequency model.

Assume the simple harmonic model (2.2) with IID errors and randomly jittered sample

times (2.4). Assume also that the distribution of the jitter variablesδj does not depend on the
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parameters[a, b, w, σ2]. Then assuming the probability densities ofεj and δj are known and

denoted byg(ε) andh(δ), and if we definexj = [yj , tj], the probability density ofxj is

fj(xj; θ) = g(yj − a cos(wtj) − b sin(wtj)) h(tj − j). (2.68)

Then forθ in a suitable parameter spaceΘ, themaximum likelihood estimate(MLE) of θ, θ̌n, is

anyθ ∈ Θ such that
n∏

j=1

fj(xj; θ) = sup
τ∈Θ

n∏
j=1

fj(xj; τ). (2.69)

Under normality of the observational noise, maximizing the likelihood is equivalent to

minimizing the residual sum of squares

n∑
j=1

{yj − a cos(wtj) − b sin(wtj)}2.

Thus maximum likelihood theory can be used to study the behavior of the least squares estimate

under normality. Other noise distributions lead to different estimates; for example, if the noise is

assumed to come from the Laplace distribution

g(ε) =
1
2
e−|ε|/σ ,

then the MLE is obtained by minimizing the sum of absolute residuals

n∑
j=1

|yj − a cos(wtj) − b sin(wtj)|.

2.3.1 Asymptotic Results

Theorem 3 Consider the jittered cosine model of Section 2.1, withθ ∈ Θ

Θ = {[a, b, w] : a2+ b2 ∈ (m, M), w ∈ (m, M), w 6∈ [kπ − m, kπ + m] for k ∈ Z+}, (2.70)

wherem > 0 can be arbitrarily small andM arbitrarily large. Also assume

(1) For someρ > 0, the probability density ofε1, denotedg(ε), satisfies

∫ ∣∣∣∣g′g (ε)
∣∣∣∣
2+ρ

g(ε) dε < ∞;
∫ [

∂2

∂ε2g1/2(ε)

]2

dε < ∞. (2.71)

(2) The characteristic function ofδ1, φ(.), satisfies

∀η > 0, sup
|t|>η

|φ(t)| < 1. (2.72)
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Then the maximum likelihood estimate has the following properties:

(i) θ̌n is consistent.

(ii) θ̌n is asymptotically normal with meanθ and covariance matrix given by

Cov[N1/2(θ̌n − θ)] = 2I−1Γ−1, (2.73)

whereN = diag[n1/2, n1/2, n3/2], Γ is defined in (2.15) and

I =
∫

g′(ε)2 1
g(ε)

dε,

the information in densityg. Further, the convergence is uniform inT , any compact set in

Θ.

(iii) There exists a matrixΨn so thatθ̌n is asymptotically efficient for loss functionsw(Ψn(τ−θ)),

whereτ is an estimate ofθ andw(.) is a loss function with a polynomial majorant.

Comments

• The variance of the periodogram estimate is asymptotically larger than that of the least

squares estimate. Under normality distributed noise, Theorem 3 shows that the asymptotic

distribution of the scaled MLE (also the least squares estimate in this case) is given by

n3/2w̌n ⇒n→∞ N

(
w,

24σ2

(a2+ b2)

)
, (2.74)

where⇒ denotes convergence in distribution. This is the same asymptotic distribution

as for equally-spaced times (Walker [48]). In comparison, we saw in Theorem 2 that the

asymptotic distribution of the periodogram estimate of frequency is

n3/2ŵn ⇒n→∞ N

(
w,

24σ2

(a2+ b2)
+ 6{1− |φ(2w)|2}

)
. (2.75)

The additional term in the variance of the periodogram estimate depends on the jittered sam-

pling distribution through the value|φ(2w)|, which suggests that the periodogram estimate

is sensitive to variability in the sample times, while the MLE is not.

• Under the conditions of the theorem, properties(i)–(iii) are also valid for certain Bayesian

estimators; see Ibragimov & Has’minskii [24], p. 191 for more details.
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• In the definition ofΘ, the bounding ofa2+ b2 away from 0 and∞, and the bounding ofw

away from multiples ofπ is necessary to show uniformity of convergence.

• The requirements of condition(1) exclude discrete and partially continuous noise distribu-

tions, and ensure the smoothness of the likelihood surface.

• As in Theorem 1, condition(2)prevents the RSS at the pseudo-aliases±w+k2π from being

as small as that at the true frequencyw.

2.3.2 Derivation of Results

The central tool in this proof is Theorem III.4.1 of Ibragimov & Has’minskii [24], p.

191. Denote Fisher’s Information Matrix by

Ij(θ) =
∫ [

∂
∂θ

fj(xj; θ)
] [

∂
∂θ

fj(xj; θ)
]T dxj

fj(xj; θ)
, (2.76)

and the information from the firstn observations by

Ψ2(n, θ) =
n∑

j=1

Ij(θ). (2.77)

SometimesΨ2
n = Ψ2(n, θ) is used when the context is clear.

To make use of the result of Ibragimov & Has’minskii,Ψ2
n must be positive definite for

θ ∈ Θ, and the following conditions satisfied:

(A) Denoting|A| = sup|λ|=1 |λTAλ|,

lim
n→∞ sup

θ∈Θ
tr Ψ−2

n = 0, lim
n→∞ sup

θ,τ∈Θ
|Ψ−1

n Ψ2(n, τ)Ψ−1
n | < ∞.

(B) For someρ > 0 andu ∈ <3,

lim
n→∞ sup

θ∈Θ

n∑
j=1

E
∣∣∣[ ∂

∂θ
ln fj(xj; θ)

]T Ψ−1
n u

∣∣∣2+ρ
= 0.

The next two conditions use a sequenceλ(n) → ∞ asn → ∞:

(C) f
1/2
j (xj; θ) is twice continuously differentiable with respect toθ, and asn → ∞,

sup
θ∈Θ

sup
|u|<λ(n)

θ+Ψ−1
n u∈Θ

n∑
j=1

∫ ∣∣∣Ψ−1
n

∂2

∂θ2f
1/2
j (xj, θ + Ψ−1

n u)Ψ−1
n

∣∣∣2 dxj = o
(
λ(n)−2

)
.
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(D) For someβ > 0,

inf
θ∈Θ

inf
|u|<λ(n)

θ+Ψ−1
n u∈Θ

|Ψn|−β
n∑

j=1

∫ [
f

1/2
j (xj; θ + Ψ−1

n u)− f
1/2
j (xj; θ)

]2
dxj > 0.

(These correspond to relations (4.2), (4.8), (4.9) and (4.4) in Ibragimov & Has’minskii.)

In order to check these conditions,Ψ2
n, Ψ−2

n , Ψn, andΨ−1
n must first be calculated. From

(2.76) and (2.68),

Ij(θ) = I E




cos2(wtj) cos(wtj) sin(wtj) tj cos(wtj){b cos(wtj)− a sin(wtj)}
∗ sin2(wtj) tj sin(wtj){b cos(wtj) − a sin(wtj)}
∗ ∗ t2

j{b cos(wtj) − a sin(wtj)}2


 ,

whereI is defined in the statement of the theorem. Thus the [1,1] element ofΨ2
n is

[
Ψ2

n

]
1,1

= I
n∑

j=1

E[cos2(wtj)]

=
I

2

n∑
j=1

{1 + Reφ(2w) cos(2wj)− Imφ(2w) sin(2wj)}

=
n

2
I + O(1)

asn → ∞, becausew 6= kπ. Note also that theO(.) is uniform forθ ∈ Θ. Similar working for

the other elements ofΨ2
n leads to

Ψ2
n =

I

2




n + O(1) O(1) b
2n

2 + O(n)

∗ n + O(1) −a
2n2 + O(n)

∗ ∗ a2+b2

3 n3 + O(n2)


 ,

which simplifies to

Ψ2
n =

I

2
N1/2

{
Γ + O(n−1)

}
N1/2, (2.78)

where again theO(.) are uniform forθ ∈ Θ. Note thatΨ2
n is positive definite fora2 + b2 6= 0 and

w 6= kπ, and uniformly positive definite forθ ∈ Θ. This implies

Ψ−2
n = 2I−1N−1/2

{
Γ−1 + O(n−1)

}
N−1/2, (2.79)

where as before theO(.) are uniform forθ ∈ Θ. Some tedious calculations give the equivalent

results forΨn andΨ−1
n , the symmetric square roots ofΨ2

n andΨ−2
n :

Ψn =

√
1
8In

a2+ b2




2a2+b2 + O(n−1) ab + O(n−1) b
√

3a2+3b2 + O(n−1)

∗ a2+2b2 + O(n−1) −a
√

3a2+3b2 + O(n−1)

∗ ∗ 2n
31/2 (a2+b2)3/2 + O(1)


 , (2.80)



44

Ψ−1
n =

√
2
In

a2+b2




a2+2b2 + O(n−1) −ab + O(n−1) −3bn−1 + O(n−2)

∗ 2a2+b2 + O(n−1) 3an−1 + O(n−2)

∗ ∗ n−1
√

3a2+3b2 + O(n−2)


 ,

(2.81)

with O(.) uniform for θ ∈ Θ.

Consider condition (A). Firstly,

trΨ−2
n =

2I−1

a2+b2{n−1(5a2+5b2) + O(n−2)},

and so limn→∞ supθ∈Θ trΨ−2
n = 0 as required. Secondly,

Ψ−1
n Ψ2(n, τ)Ψ−1

n =
n−1

a2 + b2
A{Γτ + O(n−1)}AT ,

where

A =




O(n1/2) O(n1/2) O(n1/2)

O(n1/2) O(n1/2) O(n1/2)

O(n−1/2) O(n−1/2) O(n1/2)


 .

So |Ψ−1
n Ψ2(n, τ)Ψ−1

n | = O(1) uniformly for θ, τ ∈ Θ. This completes condition (A).

For condition (B), consider

∂
∂θ

ln fj(xj; θ) =
g′

g
(yj − a cos(wtj) − b sin(wtj))




− cos(wtj)

− sin(wtj)

atj sin(wtj)− btj cos(wtj)


 ,

and so

E
∣∣∣[ ∂

∂θ
ln fj(x; θ)

]T Ψ−1
n u

∣∣∣2+ρ
= E

∣∣∣∣g′g (ε1) O(n−1/2)
∣∣∣∣
2+ρ

= Cn−1−ρ/2 E
∣∣∣∣g′g (ε1)

∣∣∣∣
2+ρ

for some finite constantC, uniformly for θ ∈ Θ. Taking ρ to be the same as that in (2.71),

condition (B) is established.

In condition (C), letτ = [α, β, v] be a shorthand forθ + Ψ−1
n u. As

∂2

∂τ2 f
1/2
j (xj; τ) = h1/2(tj − j) ∂2

∂τ2 g
1/2(yj − α cos(vtj) − β sin(vtj)),
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the[1, 1] element is

∂2

∂α2f
1/2
j (xj; τ) = h1/2(tj − j)g̈(εj) cos2(vtj),

using the notation ˙g = ∂
∂ε

g1/2(ε), g̈ = ∂2

∂ε2g
1/2(ε). Similar working on the other elements of

∂2

∂τ 2f
1/2
j (xj; τ) yields

∂2

∂τ2 f
1/2
j (xj; τ) = h1/2(tj − j)O(1)




g̈(εj) g̈(εj) n{ġ(εj) + g̈(εj)}
∗ g̈(εj) n{ġ(εj) + g̈(εj)}
∗ ∗ n2{ġ(εj) + g̈(εj)}


 ,

and thus ∣∣∣Ψ−1
n

∂2

∂τ2 f
1/2
j (xj, τ)Ψ−1

n

∣∣∣2 ≤ h(tj − j) |ġ(εj) + g̈(εj)|2 O(n−2).

So for allθ, τ ∈ Θ, there exists a constantC such that

n∑
j=1

∫ ∣∣∣Ψ−1
n

∂2

∂θ2f
1/2
j (xj; τ)Ψ−1

n

∣∣∣2 dxj ≤ C

n

∫
h(tj − j) |ġ(εj) + g̈(εj)|2dxj

≤ C

n

∫
|g̈(ε)|2 + |ġ(ε)|2 dε.

So takingλ(n) = n1/2 and using (2.71), condition (C) is verified.

In condition (D), the summation term can be rewritten as

n∑
j=1

∫
h(tj − j)

∫ {
g1/2(yj − s(tj; τ))− g1/2(yj − s(tj ; θ))

}2
d(yj|tj) dtj,

whereτ = θ + Ψ−1
n u ands(tj ; θ) = a cos(wtj) + b sin(wtj). As s(tj ; θ) is bounded forθ ∈ Θ,

by Ibragimov & Has’minskii [24], p.195, there exists a constantC uniform forθ, τ ∈ Θ such that

∫ {
g1/2(yj − s(tj ; τ))− g1/2(yj − s(tj ; θ))

}2
d(yj|tj) ≥ C{s(tj ; τ)− s(tj ; θ)}2.

Thus condition (D) can be verified by showing

inf
θ∈Θ

inf
|u|<λ(n)

θ+Ψ−1
n u∈Θ

|Ψn|−β
n∑

j=1

E
[
{s(tj ; τ)− s(tj ; θ)}2

]
> 0.

Further, as|Ψn|−β = O(n−3/2β), the above is equivalent to showing for someβ > 0,

inf
θ∈Θ

inf
|u|<λ(n)

θ+Ψ−1
n u∈Θ

n−β
n∑

j=1

E
[
{s(tj; τ)− s(tj; θ)}2

]
> 0.
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Looking at (2.81),θ + Ψ−1
n u can be replaced by[a + n−1/2u1, b+ n−1/2u2, w + n−3/2u3], and so

condition (D) can be verified by showing

inf
θ∈Θ

inf
|u|<λ(n)

θ+N1/2u∈Θ

n−β
n∑

j=1

E
[
{s(tj ; τ)− s(tj ; θ)}2

]
> 0. (2.82)

Lemma 2 Let tj , j = 1, . . . , n be distributed according to randomly jittered sampling (2.4),ε be

a number in(0, 1), and define

An = {θ = [a, b, w] ∈ Θ, τ = [α, β, v] ∈ Θ : |a − α| + |b − β| + n|w − v| > n−ε}.

Then there exists a finite constantC for which

inf
An

n∑
j=1

E
[
{a cos(wtj) + b sin(wtj) − α cos(vtj) − β sin(vtj)}2

]
≥ Cn1−2ε. (2.83)

Settingλ(n) = n−ε+1/2 in Lemma 2, with 0< ε < 1
2 andβ < 1− 2ε, condition (D) is

verified. Thus from Theorem 4.1 of Ibragimov & Has’minskii,θ̌n is consistent andΨn(θ̌n − θ) is

asymptotically normal with mean zero and unit variance matrix. It is apparent from (2.80) that the

asymptotic normality result is not changed by replacingΨn with

√
1
8In

a2+ b2




2a2+b2 ab b
√

3a2+3b2

∗ a2+2b2 −a
√

3a2+3b2

∗ ∗ 2n
31/2 (a2+b2)3/2


 .

This gives the variance matrix (2.73), and completes Theorem 3.

Proof of Lemma 2. Define

H(θ, τ) =
n∑

j=1

E
[
{a cos(wtj) + b sin(wtj) − α cos(vtj)− β sin(vtj)}2

]

=
1
4

n∑
j=1

E
∣∣∣(ceiwtj + c∗e−iwtj

)
−
(
γeivtj + γ∗e−ivtj

)∣∣∣2 ,

in which c = a + bi andγ = α + βi. Havingθ, τ ∈ Θ means that 2w and 2v are bounded away

from 2kπ. Hence with some working,H(θ, τ) can be rewritten as

H(θ, τ) =
n

2

(
|c|2 + |γ|2

)
− Re


cγ∗φ(w − v)

n∑
j=1

ei(w−v)j + cγφ(w + v)
n∑

j=1

ei(w+v)j


+ O(1),

(2.84)

where theO(1) is uniform forθ, τ ∈ An.

Consider the following cases inAn:
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(i) |w − v| < 1
2n

−1−ε,

(ii) 1
2n

−1−ε < |w − v| < m,

(iii) |w − v − k2π| < m, k = ±1,±2, . . .,

(iv) |w + v − k2π| < m, k = ±1,±2, . . .,

(v) all otherw, v in An.

Under case(i),
∑n

j=1 ei(w−v)j = n + O(1) andφ(w − v) = 1 + O(n−1−ε) (Billingsley [7], p.

354). As in this casew + v is bounded away fromk2π,
∑n

j=1 ei(w+v)j = O(1) So from (2.84)

H(θ, τ) =
n

2
(a2+ b2+ α2+ β2) − nRe[cγ∗] + O(1)

=
n

2
{(a− α)2 + (b − β)2} + O(1).

As |a − α| + |b − β| > 1
2n

−ε, one of|a − α|, |b − β| must exceed14n
−ε. Hence

H(θ, τ) ≥ 1
32

n1−2ε + O(1), (2.85)

where theO(.) is uniform forθ, τ ∈ An.

The remaining four cases use the bound (from (2.84))

H(θ, τ) ≥ n

2

(
|c|2 + |γ|2

)
−
∣∣∣∣∣∣cγ∗φ(w − v)

n∑
j=1

ei(w−v)j

∣∣∣∣∣∣−
∣∣∣∣∣∣cγφ(w + v)

n∑
j=1

ei(w+v)j

∣∣∣∣∣∣+ O(1).

(2.86)

For case(ii) , w + v is again bounded away fromk2π, and so
∑n

j=1 ei(w+v)j = O(1). Also,

sup
1
2n−1−ε<|v|<m

∣∣∣∣∣∣
n∑

j=1

eivj

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

e
1
2 in−1−εj

∣∣∣∣∣∣ .
Using a Taylor series argument, this is bounded byn(1− 1

48n
−2ε) for largen. So substituting this

into (2.86),

H(θ, τ) ≥ n

2

(
|c|2 + |γ|2

)
− |c||γ|n(1− 1

48n
−2ε) + O(1),

and completion of the square for|γ| gives

H(θ, τ) ≥ 1
96

|c|2n1−2ε + O(1). (2.87)
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For case(iii) , w + v is bounded away fromk2π, so

H(θ, τ) ≥ n

2

(
|c|2 + |γ|2 − 2|c||γ||φ(w− v)|

)
+ O(1)

≥ n

2
|c|2

{
1− |φ(w − v)|2

}
+ O(1),

completing the square as before. By (2.72),|φ(w− v)| is uniformly bounded away from 1, and so

there exists a constantC such thatH(θ, τ) ≥ Cn + O(1). Case(iv) is done in the same way. In

case(v) bothw + v andw − v are bounded away fromk2π and so

H(θ, τ) =
n

2

(
|c|2 + |γ|2

)
+ O(1).

So combining cases(i)–(v) completes the lemma. 2

2.3.3 Extensions

The model in Theorem 3 can be extended by considering frequencies that are multiples

of π and by allowing the model to contain several periodic components.

Frequency Multiple of π

The methods of Theorem 3 are not directly applicable forw = kπ, because the limiting

value ofΨ(n, θ) is not continuous at these points. For these values, the information of the firstn

observations is described by

N− 1
2 Ψ2

nN− 1
2 =

I

2




1+φR(2w) φI(2w) b
2(1+φR(2w))− a

2φI(2w)

∗ 1−φR(2w) −a
2(1−φR(2w))+ b

2φI(2w)

∗ ∗ a2

3 (1−φR(2w))+ b2

3 (1+φR(2w))


+ O(1),

(2.88)

whereφR(.) andφI(.) are the real and imaginary parts ofφ(.). If Ψ2
n is nonsingular and the MLE

is consistent, one would expect the variance of the estimates to tend towardsΨ−2
n . Whenw = 0, b

can be taken equal to zero without loss of generality, and the information matrix becomes

Ψ2
n =

I

2




n 0 0

∗ 0 0

∗ ∗ 0


 ,

with no information on eitherb or w. This is not surprising forb, and forw, it could mean that

the frequency estimate exhibits more rapid convergence of the type discussed in Hannan [22]. For

nontrivialw = kπ, condition(2) ensures thatΨ2
n is invertible, and it would be interesting to know

if the parameter estimates behave like those in Theorem 3.
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Several-Frequency Case

Using the response model (2.64), results equivalent to Theorem 3 can be achieved for

each of the vectors[al, bl, wl]. Assume conditions(1) and (2) of Theorem 3, and define the

parameter vectorθ ∈ Θ by

θ = [a1, b1, w1, . . . , ap, bp, wp],

where the parameter spaceΘ is described by

q < a2
1+ b2

1, a2
p+ b2

p < Q, a2
l−1+ b2

l−1 < a2
l + b2

l − q, l = 2, . . . , p,

wl ∈ (q, Q), wl ± wm ∈ [2kπ − 2q, 2kπ + 2q], l, m ∈ 1, . . . , p, k ∈ Z ,

whereq > 0 can be arbitrarily small andQ arbitrarily large.

Under the above conditions, the information from the firstn observations is

Ψ2
n =

I

2




N
1
2 (Γ1 + O( 1

n))N
1
2 N

1
2O( 1

n)N
1
2 · · · N

1
2 O( 1

n)N
1
2

∗ N
1
2 (Γ2 + O( 1

n))N
1
2

...
...

∗ ∗ ... N
1
2 O( 1

n)N
1
2

∗ ∗ ∗ N
1
2 (Γp + O( 1

n))N
1
2




,

whereΓl is defined by

Γl =




1 0 bl
2

∗ 1 −al
2

∗ ∗ a2
l+b2

l
3


 .

Conditions(A), (B) and(D) (from the proof of Theorem 3) are satisfied as before, and condition

(D) is dependent on the following generalization of Lemma 2.

Lemma 2∗ Consider the several-frequency model given above, and define forε ∈ (0, 1) and

τ = [α1, β1, v1, . . . , αp, βp, vp],

An =

{
θ, τ ∈ Θ :

p∑
l=1

{|al − αl| + |bl − βl| + n|wl − vl|} > n−ε

}
.

Then there exists a finite constantC so that

inf
An

n∑
j=1

E

[ p∑
l=1

{al cos(wltj) + bl sin(wltj) − αl cos(vltj) − βl sin(vltj)}
]
≥ Cn1−2ε. (2.89)
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DefiningH(θ, τ) to be the outer summation term in (2.89), one can obtain

H(θ, τ) =
n

2

p∑
l=1

(|cl|2 + |γl|2)

−
p∑

l,m=1

Re


clγ

∗
mφ(wl−vm)

n∑
j=1

ei(wl−vm)j + clγmφ(wl+vm)
n∑

j=1

ei(wl+vm)j


 .

(2.90)

The case
∑p

l=1 n|wl − vl| < 1
2n−ε works exactly the same as in the proof of Lemma 2. The

ordering of the{a2
l+b2

l } in the parameter space ensures that permuting the{wl} does not lead to an

equivalent fit. Although there are 2p2 terms in the summation overl, m in (2.90), havingθ, τ ∈ Θ

ensures that onlyp of these can simultaneously grow faster thanO(1). [If a term involvingwl is

growing withn, then all other terms involvingwl areO(1); the same applies for thevm.] Thus

H(θ, τ) ≥ n

2

p∑
l=1

(|cl|2 + |γl|2) −
p∑

k=1

|clk||γmk
||φ(wlk±vmk

)|
∣∣∣∣∣∣

n∑
j=1

ei(wlk
±vmk

)j

∣∣∣∣∣∣+ O(1),

where{lk} and{mk} are each permutations of 1, . . . , p. So case splitting as in Lemma 2, and

for each pair[wlk, vmk
] either completing the square or using a Taylor expansion, Lemma 2∗ is

completed.

Thus under regularity conditions, the MLE is consistent, asymptotically normal with

meanθ and varianceΨ−2
n , and asymptotically efficient for a suitable family of loss functions.

2.4 Simulation Study

In Sections 2.2 and 2.3, consistency results were shown for the jittered cosine model with

w 6= kπ, but forw = kπ the periodogram estimates were sometimes inconsistent and behavior of

the MLE was not derived. In this section we present simulations using the jittered cosine model in

order to investigate convergence of the estimates for frequencies at or near multiples ofπ, and, in

cases for which the estimates are known to be consistent, in order to to compare the distribution of

the estimates for finite samples with the asymptotic distribution. We also performed simulations

using real observation times to see if the behavior of the estimates for these times was consistent

with the behavior for the jittered sampling model.
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Summary of Results

Using data generated from the jittered cosine model, we found that the finite sample

distributions of the periodogram and maximum likelihood estimates were consistent with the

asymptotic values for two frequencies that are not integer multiples ofπ and for two sample

sizes. For three frequencies that are multiples ofπ, the MLE appeared to be consistent while

the periodogram estimate was sometimes apparently inconsistent, tending towards a pseudo-alias

frequency. In cases when the periodogram estimate was inconsistent, the range of true frequencies

about a multiple ofπ for which the periodogram estimated the pseudo-alias instead of the true

frequency drops in length withn at rate approximatelyn−1.

In simulationsusing sample times from one of the MACHO light curves, the periodogram

estimate of frequency was sometimes inconsistent forw = kπ while the MLE appeared to be

consistent. For a frequency that is not a multiple ofπ, the maximum likelihood and periodogram

estimates had similar variances, but the periodogram estimate had large bias. This suggests that

the uncompetitive performance of the periodogram for random sample times comes from a bias

that is caused by the unevenly-spaced times.

In general, the maximum likelihood estimate performed better than the periodogram

estimate, with lower MSE and apparent consistency at the frequenciesw = kπ.

2.4.1 Times Sampled from the Jittered Model

Data Generation

Data were simulated from the jittered cosine model of Section 2.1, with the observational

noise generated from a normal distribution with mean zero and varianceσ2; the MLE is the least

squares estimate under this model. The variables{δj} were generated from a uniform distribution

over[−1
6,

1
6]; this model was chosen to mimic the approximately eight hours a day in which it is dark

enough to collect astronomical data. For each given combination of parameter values[a, b, w, σ2],

100 datasets of size 200 observations were generated; the parameter estimates were calculated

using the first 25, 50, 100 and 200 observations in turn. These sample sizes were chosen to span

typical values for variable star data. The periodogram estimates were obtained by maximizing the

periodogram over some range[0, Ω] as in Section 2.2. To obtain the least squares estimates, for a

given frequencyv ∈ [0, Ω] the valuesyj were regressed on cos(vtj), sin(vtj) to obtain estimates

ǎn,v , b̌n,v; for v = 0 the regression was on a vector of ones andb̌n,v was taken to be zero. Then the
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residual sum of squares

SSn(v) =
n∑

j=1

{yj − ǎn,v cos(vtj) − b̌n,v sin(vtj)}2

was minimized forv ∈ [0, Ω], giving w̌n, ǎn andb̌n. The maximization of the periodogram and

the minimization of the RSS are computationally difficult, and issues relating to this are discussed

in Section 3.2. Maximization or minimization was done using the two-stage optimization scheme

described in Section 3.2. In the first stage, the function is optimized over a grid of frequency

values spaced120n
−1 apart on the interval[0, Ω] (wheren is the number of observations used in the

estimation). This gives rough estimates of the local optima of the function. The five best optima,

vm, m = 1, . . . , 5, are further refined using grids spaced120,000n
−1 apart over[vm − 1

20n
−1,

vm + 1
20n

−1]. These specifications correspond to the values[a, b] = [0, Ω], r1 = 20,r2 = 20, 000,

M = 5, andδ = 1
10n

−1 in the notation of Section 3.2. Optimization using a more computationally

intensive method (M = 20, δ = n−1) for a limited number of examples gave identical estimates

to those using the above method. This suggests that the frequency estimates using this method

should be accurate within 1
20,000n

−1.

Frequency not near a multiple ofπ

Asymptotic distributions of the parameter estimates were presented in Sections 2.2 and

2.3 for frequenciesw 6= kπ, but little is known about the distributions of the parameters for finite

sample size. We performed simulations for a couple of frequencies to compare the observed

distribution of the estimates with the asymptotic distribution.

Example 1. Frequency equal to2.4π.

Simulations were run for a constant amplitudea2+b2 = 1 and noise varianceσ2 = 0.04,

but with five choices of phase, specified by[a, b] equal to[1, 0], [ 1√
2,

1√
2], [0, 1], [− 1√

2, 1√
2] and

[−1, 0]. Table 2.1 shows the bias divided by its standard error, variance, and MSE of the scaled

estimates of frequency from maximum likelihood (n3/2w̌n) and the periodogram (n3/2ŵn) for the

five combinations of parameters. These values are displayed for estimates calculated at sample

sizes of 50 and 200; the data in the “n = 50” row of a given model is a subset of the data in the

‘n = 200” row.

The variances of the maximum likelihood estimate agreed closely with the asymptotic

variance. Using Theorem 3, the asymptotic variance of the scaled estimaten3/2w̌n is 0.96 for

each of the 5 parameter combinations. The sample variances ranged between 0.77 and 1.23. As a
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Table 2.1: Bias, variance, and MSE of the scaled maximum likelihood and periodogram estimates
of frequency, for 5 values of[a, b] and sample sizes of 50 and 200 observations. The true frequency
is w = 2.4π and the noise variance isσ2 = 0.04.

Maximum Likelihood Periodogram

a, b n Bias/SE Var. MSE Bias/SE Var. MSE

1,0 50 -0.33 1.23 1.23 0.72 5.85 5.88
200 0.51 0.78 0.78 0.98 5.92 5.97

1√
2, 1√

2 50 0.21 1.20 1.20 0.00 7.55 7.55

200 -0.56 1.18 1.19 0.53 6.92 6.94
0,1 50 1.02 0.74 0.74 2.05 5.64 5.88

200 0.95 1.13 1.14 0.14 6.84 6.84
−1√

2, 1√
2 50 -0.56 1.01 1.01 -0.95 6.37 6.42

200 2.31 0.74 0.77 2.69 5.98 6.41
-1,0 50 1.27 1.05 1.06 0.78 7.12 7.16

200 0.23 0.93 0.93 0.37 5.89 5.90

sample variance calculated over 100 values has approximately aτ2χ2(99) distribution, whereτ2

is the unknown variance of the variates in the sample, the acceptance region of a 95%-level test of

H0 : τ2 = τ2
0 versus Ha : τ2 6= τ2

0 is [0.74τ2
0, 1.30τ2

0]. For variance 0.96 this is [0.71,1.25], and

so the 10 sample variances are consistent with the asymptotic variance for the maximum likelihood

estimates. This verifies then−3/2 rate of convergence of the frequency estimate and suggests that

the asymptotic covariance matrix can be used in the calculation of confidence intervals and tests

of hypothesis. The biases in the frequency estimate were generally not large, resulting in the MSE

being virtually identical to the sample variance. One of the biases was larger than±2 standard

errors (where the standard error is calculated from the estimated variance), but as the standard error

it corresponds to was unusually small, this does not seem a concern.

The asymptotic variance of the scaled periodogram estimaten3/2ŵn is 6.63, using

Theorem 2, and the acceptance region of a 95%-level test of this variance against a two-sided

alternative is [4.9,8.6]. All of the sample variances of the periodogram estimates fell in this

interval, and so the observed variances are again consistent with the asymptotic value. A couple of

the biases were larger than 2 standard errors, but again these correspond to unusually low variance

estimates. 2
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Table 2.2: Bias, variance, and MSE of the scaled maximum likelihood and periodogram estimates
of frequency, for 2 values of[a, b] and sample sizes of 50 and 200 observations. The true frequency
is w = 0.5π and the noise variance isσ2 = 0.04.

Maximum Likelihood Periodogram

a, b n Bias/SE Var. MSE Bias/SE Var. MSE

1,0 50 -0.62 0.73 0.73 -0.02 1.54 1.54
200 0.57 0.81 0.81 0.01 1.65 1.65

0,1 50 -0.77 0.89 0.89 0.39 2.24 2.24
200 -0.46 0.66 0.66 0.16 1.67 1.67

Example 2. Frequency equal toπ
2 .

Simulations were run with[a, b] = [1, 0] and [0, 1] and noise varianceσ2 = 0.04, in

order to compare the observed distribution with the asymptotic one whenw is a multiple of π
2 .

Table 2.2 shows the bias, variance, and MSE of the scaled frequency estimates from maximum

likelihood and the periodogram for the two parameter combinations and two sample sizes: 50

and 200 observations. The asymptotic variance of the scaled MLE of frequency is 0.96, and

the acceptance region for testing this variance at the 95% level is [0.71,1.25]. One of the sample

variances (0.66) fell outside these bounds and the other three look low on average. It is possible that

the finite sample variances approach the asymptotic value more slowly atw = π
2 , but care should

be taken as this may be a spurious result of multiple tests. Nevertheless, the sample variances were

of the correct order of magnitude and were close to the asymptotic values. None of the biases were

large and so the MSEs were identical to the variances in this case.

The asymptotic variance of the scaled periodogram estimates is 2.00, calculated using

Theorem 2. This gives acceptance region of [1.5,2.6], and all of the sample periodogram variances

fell within these bounds. As in the MLE case, the biases were quite small. 2

Frequency Equal to a Multiple of π

Simulations were performed to demonstrate the inconsistency of the periodogram and to

investigate the behavior of the least squares (MLE) estimator.

Example 3. Frequency equal to2π.

Simulations were performed with[a, b] = [1, 0] and [0, 1] and noise varianceσ2 =
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Table 2.3: Mean squared error of frequency estimates from maximum likelihood and the peri-
odogram. The true frequency wasw = 2π and the MSE was calculated about the apparent limiting
frequency,w∗. The figures in parentheses are the number of outlying points not included in the
MSE calculation. Note: In the first column of MSE values, the omitted values were clustered about
the value 0; in the third and fourth columns they were clustered about 4π and 6π respectively.

Model with [a, b] = [1, 0] Model with [a, b] = [0, 1]

MLE PG MLE PG
Observations w∗ = 2π w∗ = 0 w∗ = 2π w∗ = 4π

25 1.35 e–4 (6) 0.00 e+0 3.23 e–5 (9) 3.42 e–4 (3)
50 1.61 e–5 0.00 e+0 5.66 e–6 (2) 4.12 e–5 (1)

100 1.32 e–6 0.00 e+0 6.28 e–7 4.59 e–6
200 1.90 e–7 0.00 e+0 8.56 e–8 5.62 e–7

.04. The frequency estimates were obtained by optimization of the periodogram or RSS over

v ∈ [0, 3.51π]. Table 2.3 shows the mean squared error of the frequency estimates from the 100

datasets simulated for each combination of parameters. The MSE is calculated about the apparent

limit in probability of the estimates asn becomes large, as the estimates did not always appear

to converge to the true values. The frequency estimates are often clustered about a few distinct

values. For example, Table 2.4 shows the sorted frequency estimates corresponding to the MSE

in the third column of the first row of Table 2.3; most of the values are within 0.015 of the true

frequency 2π, but nine are in the region of 4π. In all cases, outlying estimates were clustered about

values that differed from the true frequency by a multiple of 2π. This is hardly surprising, as in

the proof of Theorem 1 the periodogram is found to be of ordern at the frequencies±w ± kπ but

of orderOp(n1/2) elsewhere; equivalent results appear in the proof of Lemma 2 for the MLE case.

As n gets large, these competing values must appear with decreasing frequency for the estimate to

be consistent.

The MLE of frequency appears to be consistent for both values of[a, b]; the number of

estimates at a competing frequency quickly drops to zero, and the MSE is tending to zero with

order of approximatelyn−3. Inspection of the estimates of[a, b] also suggest convergence to the

true values for least squares. In Section 2.3.3 it is suggested that if the least squares estimates are

consistent, the limiting distribution ofN1/2(θ̌ − θ) could be normal with zero mean and variance

matrix Ψ−2
n , whereΨ2

n was given in (2.88). This would parallel the behavior proven forw 6= kπ.
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Table 2.4: 100 maximum likelihood estimates of frequency from samples of size 25, for the jittered
cosine model withw = 2π and[a, b] = [0, 1].

6.270 6.270 6.272 6.272 6.272 6.272 6.273 6.273 6.274 6.274
6.274 6.275 6.275 6.275 6.276 6.276 6.277 6.277 6.277 6.277
6.278 6.278 6.278 6.278 6.278 6.279 6.279 6.280 6.280 6.280
6.280 6.281 6.281 6.281 6.281 6.281 6.281 6.281 6.281 6.282
6.282 6.282 6.282 6.282 6.282 6.283 6.283 6.283 6.284 6.284
6.284 6.284 6.284 6.284 6.284 6.284 6.284 6.284 6.284 6.284
6.285 6.285 6.285 6.285 6.285 6.285 6.285 6.286 6.286 6.287
6.287 6.287 6.287 6.287 6.287 6.287 6.287 6.288 6.288 6.288
6.288 6.288 6.289 6.289 6.289 6.290 6.290 6.292 6.292 6.294
6.296 12.535 12.538 12.547 12.553 12.553 12.555 12.568 12.582 12.594

All of the observed variances were consistent with the theoretical values from the inverse of the

information matrix, and all but one of the observed means were consistent with the theoretical zero

value.

The periodogram estimates did not appear to be consistent for this example. For[a, b] =

[1, 0], all of the frequency estimates were identically zero; this lack of variability may seem

surprising, but should not as the periodogram had a local maximum exactly at zero. Why is the

frequency estimate tending towards zero? From (2.63), the periodogram at zero has limiting value

In(0) = 2n|φ(2π) + φ(2π)|2 + Op(n1/2),

so by substitutingφ(2π) = 0.8270, 1
nIn(0) has a limiting value of 5.471. Similarly, using

(2.62) andφ(4π) = 0.4135, the limiting value of1nIn(2π) is 3.996, which explains why the

periodogram is maximized atv = 0 rather thanv = 2π. The periodogram also seems inconsistent

for [a, b] = [0, 1]; in this case the estimate was converging towards the value 4π. 2

Example 4. Frequency equal toπ.

Table 2.5 shows the equivalent results for the model withw = π. For [a, b] = [1, 0] the

MLE of frequency converged rapidly to the true value. The variance of the observed estimates

for n = 200 was consistent with the theoretical value given in (2.88), suggesting that the inverse

information can be used as a variance estimate even whenw = kπ. The periodogram estimate of

frequency also converged rapidly to the true value.
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Table 2.5: Mean squared error of frequency estimates from maximum likelihood and the peri-
odogram. The true frequency wasw = π and the MSE was calculated about the apparent limiting
frequency,w∗. The figures in parentheses are the number of outlying points not included in the
MSE calculation. Note: In the third column of MSE values, the omitted values are clustered about
the values 3π and 5π, while those of the fourth column are clustered about 3π only.

Model with [a, b] = [1, 0] Model with [a, b] = [0, 1]

MLE PG MLE PG
Observations w∗ = π w∗ = π w∗ = π w∗ = 5π

25 5.17 e–4 8.67 e–5 3.38 e–5 (50) 1.11 e–3 (44)
50 4.14 e–5 9.24 e–6 3.75 e–6 (42) 9.36 e–5 (45)

100 6.91 e–6 1.11 e–6 4.88 e–7 (35) 1.48 e–5 (38)
200 7.26 e–7 1.52 e–7 4.51 e–8 (20) 1.46 e–6 (38)

For [a, b] = [0, 1] the MLE seems to be converging slowly to the true frequency: for

n = 200, 20% of the estimates are clustered around 3π. The variance of the observed frequency

estimates forn = 200 (calculated omitting the 20 outliers) was lower than that suggested by (2.88),

but this could be due to bias from the omission of the outlying values. The periodogram frequency

estimates are clustered mainly aroundw∗ = 5π, but there are a group of estimates around the

value 3π which do not become less common asn gets large. The expected limiting value of

the periodogram at the frequenciesπ, 3π and 5π is 1
nIn(3π) → 0.342, 1

nIn(5π) → 0.342, and
1
nIn(π) → 0.060, showing why the values 3π and 5π both appear with stable proportions asn gets

large. 2

Example 5. Zero Frequency.

In this example only[a, b] = [1, 0] was used, as settingb 6= 0 makes no difference to

the model. Both the maximum likelihood and periodogram estimates of frequency converged to

the true value forw = 0. Two of the maximum likelihood estimates were clustered near 2π for

n = 25, but otherwise all of the estimates of frequency were closely clustered around the true

value. The MSE for the MLE was 5.67 e–4 forn = 25, 8.72 e–5 forn = 50, 1.91 e–5 forn = 100,

and 2.80 e–6 forn = 200, which is approximatelyn−3 convergence. About 40% of the maximum

likelihood estimates of frequency were identically zero for all sample sizes, suggesting that SSn(v)

often has a local minimum atv = 0. By contrast, the periodogram estimates of frequency were

all identically zero for each sample size,illustrating rapid convergence of the type discussed in
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Hannan (1971). Estimates of[a, b] seemed consistent using maximum likelihood and inconsistent

using the periodogram. 2

In summary, the least squares(maximum likelihood) estimate of frequency appeared

consistent for the three frequencies used. There is no guarantee that this applies for allw = kπ

and combinations of[a, b], and it would be interesting to prove consistency for this case. From

this limited investigation, it is plausible that least squares estimates that are consistent forw = kπ

have asymptotic variance equal to the inverse of the information matrix of the observations. The

periodogram was sometimes consistent and sometimes not, depending on the values of[a, b], and

although not illustrated here, also depending on the shape of the characteristic functionφ(.).

Frequency Close to a Multiple ofπ

It has been shown above that the periodogram estimates are consistent forw 6= kπ, and

may be inconsistent forw = kπ. In this section we discuss the behavior of the periodogram when

the true frequency is close tokπ.

The periodogram at frequencyv can be expressed as

In(v) = 2
n
|cEBn(v + w) + c∗EBn(v − w)|2 + Op(n1/2),

where the order term is uniform forv ∈ [0, Ω]. This is shown by an argument similar to that

preceding (2.26). AsIn(v) is of ordern at the true frequency, and the frequency estimate ˆwn is

obtained by maximizing the periodogram, study of the maximum of

Jn(v) = 2
n
|cEBn(v + w) + c∗EBn(v − w)|2

= 2
n

∣∣∣∣∣∣cφ(v + w)
n∑

j=1

ei(v+w)j + c∗φ(v − w)ei(v−w)j

∣∣∣∣∣∣
2

should give information on the behavior of ˆwn for largen. In Theorem 3 it was shown that the

maximum likelihood estimate has uniform convergence if the true frequency is bounded away from

the multiples ofπ. The same is true of the periodogram estimates, but a stronger result can be

obtained: the estimates are uniformly consistent for a parameter space in which the frequency may

approach one of the valueskπ asn → ∞. For a givenn, consider the parameter space

Θn = {[a, b, w] : a2 + b2 ∈ (m, M), w ∈ [0, M ], |w − kπ| > η(n), ∀k ∈ Z},

in whichm > 0 can be arbitrarily small,M can be arbitrarily large, andη(n) tends to zero slower

thenn−1, i.e. limn→∞ nη(n) = ∞. Inconsistency in the frequency estimate can arise when both
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of the terms inJn(v) are of ordern; the proof of Theorem 1 shows that if only one of these terms

can be of ordern for a givenv, then the frequency estimate is consistent. Forθ ∈ Θn, if one of

v + w, v − w is closer thanη(n) from a multiple of 2π (a necessary but not sufficient condition

for ordern behavior), then the other is at leastη(n) away from all multiples of 2π. Without loss

of generality, letv − w be withinη(n) of a multiple of 2π. Then for largen,∣∣∣∣∣∣
n∑

j=1

ei(v+w)j

∣∣∣∣∣∣ ≤
∣∣∣∣ sin(n(v + w)/2)
n sin((v + w)/2)

∣∣∣∣
≤ | sin(η(n)/2)|−1,

which by the definition ofη(n) is o(n). So if one of the terms inJn(v) is of ordern, the other is of

order uniformly inferior ton. Thus the periodogram estimate of frequency is uniformly consistent

for θ ∈ Θn, and uniform consistency for[a, b] follows. This means that asn increases, one can

estimate frequency closer and closer to multiples ofπ without sacrificing rate of convergence, as

long as the frequency approacheskπ at a rate slower thenn−1.

For a given sample size and parameter values, it is informative to see how close the true

frequency must be tokπ in order to cause problems with the estimation. This is illustrated by a

couple of examples.

Example 6. Frequency near2π.

In this example[a, b] = [1, 0] and the true frequency isw = 2π(1 + η), whereη is

small. If η = 0, the values of1nJn(2πη) and 1
nJn(2π(1 + η)) are 5.471 and 3.996, so we

expect the periodogram frequency estimate to be in the neighborhood of zero if the variance of

the periodogram is sufficiently small. Ifη is larger then zero then1nJn(2πη) and 1
nJn(2π(1+ η))

are 1.368+ O(n−1) and 2.000+ O(n−1), but theO(.) term is not uniform forη > 0 and the

convergence can be quite slow. Ifη is very close to zero, ˆwn should be in the vicinity of zero; ifη

is sufficiently large, ˆwn should be in the vicinity of 2π. How should we specify the change-point

between the two? One way is to find a value ofη for which the frequency estimate is close to

v = 2π and tov = 0 equally often. For the given model with sample size equal to 25, numerical

computations find that the local maximum ofJn(v) nearv = 0 and the local maximum ofJn(v)

nearv = 2π are of equal height forη = 0.01. So forη = 0.01, one expects the frequency estimate

to be in the vicinity ofv = 2π andv = 0 equally often, depending on the noise inIn(v). [The

location of the local maximum does not have an explicit form, but as the functionBn(v + w) is

ordern atv = −2πη, Bn(v −w) is ordern atv = 2πη, andBn(.) is smooth near its maxima, the

local maximum ofJn(v) near zero will usually fall in the interval[−2πη, 2πη]; similarly, the local
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maximum ofJn(v) nearv = 2π usually falls in[2π(1− η), 2π(1+ η)].]

Table 2.6 shows the ratio of the local maximum ofJn(v) near the true frequency 2π(1+η)

to the local maximum ofJn(v) near the competing frequencyv = 0, for sample sizesn =

25, 50, 100, 200 and for four values ofη. The firstη value is 0.01 as mentioned above, and the rest

decrease in factors of two; these were chosen to see how the ratio behaved ifη changed liken−1

asn → ∞. Along the diagonal of the table the ratios are approximately one. For larger values of

η at a given sample size, the ratio is greater than one; for smaller values ofη it is less than one.

Thus the interval of frequencies for which the maximum ofJn(v) is near 0 instead of near the true

frequency decreases in length liken−1. [The rate is notexactlyn−1; the values ofη for which

the ratio is exactly unity are 0.01 forn = 25, 0.051 forn = 50, 0.0026 forn = 100 and 0.013

for n = 200.] The values in the upper-right of the table are identical, but this is an artifact of the

values ofη andn chosen; for example, forη = 0.01 andn = 75 the values of the ratio is 1.432.

Table 2.7 shows the number of periodogram frequency estimates from 100 simulated

datasets that were in the vicinity of the true frequencyw = 2π(1+ η) instead of near zero. They

were obtained for the same values ofn andη used in Table 2.6; two levels of noise variance were

used,σ2 = .04 andσ2 = .16. The combinations ofn andη for which the ratio in Table 2.6 was

less than one gave estimates that were all near zero (in fact, they were identically zero because the

periodogram has a local maximum atv = 0). Similarly, the combinations for which the ratio was

greater than one gave estimates that were almost all close to the true frequency. When the ratio was

close to one, the frequency estimates were clustered about the true and competing frequencies. For

n = 25 andn = 50, the proportion of estimates close to the true value was about one-half, but for

the two larger values ofn this decreased, to 44/100 forn = 100 and 37/100 forn = 200. There

seem to be two explanations of this: forn = 100, 200, the ratio is smaller than forn = 25, 50;

and asn → ∞ the variability of the periodogram becomes small, so the maximization of the

periodogram will be more sensitive to small differences in the height ofJn(v) for different values

of v. The results were consistent over the two levels of noise variance used. Overall, studying

the maxima ofJn(v) gives a clear indication of the behavior of the frequency estimate if the true

model is known. 2

Example 7. Frequency nearπ.

In this model, the true frequency isw = π(1− η) for η small, and[a, b] = [0.2, 1].

The values of1nJn(π) and 1
nJn(3π) are 0.1634 and 0.2325, so whenη = 0 the periodogram

frequency estimates should converge to 3π instead ofπ. Forη larger than zero,1nJn(π(1−η)) and
1
nJn(3π − πη) are equal to 2.08+ O(n−1) and 1.4226+ O(n−1) respectively and the frequency
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Table 2.6: Ratios of the local maximum ofJn(v) nearv = 2π to the local
maximum nearv = 0, for the jittered cosine model withw = 2π(1 + η),
[a, b] = [1, 0] andδ1 uniformly distributed over[−1

6, 1
6].

Ratios

η n = 25 n = 50 n = 100 n = 200

0.01 1.006 1.462 1.462 1.462
0.05 0.763 0.987 1.462 1.462
0.0025 0.737 0.762 0.978 1.462
0.00125 0.732 0.737 0.761 0.974

Table 2.7: Number of periodogram frequency estimates (out of a possible 100)
in the vicinity of 2π, for data simulated from the jittered cosine model with
w = 2π(1+ η), [a, b] = [1, 0] andδ1 uniformly distributed over[−1

6,
1
6]. The

periodogram was maximized overv ∈ [0, 3π], and two levels of observational
noise variance were used.

Number out of 100

η σ2 n = 25 n = 50 n = 100 n = 200

0.01 0.04 53 99 100 100
0.05 0.04 0 50 100 100
0.0025 0.04 0 0 44 100
0.00125 0.04 0 0 0 37

0.01 0.16 55 97 100 100
0.05 0.16 0 52 99 100
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estimate should converge to the true value. Table 2.8 shows the ratio of the local maximum ofJn(v)

nearv = π to the local maximum ofJn(v) nearv = 3π, for n = 25, 50, 100, 200 and four values

of η decreasing by factors of two, chosen so that the ratios along the diagonal are close to one. As

η or n increase the ratio becomes greater than one, and as they decrease it becomes less than one,

but note that the increase or decrease is not monotonic inn andη. The corresponding number of

frequency estimates that were in the vicinity of the true frequency are shown in Table 2.9. For

each value ofη, 100 datasets were generated from the model with noise varianceσ2 = 0.04, the

periodogram frequency estimates were calculated overv ∈ [0, 3.2π], and the number out of 100

that were close tow = π(1−η) was reported. The results are consistent with those in Example (a):

ratios substantially larger than one led to estimates all close to the true value; ratios less than one

had all estimates near the competing frequency 3π (except for a few cases forn = 25, when

the variability in the periodogram was larger); along the diagonal, the counts were close to 50%,

and slightly larger than this when the ratio was slightly larger than one. So as in Example (a),

the observed behavior of the frequency estimates from the periodogram agree with the behavior

predicted by looking atJn(v). 2

In summary, the behavior of the periodogram estimate of frequency can be predicted for

frequencies close to multiples ofπ if the parameters[a, b, w] and the characteristic functionφ(.)

are known. In these two examples, the region of frequencies around a multiple ofπ for which the

estimated frequency was not close to the true value decreased with ordern−1. This agrees with

the theory shown above that the frequency can be uniformly estimated on a frequency space that

approaches the multiples ofπ if the rate of approach is of order shower thann−1.

2.4.2 Times from Real Life

Earlier in this chapter, consistency and asymptotic normality results were presented for

the jittered cosine model which show that the periodogram can be inconsistent forw = kπ and is

less efficient than maximum likelihood. However, the jittered observation model is unrealistic in

several ways:

• There is exactly one observation per day, while in reality there might be multipleobservations

taken per night, or no data collected for a few days.

• The range of times each day in which observations are taken is constant over time, but the

time period each day in which it is dark enough to collect data changes with the time of year.
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Table 2.8: Ratios of the local maximum ofJn(v) nearv = π to the local
maximum nearv = 3π, for the jittered cosine model withw = π(1 − η),
[a, b] = [0.2, 1] andδ1 uniformly distributed over[−1

6, 1
6].

Ratio

η n = 25 n = 50 n = 100 n = 200

0.0062 1.051 1.721 1.400 1.421
0.0031 0.275 1.020 1.708 1.400
0.00155 0.271 0.268 1.005 1.701
0.000775 0.457 0.277 0.264 0.997

Table 2.9: Number of periodogram frequency estimates in the vicinity ofπ,
for 100 datasets simulated from the jittered cosine model withw = 2π(1+ η),
[a, b] = [1, 0], andδ1 ∼ U [−1

6,
1
6]. The noise variance wasσ2 = 0.04, and the

periodogram was maximized overv ∈ [0, 3.2π].

Number out of 100

η n = 25 n = 50 n = 100 n = 200

0.0062 62 100 100 100
0.0031 5 65 100 100
0.00155 0 0 57 100
0.000755 7 0 0 49
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Figure 2.5: Time of night plotted against date for the times of 200 observations from the red band
of star 77043:4317.

• Observation times on different days are assumed independent, while in real life there may

be systematic patterns in the viewing schedule.

Thus it is possible that the results using the jittered model are not useful for real-world data. We

present simulations using observation times from one of the MACHO light curves to compare the

behavior of the periodogram and maximum likelihood estimates with that under the jittered model.

The observation times used are taken from the red band of star 77043:4317. In keeping

with the simulations in Section 2.4.1, a sequence of 200 observations was used, spanning the

243-day period from December 27, 1992 until August 27, 1993. The time of night at which these

observations were taken ranged between 6:08pm and 6:00am. Figure 2.5 shows the time of day

plotted against date for these 200 times. The distribution of the times differs from the jittered

model in a number of ways:

• The span of time of day observed varies with the season; near the Winter solstice (December

21) the span of times is less than eight hours, while in the middle of Summer (the Summer

solstice falls near Day 170) the observation times span a 12-hour period.

• There is a substantial period of time during the night in which no measurements were taken,

and this varies with the time of year; this corresponds to the times when the Large Magellanic
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Cloud is either below the horizon or too close to the horizon for clear viewing.

• Over the 243-day observation period, there were 102 days (43%) on which no data was

collected. A single observation was taken on 87 of the days (36%), two observations were

taken on 51 days (21%) and there were three days on which three or more observations were

made. This gives an average sampling rate of 0.82 observations per day.

Data Generation

Simulations were performed as described in “Data Generation” in Section 2.4.1, except

that instead of generating the observation times from the jittered sampling model withδ1 ∼
U [−1

6, 1
6], the observations times in Figure 2.5 were used. So while previously the set of 200

observations times varied over the 100 simulated datasets, in these simulations the observation

times are fixed while the observational noise varies.

Frequency Not Near a Multiple of π.

Simulation results are presented in order to compare the bias and variance of parameter

estimates from the two methods in an example in which they both converge to the true parameters.

Example 1. Frequency equal to2.4π, continued.

Data were generated from the model (2.2) withw = 2.4π, [a, b] = [1, 0], [0, 1], and using

the observation times from Figure 2.5. The variance of the observational noise wasσ2 = 0.04.

Table 2.10 displays the bias,variance, and MSE of the unscaled frequency estimates from maximum

likelihood and the periodogram under this model. In all cases, all the frequency estimates were

close to the true values, with the MSE converging to zero with rate approximatelyn−3. The

periodogram has a higher MSE than the MLE in almost every case, but the difference is less

pronounced than in the simulations with the jittered model, when the ratio of the variance of the

periodogram estimates to the variance of the MLE was about 7. The variances of the maximum

likelihoodand periodogram estimates are almost identical, but the bias in the periodogram estimates

is much larger, falling well outside the±2 SE bounds in each case. This differs from thejittered

sampling simulations, in which the biases were negligible but the variance differed between the

maximum likelihood and periodogram estimates. In the jittered model simulations, the observation

times were random, while in the simulations of this section the sampling times were fixed. The
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Table 2.10: Bias, variance, and MSE of the maximum likelihood and periodogram estimates of
frequency, for true frequencyw = 2.4π and 2 values of[a, b]. The noise variance isσ2 = 0.04 and
the observation times are those of Figure 2.5.

Maximum Likelihood Periodogram

a, b n Bias/SE Var. MSE Bias/SE Var. MSE

1,0 25 -0.6800 5.53 e-05 5.56 e-05 -37.60 5.41 e-05 8.17 e-04
50 -0.0245 4.27 e-06 4.27 e-06 3.93 3.30 e-06 3.82 e-06
100 -1.0300 5.06 e-07 5.12 e-07 -8.65 5.75 e-07 1.00 e-06
200 -0.2040 7.71 e-08 7.71 e-08 3.92 7.22 e-08 8.32 e-08

0,1 25 0.6440 6.33 e-05 6.36 e-05 38.60 3.61 e-05 5.75 e-04
50 0.2290 3.71 e-06 3.71 e-06 -4.20 5.11 e-06 6.01 e-06
100 1.6800 7.30 e-07 7.50 e-07 7.41 6.07 e-07 9.40 e-07
200 0.7190 7.37 e-08 7.41 e-08 -2.26 7.71 e-08 8.10 e-08

variances of the frequency estimate under fixed and random sampling times are related by

Var[wn] = E[Var[wn|t1, . . . , tn]] + Var[E[wn|t1, . . . , tn]],

in which wn denotes an estimate ofw at sample sizen. Since the variances of the periodogram

and maximum likelihood estimates are virtually identical when conditioning on the sample times,

the increased variance of the periodogram estimate under the unconditional model is due to a

large value of Var[E[ŵn|t1, . . . , tn]]. Thus the periodogram estimate has bias that depends on the

random sampling times, confirming our supposition in Section 2.3.1 that the periodogram estimate

is adversely affected by variability in the sampling times, while the MLE is not affected in this

fashion. 2

Frequency a Multiple of π.

Simulations were performed to see if the periodogram estimate appears to be inconsistent

for some frequencyw = kπ, as was the case for the jittered model, and to compare this with the

behavior of the MLE.

Example 3. Frequency Equal to 2π, continued.



67

Table 2.11: Mean squared error of frequency estimates from maximum likelihood and the peri-
odogram, for frequencyw = 2π, [a, b] = [1, 0] and[0, 1], and observation times from Figure 2.5.
The MSE was calculated about the apparent limiting frequency,w∗; the figures in parentheses are
the number of outlying points not included in the MSE calculation. Note: In the first and third
columns of MSE values, the omitted values were clustered about 0 and 4π respectively, while the
omitted values in the second and fourth columns were in the neighborhood of 2π.

Model with [a, b] = [1, 0] Model with [a, b] = [0, 1]

MLE PG MLE PG
Observations w∗ = 2π w∗ = 0 w∗ = 2π w∗ = 4π

25 3.16 e–4 (1) 0.00 e+0 7.10 e–5 (3) 5.54 e–4 (25)
50 6.18 e–6 0.00 e+0 3.00 e–6 4.95 e–6

100 1.26 e–6 0.00 e+0 5.59 e–7 4.84 e–6
200 7.79 e–8 0.00 e+0 (1) 7.17 e–8 NA (100)

Table 2.11 displays the mean squared error of the maximum likelihood estimates from

the model (2.2) withw = 2π, [a, b] = [1, 0] and [0, 1], and varianceσ2 = 0.04, using the actual

observation times described above. For both values of[a, b], the MLE appears to be converging

to the true frequency. The periodogram estimate does not appear to converge to the true value

in either case: for[a, b] = [1, 0] all but one of the estimates are identically zero (similar to what

was observed in Table 2.3), while for[a, b] = [0, 1] the estimates were mainly clustered about the

values 2π and 4π but did not seems to be converging to one of these in particular. 2

Example 4. Frequency Equal toπ, continued.

The results from the equivalent simulations withw = π are presented in Table 2.12.

For both values of[a, b], the maximum likelihood estimate of frequency appeared to converge

to the actual value, with the MSE falling with rate approximatelyn−3. For [a, b] = [1, 0], the

periodogram estimate did not seem to be converging, with 71 out of 100 estimates close to 5π

for n = 100, but all 100 estimates close to 3π for n = 200. Also, the MSE does not seem to be

decreasing withn. For [a, b] = [0, 1] the estimates seem to converge to the true value, if slowly.2

Example 4. Frequency Equal toπ, continued.

Simulations were run withw = 0 and [a, b] = [1, 0]. Both the maximum likelihood

and periodogram estimates converged to the true frequency. Thirteen of the maximum likelihood

estimates were clustered near 2π for n = 25. The MSE of the maximum likelihood estimates was
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Table 2.12: Mean squared error of frequency estimates from maximum likelihood and the pe-
riodogram for frequencyw = π, where the MSE was calculated about the apparent limiting
frequency. The observation times came from Figure 2.5, and the noise variance wasσ2 = 0.04.
Note: In the first column of MSE values, the omitted values were in the neighborhood of 3π, while
the omitted values were in the vicinity ofπ in the second column and close to zero in the third
column.

Model with [a, b] = [1, 0] Model with [a, b] = [0, 1]

MLE PG MLE PG
Observations w∗ = π w∗ = 3π w∗ = π w∗ = π

25 6.36 e–5 (28) 3.40 e–3 (55) 6.37 e–5 (1) 6.58 e–4
50 2.48 e–6 (8) 4.67 e–5 (19) 3.17 e–5 9.24 e–6

100 4.64 e–7 (5) 3.45 e–5 (71) 4.72 e–6 1.07 e–5
200 4.74 e–8 1.63 e–5 1.97 e–7 2.72 e–6

7.36 e-4 forn = 25, 4.30 e-5 forn = 50, 7.75 e-6 forn = 100, and 1.76 e-6 forn = 200 (omitting

the outlying values forn = 25), which is approximatelyn−3 convergence. Approximately 70%

of the MLEs were identically zero at each sample size. The periodogram had perfect estimation,

with all estimates identically zero for all sample sizes, showing fast convergence as discussed in

Hannan [22]. 2

The simulations usingw = 0, π, 2π demonstrate that the periodogram applied to actual

observation times can give estimates that do not converge to the true values, as was predicted by

studying the jittered model. So use of the jittered observation model for investigating theoretical

properties seems to be supported by simulations using actual collection times from astronomical

data. The MLE seemed to converge correctly for both frequencies, suggesting that the MLE should

be used instead of the periodogram for unequally spaced observation times, if the time sampling

had periodic effects and the curve of interest is a simple cosine with gaussian-like errors.

2.5 Estimation Using Semiparametric Models

The previous sections discussed the estimation of frequency when the response function

is sinusoidal. Regular periodic variation in time series can have a functional form quite different

from this, and the semiparametric model (2.1) is often more appropriate. In this section we first
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discuss complications that arise when the semiparametric model is used and introduce the concept

of variance bounds for semiparametric models. We consider the variance bound of the frequency

estimate for two sampling models in which the sampling times are independent. In Section 2.5.1

we derive the information bound for the frequency estimate under a model in which the range of

the sampling times grows withn, and show that the bound is the same ifs is known except for

its phase, and in Section 2.5.2 we propose a variance bound for the frequency under the jittered

sampling model.

The frequency is not identifiable under the semiparametric model unless there are addi-

tional conditions on the periodic functions. If both s and

s∗(u) = s(ku)

are in the function spaceS, then the model with periodic functions∗ and frequency1kw is identical

to the model with periodic functions and frequencyw. We call 1
kw asubharmonicof w. In order

that the frequency be identifiable, we define the fundamental frequency to be the largest frequency

out of the group of frequencies that give identical models. A related complication is that of the

harmonics. If the Fourier decomposition ofs(wt) has a large component at the frequencykw, then

the model with this frequency might explain the data almost as well as the model with frequencyw.

Just as the pseudo-aliases±w + k were a complicating factor under the simple harmonic model,

pseudo-aliases of the harmonics and subharmonics will play a role in the semiparametric model.

Information Bound in Parametric Models

Suppose that we have random variablesxj, j = 1, . . . , n, and that the probability density

of xj isfj(xj; θ), whereθ is a parameter vector from spaceΘ. Suppose also that Fisher information

of the firstn observations is again denoted byΨ2(n, θ) and thatr−2
n Ψ2(n, θ) converges toI(θ) as

n → ∞, wherern is a scaling factor. Then under regularity conditions, the variance bound for the

estimators is defined by the following: For all estimatorsT = {Tn} of θ for which rn(Tn − θ)

converges uniformly to a normal distribution, the asymptotic variance satisfies

Σ(θ, T ) ≡ lim
n→∞ Var[rn(Tn − θ)] ≥ I−1(θ), (2.91)

where the inequality is in the sense of ordering of nonnegative-definite matrices.I−1(θ) is the

information boundfor estimation ofθ, and an estimatorT is asymptotically efficientif and only if

equality holds in (2.91), but calculation of the information bound does not guarantee that efficient

or even uniformly normal estimators exist.
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Information Bound in Semiparametric Models

Suppose now that the parameters of the model are[θ, G], in whichθ is a parameter vector

as before andG is an infinite-dimensional parameter from spaceG. Let T be an estimator ofθ

which converges uniformly to a normal distribution, andGf be a finite-dimensional subspace of

G. Then if I(θ, G; G) is the limiting information ofθ for this submodel under scalingrn, under

regularity conditions the asymptotic variance ofrn(Tn − θ) satisfies

Σ(θ, G, T ) ≥ I−1(θ, G; G)

for parameters withG ∈ G. Combining this over all such finite-dimensional subspacesGf , we

define the information bound forθ under the semiparametric model by

I−1(θ, G) ≡ sup
Gf

{I−1(θ, G; G)},

and under regularity conditions, estimatorsT of θ that converge uniformly to a normal distribution

over [Θ, G] have asymptotic variance bounded byI−1(θ, G). Just as for the parametric model,

existence of this bound does not guarantee existence of an efficient estimator or even of one that is

uniformly convergent with scalingrn.

2.5.1 Sampling Without a Day-Effect

We use this model to study the behavior of the frequency estimate when the range of the

sample times grows liken, and there are no periodicities in the sampling distribution. For givenn,

the sample times are modeled as

tj = nuj, j = 1, . . . , n, (2.92)

where theuj are IID from a distribution on some closed interval[a, b] with densityh(.) that does

not change withn. As the distribution of the sample times now depends onn, we introduce

the triangular array notation: For eachn, denote the sampling times bytn1, tn2, . . . , tnn and the

probability density oftnj by hnj(t), which under the model (2.92) is

hnj(t) = 1
n
h( 1

n
t). (2.93)

The responses and observational errors are similarly denoted byynj and εnj , and the response

model (2.1) for givenn becomes

ynj = s(wnuj) + εnj , j = 1, . . . , n. (2.94)
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Note that this is equivalent to a model with IID sample timestnj = uj, and with frequency that

grows proportionally ton.

Proposition 3 Consider the response model (2.94), and assume the following:

(1) The errorsεnj are IID with densityg(ε) independently of{tnj}, and for someρ > 0,

∫ ∣∣∣∣g′g (ε)
∣∣∣∣
2+ρ

g(ε) dε < ∞,

∫ [
∂2

∂ε2g1/2(ε)

]2

dε < ∞. (2.95)

(2) The probability density ofu1, h(u), is continuous foru ∈ [a, b] with bounded derivative, and

Var [u1] > 0.

(3) The regression curves comes fromS, the set of periodic functions with period one that have

uniformly-bounded second derivatives, and that satisfy
∫ 1

0 s′(u)2du > m for somem > 0.

(4) The parameterθ ≡ w comes fromΘ = (m, M), wherem > 0 andM < ∞.

Then over the parameter space[Θ, S],

(a) If s is known except for its phase, the information bound for estimation ofw is

I−1(w, s) =

{
I Var [u1]

∫ 1

0
s′(u)2du

}−1

(2.96)

with scaling factorrn = n3/2, whereI is the amount of information in the densityg(ε).

(b) If the regression functions ∈ S is unknown, the information bound for estimation ofw is the

same as in(a).

Comments:

• Although calculation of the information bound does not prove existence of asymptotically

efficient estimates, the asymptotic variance of an efficient estimator ofw is no larger if the

shape ofs is unknown than if it is known. This is surprising, as one expects to pay a penalty

for not knowing the shape of the function.

• If the periodic function and its phase are known, the information bound is

I−1(w) =
{

I E[ u2
1 ]
∫

s′(u)2 du

}−1

,
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which is usually smaller than the bound for the unknown case. This bound is not invariant

under shifts in the time axis, because knowing both the shape and the phase of the curve

means that the curve is known at time zero, which is like having an additional observation

with no noise att = 0.

• If the noise is normally distributed, the information bound is inversely proportional to the

square of the signal-to-noise ratio, as one would expect: if the curves has amplitudeA and

the noise variance isσ2, the information bound is proportional toσ2/A.

• The information bound is inversely proportional to the variance of the sample times. For

example, ifu1 comes from a uniform distribution over the interval[0, C], the scaled variance

of an efficient estimator ofw is proportional to 1/C2. Thus to minimize the variance of the

frequency estimate, observation times should be sampled over the widest possible range.

• For a given signal-to-noise ratio, the asymptotic variance of an efficient frequency estimator

is smaller for regression curves with larger derivatives, through the value of
∫ 1

0 s′(u)2du. This

means that periodic functions with jagged or unusual shapes, instead of causing problems

with the estimation, should yield frequency estimates with smaller variance.

• The variance bound for subharmonics of the true frequency is equivalent to that at the true

frequency. Suppose that the response function has frequencyw with periodic curves(t).

This is indistinguishable from the model with frequencyw/k and curves(kt), wherek is a

positive integer, but the information bound for estimation ofw is the same in each case. The

frequenciesw/k are known assubharmonics, and[w, s] is not identifiable when boths(t)

ands(kt) are in the function spaceS.

Proof of Proposition 1.

(a). This situation can be modeled as

ynj = s(wnuj + ρ) + εnj , j = 1, . . . , n,

with parameter vectorθ = [w, ρ], whereρ is the unknown phase; the probability density of

xnj = [ynj , uj] is

fnj(xnj; θ) = g(ynj − s(wnuj + ρ))h(uj). (2.97)

The Fisher information of the firstn observations is

Ψ2(n, θ) = I E


 ns′(wnuj + ρ)2 n2ujs

′(wnuj + ρ)2

∗ n2u2
js

′(wnuj + ρ)2


 , (2.98)
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whereI is defined previously. The expectation ofs′(wnu1 + ρ)2 under the sampling model (2.92)

is

E[s′(wnu1 + ρ)2] =
∫ b

a
s′(wnu + ρ)2h(u)du

=
bnw(b−a)c∑

k=0

∫ a+k+1
nw

a+ k
nw

s′(wnu + ρ)2h(u)du

=
bnw(b−a)c∑

k=0

{
h(a + k

nw
)
∫ a+k+1

nw

a+ k
nw

s′(wnu + ρ)2du + O((nw)−2)

}
,

(2.99)

as boths′ andh′ are bounded [bxc stands for the largest integer less than or equal tox]. Denote∫ 1
0 s′(u)2du by ||s′||2. Then

E[s′(wnu1 + ρ)2] = ||s′||2 1
nw

bnw(b−a)c∑
k=0

h(a +
k

nw
) + O(n−1)

= ||s′||2 + O(n−1),

and similar working for the other terms in (2.98) yields

E[s′(wnu1)2u1] = E[u1] ||s′||2 + O(n−1),

E[s′(wnu1)2u2
1] = E[u2

1] ||s′||2 + O(n−1).

In all three formulae, the order term is uniform forw bounded above zero, and so the information

aboutθ in the firstn observations is

Ψ2(n, θ) = I ||s′||2

 n + O(1) n2E[u1] + O(n)

∗ n3E[u2
1] + O(n2)


 .

This matrix is invertible for Var[u1] > 0 and||s′||2 6= 0, with inverse

Ψ−2(n, θ) = {I ||s′||2 Var[u1]}−1


 n−1µ′

1 −n−2µ′
1

∗ n−3




and inverse symmetric square root

Ψ−1(n, θ) = {I ||s′||2 Var[u1]}−1/2



√

µ′
2n

−1/2 − µ′
1√
µ′

2

n−3/2

∗
√

1− (µ′
1)

2

µ′
2

n−3/2


 ,
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in whichµ′
1 = E[u1], µ′

2 = E[u2
1], and the inferior order terms have been omitted.

Having calculated the limiting inverse information, we need to confirm that it acts as a

variance bound for estimates ofθ. Under conditions(1) – (4), this model is regular in the sense of

Ibragimov and Has’minskii [24]. In order to verify the information bound, the remaining property

required is local asymptotic normality (LAN), defined in Ibragimov & Has’minskii, p. 120. LAN

is shown by Theorem II.6.1 of Ibragimov & Has’minskii, which requires the conditions:

(I) For someδ > 0 andu ∈ <2,

lim
n→∞

n∑
j=1

E
∣∣∣[ ∂

∂θ
ln fj(xj; θ)

]T Ψ−1
n u

∣∣∣2+δ
= 0.

(II) For anyk > 0,

lim
n→∞ sup

|u|<k

n∑
j=1

∫ ∣∣∣Ψ−1
n

∂2

∂θ2f
1/2
j (xj, θ + Ψ−1

n u)Ψ−1
n

∣∣∣2 dxj = 0.

These are virtually the same as conditions(B) and (C) in the proof of Theorem 3, and can be

shown without difficulty in the same way. Thus LAN is satisfied, and estimatorsT of θ for

which N1/2(Tn − θ) converges uniformly to a normal distribution (whereN = diag[n, n3]) have

asymptotic variance bounded by

lim
n→∞N1/2Ψ−2(n, θ)N1/2 = {I Var[u1] ||s′||2}−1


 µ′

2 −µ′
1

∗ 1


 ,

which completes the proof of(a).

(b). Bickel, Klassen, Ritov, and Wellner [6], pp. 108-110, derives the information for the periodic

regression model with IID sample times under normality. If we adapt their arguments to data in

a triangular array, and to noise with a general probability density, the information in the firstn

observations for the estimation ofθ = w is

Ψ2(n, θ) = InE[s′(nwu1)2(nu1 − E[nu1|w])2], (2.100)

where E[tnj |w] is defined by

E[tnj ] ≡
∑∞

k=−∞(tnj + k
w ) hnj(tnj + k

w )∑∞
k=−∞ hnj(tnj + k

w )
, (2.101)
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which is the expectation oftnj over all the values oft that have the same phase with respect to

frequencyw. For the modeltnj = nuj,

E[nu1|w] =
n
∑∞

k=−∞(u1 + k
nw )h(u1 + k

nw )∑∞
k=−∞ h(u1 + k

nw )

= nE[u1] + O(w−2),

and so asw is bounded above zero,

Ψ2(n, θ) = In3E[s′(nwu1)2(u1 − E[u1])2] + O(n2).

The expectation term is calculated as in part(a), and the scaled informationn−3Ψ2(n, θ) converges

uniformly to

I Var[u1] ||s′||2,

which is continuous inw ands and nonsingular. This completes the regularity conditions, and as

LAN follows by Proposition II.1.2 of BKRW,(b) is satisfied. 2

2.5.2 Sampling from the Jittered Model

In this section we present a conjecture about the information bound for the frequency

under randomly jittered sampling.

Conjecture 1 Consider the semiparametric response model (2.1) under jittered time sampling,

and assume conditions(1), (3), and(4) of Proposition 1, as well as

(2∗) The probability density ofδ1, h(δ), is continuous on[−∆, ∆].

Then over the parameter space[Θ, S],

(a) If s is known except for its phaseρ, the information bound for estimation ofw is

Var[n3/2wn] ≥ 12
{
I ||s′||2w

}−1
. (2.102)

Here, wn is a regular estimator ofw and ||s′||2w is the average squared derivative of the

periodic function at the sample times, defined by

||s′||2w = lim
n→∞ E


1

n

n∑
j=1

s′(wtj + ρ)2


 .

(b) If the periodic functions ∈ S is unknown, the information bound for estimation ofw is the

same as in(a).
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Comments:

• Support for this conjecture comes from consideration of the case in whichs has ap-term

Fourier decomposition, when||s′||2w takes the values

||s′||2w =




∫ 1
0 s′(u)2du, w irrational,

1
k

∑k
j=1

∫
s′
(

lj
k + l

k u + ρ
)2

h(u)du, w = l
k , l ∈ Z , k ∈ 1, . . . , 2p,∫ 1

0 s′(u)2du, otherwise.
(2.103)

It can be proven that the frequency bound

Var[n3/2wn] ≥ 12{I
∫ 1

0
s′(u)2 du}−1

is valid for w bounded away from{ l
k , l ∈ Z , k ∈ 1, . . . , 2p}, but (2.102) cannot easily be

proven at the excluded frequencies because of the discontinuities in ||s′||2w. This situation is

discussed in Quinn and Thomson [34] for equally-spaced times.

• For generals ∈ S, ||s′||2w is possibly discontinuous at the rational frequencies, and bounding

w away from all the rationals is not possible. Nevertheless, most of the discontinuities in

||s′||2w will be small and (2.102) should be an approximate lower bound on the precision of

the frequency even if a rigorous proof is not possible.

• If (2.102) is valid, how do we interpret the role of||s′||2w for the rational frequencies?||s′||2w
can be smaller or larger than

∫ 1
0 s′(u)2 du, depending on the sampling distribution and the

shape and phase ofs. Thus an estimator of frequency can be either more or less efficient at a

rational frequency than at the irrational ones. This is illustrated by the jittered cosine model

((2.2),(2.4)): Under normality of the observational noise, the variance bound is

Var[n3/2wn] ≥



24σ2

(2π)2{a2+ b2}−1, w 6= k
2 ,

24σ2

(2π)2

{
a2+ b2 + (b2− a2)φR(2w)− 2abφI(2w)

}−1
, w = k

2 ,

(2.104)

whereσ2 is the noise variance andφR() and φI() are the real and imaginary parts of

the characteristic function ofδ1. This agrees with the asymptotic variance ofw given in

Theorem 3 forw 6= k/2, and with the inverse of the information matrix (2.88) forw = k/2.

If the sample times are almost equally-spaced,φR(2w) ≈ 1 andφI(2w) ≈ 0, giving

I−1(w; a, b) ≈ 24σ2

(2π)2{2b2}−1, w = k
2 ,



77

and so the frequency is estimable with smaller variance at these frequencies ifb2 > a2, and

larger variance otherwise.

• Combination of this conjecture and Proposition 3 suggests a variance bound for more general

models,

Var[wn] ≥ n−1{I Var[t] ||s′||2w}−1, (2.105)

in which Var[t] is the variance of the observation times. For sampling times uniformly

distributed over the interval[0, n], the variance bound (2.105) becomes

Var[wn] ≥ 12
n3{I ||s′||2w}−1,

the same as for the jittered model in (2.102), and so the jittered model acts like uniform

sampling for largen.
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Chapter 3

Application

The objective of this chapter is to discuss practical methods for estimating frequency,

using the MACHO light curves as an illustration. Numerous estimation methods are motivated

and described in Section 3.1, and computational issues having to do with the optimization in

these methods are discussed in Section 3.2. In Section 3.3, we apply these estimation methods to

the examples of Chapter 1 and evaluate their performance. Section 3.4 presents the results of a

simulation study which compared the precision of the estimation methods in a number of realistic

situations. The final section contains a brief discussion of some interesting topics that were not

able to be covered in this dissertation.

3.1 Estimation Methods

There are many different methods for estimating frequency under the semiparametric

model. These methods need to be evaluated with regard to our main objective: the fast and precise

estimation of the frequency which best describes the dependency in the data. As discussed in

Chapter 1, these methods must satisfy this objective even when part of the curve has not been

sampled, the curve is non-sinusoidal or even multimodal, or when the measurement noise is

substantial. In this section we motivate and describe several frequency estimation methods, which

will be evaluated in Sections 3.3 and 3.4.

We assume that the light curve of the periodic variable stars in the MACHO database

satisfy the general periodic model (2.1) in which the measurement errors are distributed indepen-

dently of each other and of the sampling times. Assume also thatεj has mean zero and variance

σ2
j , of which we have an estimates2

j .
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Cosine Methods

Even when the appropriate model is the general periodic regression model (2.1), we can

try to estimate the frequency using the simple harmonic model (2.2). The Fourier decomposition

theorem states that any function that is periodic with frequencyw can be decomposed into a

potentially infinite series of simple harmonic components at the frequencieslw, l ∈ Z . If the

largest Fourier component occurs at one of the harmonic frequencies, then cosine methods will

tend to locate this frequency instead of the fundamental frequency. Fullerton [21] notes that the

largest component in the Fourier decomposition of light curves of stars in Keplerian orbits usually

occurs at the fundamental frequency, with the notable exception of eclipsing binary stars. Thus

cosine methods should identify the correct frequency in the light curves for a majority of periodic

variable stars.

As discussed in Sections 2.2 and 2.3, the periodogram and least-squares are the usual

methods for estimating the frequency using the simple harmonic model. The behavior of the

periodogram in estimating frequency is discussed in Deeming [16], and this method is often

referred to as theDeeming Periodogramin the Astronomy literature. The advantages of the

periodogram are that it is quick to calculate and that the effect of the sampling times on the

estimation is completely described by the spectral window. Disadvantages of the periodogram are

that the variance of the frequency estimate is larger than when using least-squares, and that the

estimate can be inconsistent for certain frequencies while it appears that the least-squares estimate

is consistent at these frequencies (see Section 2.4).

Both of these factors suggest that least-squares estimation be used instead of the peri-

odogram. A version of the periodogram that is equivalent to least-squares was introduced by Lomb

[29] and Scargle [36] and is known in the Astronomy literature as the Lomb-Scargle periodogram.

Press and Rybicki [32] have developed an algorithm which rapidly calculates the Lomb-Scargle

periodogram at an equally-spaced collection of frequencies, through the use of fast Fourier trans-

forms. This method does not permit the use of weights and so is only appropriate when the data

have variances that are not overly heterogeneous. Calculated as either a minimization of RSS or

as a maximization of the Lomb-Scargle periodogram, the least-squares estimate can be calculated

more rapidly than most of the other methods that we will discuss. The poor fit of the cosine to the

periodic function can be expected to affect adversely the precision of the frequency estimate, and

so these methods may be inappropriate for multimodal curves such as those exhibited by eclipsing

binary stars.
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Fourier Decomposition

Instead of modeling the periodic function by the simple harmonic model, we can model

the shape of the curve more accurately by using ap-term Fourier decomposition

yj = a0 +
p∑

k=1

{ak cos(2πwtj) + bk sin(2πwtj)}+ εj . (3.1)

For a given frequencyv, one can estimatea0, ak, bk by weighted linear regression, yielding fitted

values ˆyj,v . Define the frequency estimate from this method to be the frequency ˆw ∈ (0, Ω] that

minimizes the RSS

SSn(v) =
n∑

j=1

1
s2
j

(yj − ŷj,v)2. (3.2)

This method is discussed in Quinn and Thomson [34], who derive the asymptotic properties of

the estimate for equally-spaced sample times. This method has the advantages of providing an

improved fit to the periodic function at a given frequency, which should improve the frequency

estimate, and that the basis functions in the regression equation (3.1) are naturally periodic, which

simplifies the computations. A possible difficulty with this method is that as the basis functions at

the higher harmonics are highly oscillatory, there may be spurious oscillations present in the fitted

light curveŷj,v .

Cubic Splines

Another method for fitting brightness as a function of phase at a given frequency is

the use of periodic regression splines or smoothing splines. We specifically consider the case of

periodic cubic splines. A functions() on the interval[0, 1] is a periodic cubic spline withknotsat

tk, k = 1, . . . , p if it satisfies the following:

1. In each interval[tk−1, tk], k = 1, . . . , p + 1 (t0 = 0, tp+1 = 1), s is given by a cubic

polynomial.

2. The functions and its derivatives of first and second order are continuous everywhere in

[0, 1] and satisfy the periodicity constraints

s(l)(0) = s(l)(1), l = 0, 1, 2.

Periodic smoothing splines are discussed in the context of spectral estimation in Cogburn and

Davis [14] and Wahba [46]. The use of cubic regression splines in the estimation of frequency is

discussed in Akerlof [1].
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We propose to use cubic regression splines to estimate the frequency as follows. For

each trial frequencyv, calculate the phasesρj = wtj mod 1. Calculate fitted values foryj by

modeling brightness as a cubic spline of phase, using the B-spline basis of De Boor [15] for good

numerical stability. Then define the frequency estimate to be the frequency that minimizes SSn(v)

overv ∈ (0, Ω]. Some care must be taken in the choice of knots. There should be enough knots

so that the function shape can be successfully approximated by the spline basis, but not so many

knots that overfitting becomes a problem. Akerlof [1] uses knots that are equally-spaced along the

phase interval. This can cause numerical difficulties, since the data may be unevenly scattered in

phase space and one or more of the B-spline basis functions may not be supported by the data.

We suggest placing the knots at the phase quantiles for equally-spaced probabilities. This puts

the basis functions where there is the most information and ensures that the basis functions are

supported by the data. Because a small change of frequency can lead to a change in the relative

ordering of the phase values, and the knots are places at quantiles of the phase values, a tiny change

in frequency can lead to a change in knot positions and a jump in the RSS. This is discussed further

in Section 3.2.

Cubic splines are better able to model small features in the periodic curve, due to the

restricted domain of the B-spline basis functions, but it is not certain that this will lead to a more

precise estimate of frequency.

Smoothers

Another method for fitting the brightness as a function of phase at a given frequency

is a smoother, such as a running mean or a running linear regression. McDonald [30] discusses

estimationof frequency by use of a smoother based on split linear fits. We will be considering fitting

yj usingsupersmoother, a variable-span smoother based on running linear smooths described in

Friedman [20]. Supersmoother performs three running linear smooths of the data(ρj, yj) with

long, medium and short span length. It then does a local cross-validation to determine what span

length gives the best fit at each phase value. As the cross-validation is done on the absolute

residuals instead of the squared residuals, it makes more sense to define the frequency estimate by

the frequency that minimizes the sum of absolute residuals (SAR),

SARn(v) =
n∑

j=1

1
sj
|yj − ŷj,v |,

where the ˆyj,v are the fitted values from supersmoother at frequencyv.
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The supersmoother method should produce a good fitted curve for a large variety of

curve shapes, since it is able to adjust the span length as required by the data and makes no explicit

assumptions about the shape of the curve. As it is a smoother, the fitted curve is defined only at the

observed phase values, which may be inconvenient. The SAR curve will not be continuous, since

a change in the ordering of the phase values (caused by a tiny change in frequency) will change

which points are in the local linear regression for a couple of phase values. The change in the SAR

will be small, however, as the fitted values only change at a couple of sample points.

Measures of Dispersion

All of the above methods are based on finding the frequency for which the fitted values

ŷj,v best agree with the observed valuesyj. The final class of methods do not produce fitted values

for the brightnesses at a given frequency, but instead calculate a measure of dispersion of the data

in the phase space and seek to minimize this over frequency.

A simple example of this is thestring-length method, described in Dwortesky [18]. For

a given frequencyv, this involves producing the phase plot of the data and joining the points from

left to right with line segments. The frequency estimate is the frequency that minimizes the string

length

STRn(v) =
n∑

j=1

{(y∗j+1 − y∗j )
2 + (ρ∗j+1 − ρ∗j)

2}1/2.

Here,y∗j andρ∗j are the response and phase values sorted by phase and the valuesy∗n+1 andρ∗n+1

are the same asy∗1 andρ∗1. There are a number of difficulties with this method. The string-length

depends on differences in phase as well as in response, and so a change of variable in either could

lead to a different frequency estimate. Additionally, use of the difference in phase causes biasing

in favor of periods for which the points on the phase interval are clustered together.

There are two alternative methods that seek to avoid the problems of the string-length

method. One of these is due to Lafler and Kinman [28] and estimates the frequency by minimizing

the quantity

LFn(v) =
n∑

j=1

(y∗j+1 − y∗j )
2

(s∗2
j+1 + s∗2

j )
,

in whichs∗2
j is the estimated variance ofy∗j . This removes the two difficulties with the string-length

method, since it does not explicitly depend on the phase differences, but is still not completely

satisfactory as the difference between two points distant in phase is given the same weight as two

points close in phase. The other method is due to Renson [35] and estimates the frequency by
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minimizing the quantity

RENn(v) =
n∑

j=1

(y∗j+1 − y∗j )
2

(s∗2
j+1 + s∗2

j )((ρ∗j+1 − ρ∗j)2 + b2)
,

in which b is a quantity chosen so that the difference(ρ∗j+1 − ρ∗j)2 + b2 should not be too small.

Renson recommends takingb2 = s2

4A2 , wheres2 is the standard error of the measurement noise

andA is the amplitude of the signal. This method gives higher weight to comparisons between

brightnesses when the corresponding phases are close.

All of these methods have relatively short computation times and require no assumptions

on the shape of the periodic curve, except that it be continuous. The measures LFn(v) and RENn(v)

behave like the RSS for the model in which the fitted value fory∗j is y∗j+1, which has as many

parameters as observations. Thus it is possible that these methods will not perform well when the

measurement noise is too large.

Stellingwerf PDM

Another method based on a measure of dispersion and used by astronomers isPhase

Dispersion Minimization (PDM), introduced by Stellingwerf [43]. This is a modification of the

Whittaker periodogram (Whittaker and Robinson [49]) in which the phase interval is divided into

a number of bins, the mean response is calculated for each bin, and the frequency is chosen to

minimize the RSS of the one-way analysis of variance based on these bins. The Stellingwerf

method introduces additional bins, which are the original bins shifted in phase by a certain amount;

the set of shifted bins are called acover. For example, the Stellingwerf method with two covers of

five bins yields the bin intervals [0,0.2], [0.2,0.4], [0.4,0.6], [0.6,0.8], [0.8,1], [0.1,0.3], [0.3,0.5],

[0.5,0.7], [0.7,0.9], and [0,0.1]∪[0.9,1]. The overlapping bins are introduced to reduce the edge

effects in the Whittaker periodogram. The PDM method should behave similarly to an estimation

method based on a fixed-span smoother, and makes more assumptions about the shape of the

function than the Lafler and Renson methods, through the choice of the number of bins and number

of covers.

3.2 Global Optimization

All of the estimation methods discussed in the previous section calculate the frequency

estimate by maximizing or minimizinga function of frequency over an interval on the real line. Let
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Figure 3.1: Weighted RSS of the cosine model plotted against frequency, for the blue band of star
77009:64163.

us call this function theobjective function. In this section, we describe some of the complications

that arise in this optimization and propose an optimization scheme.

Suppose that we want to minimize an objective functionM(v) over the frequency

interval [a, b] (maximization is considered by minimizing the negative of the objective function).

The objective functions of the above frequency estimation methods have many local minima,

making global minimization difficult. As an example, consider the least-squares estimator of the

cosine model. Figure 3.1 shows the weighted RSS (3.2) for the data of Figure 1.7, plotted over

the frequency range [0,5]. There is a clear global minimum at the frequencyw = 1.91, which

corresponds to the period 0.52715 shown in the phase plot in Figure 1.8. There are also a very

large number of local minima, the most deep of which correspond to the pseudo-alias frequencies

±w + k. More generally, there can also be deep local minima at the subharmonic frequencies

w/k, the harmonic frequencieswk, and the pseudo-aliases of these as well. Together with the

presence of observational noise, there is no guarantee that the deepest minimum corresponds to

the fundamental frequency, and so a number of the deepest local minima should be checked for

quality of fit.

Another complication is that for some frequency estimation methods, the objective
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Figure 3.2: Objective functions for the supersmoother, Lafler, spline, and modified spline methods
for a simulated data set on the frequency interval [0.69275,0.69305].

function may be discontinuous. The objective functions for the cosine and Fourier methods are

continuous, but those of the other methods of Section 3.1 are not. Figure 3.2 shows the objective

functions for four estimation methods calculated on simulated data, displayed over the frequency

interval [0.69275,0.69305]. In the upper-left of the figure is the SAR from the supersmoother

method; note the small discontinuities in the curve. The Lafler measure of dispersion is shown in

the lower-left of the figure; the discontinuities in the objective function are much more pronounced

than in the supersmoother method. How do these discontinuities come about? As the frequency

changes, the phase values also change according to the relationρ = wt mod 1. For both of these

methods, the discontinuitiesoccur at a frequency at which the ordering of two phase points changes.

The discontinuities in these objective functions can be seem more clearly in Figure 3.3. The upper

plot shows the SAR function from the supersmoother method plotted over the frequency interval

[0.69288,0.69292], and the lower plot shows the Lafler measure of dispersion over the same range.

The Supersmoother SAR function is piecewise continuous, while theLK function is piecewise

constant.

A different kind of discontinuity is presented by the periodic spline method. The upper-

right plot of Figure 3.2 shows the RSS from the periodic spline method. A cubic spline with eight
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Figure 3.3: Objective functions for the supersmoother and Lafler methods for a simulated data set
on the frequency interval [0.69288,0.69292].

interior knots was used, with the knots placed at the quantiles of the phase vector. Note that there

are fewer discontinuities in the curve than for the supersmoother or Lafler methods, but that the

size of the jumps is larger. These jumps occur when a small change in frequency causes a phase

value to change from one end of the interval [0,1] to the other. Since the knots are placed at the

quantiles of phase, this makes the position of the interior knots change and alters the fitted values

at almost all of the points. To reduce this non-continuous behavior, we shall use a modified form

of knot placement: the interior knots are placed at a weighted average of the ordered phase values

near the quantile in such a way that the change in knot position is continuous in frequency. The

RSS from this modified spline method is shown in the lower-right of Figure 3.2. Although the RSS

curve is continuous, it is still not smooth, which may cause difficulties in the optimization.

There are many methods available for solving our optimization problem: finding the

global optimum over some interval on the real line. These are divided intodeterministic methods,

such as minimization over a grid of points, andprobabilistic methods, such as the gradient descent

method with a large number of random starting values. An overview of various deterministic and

probabilistic global optimization methods is given in Dixon and Szeg¨o [17]. These methods are

not guaranteed to find the global minimum without some conditions on the objective function. If
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a Lipschitz condition is satisfied, i.e., an upper bound exists and is known for the derivative of the

objective function, then there exist optimization methods that can find all frequencies for which

the objective function is within an arbitrarily small tolerance of the global minimum (Shubert [37],

Mladineo [31]). A similar method can be used when there is a bound on the second derivative of

the objective function (Breiman and Cutler [9]). Unfortunately, we saw above that the objective

functions can be pointwise discontinuous, and so for our problem we cannot prove that the global

minimum is attained.

We decided to minimize the objective function using a grid method. Although there is

no bound on the derivative of the objective function, other information is available on how fine

a grid is required to yield acceptable results. It was noted in Section 2.1 that the central peak

in the spectral window has width of approximately 2T−1, whereT is the span of the sampling

times. Thus the grid spacing needs to be shorter than this in order to find the function minima.

A grid spacing ofT−1 corresponds to the Fourier frequencies, a collection of frequencies that

contains all the information about a time series if it is sampled at equally-spaced times with times

1, 2, . . . , T . There is a limit to the amount of precision that can be attained by making the grid

very fine. Consider a grid with spacing1rT−1, in whichr is theoversampling ratecompared to the

Fourier frequencies. In changing from some frequency to its neighbor on the grid, the difference in

phase between two points will change less than1
r . Thus for an oversampling rate ofr = 1000, the

fits at neighboring frequencies will be virtually identical, as the change in relative phase from one

method to the other is less than11000. Nevertheless, the frequency grid should be sufficiently fine

not to affect adversely the potentially high precision in the frequency estimates that was discussed

in Chapter 2. If a minimum variance bound has been estimated for the problem, as in Section 2.5,

the grid spacing should be smaller than the anticipated standard error of frequency.

We propose a two-stage grid minimization scheme. The objective function is first

minimized over a grid of frequencies1r1
T−1 apart, withr1 chosen so that the deepest local minima

can be identified. This gives initial estimates of the best local minima of the function. Further grid

minimizations are then performed in the vicinity[vm − δ/2, vm + δ/2] of theM best local minima

vm, m = 1, . . . , M from the initial grid, with spacing1
r2

T−1 fine enough not to interfere with

the precision of the frequency estimate. This scheme has the advantage of using only the fine grid

spacing near the minima, reducing computation time without loss of precision. The quantities that

have to be chosen when using this scheme are:

a,b The range of frequencies of interest. For the variable star data, this is known from properties
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of the stars.

r, r The oversampling rates of the initial and fine grids. We found from informal simulations

using the MACHO data thatr1 ≥ 6 was required in order to find the five best local minima

of the full function among the best 20 local minima on the grid frequencies. The valuer2

can be chosen by considering the potential precision of the frequency estimate.

M The number of local minima of the function sampled on the initial grid that are refined by the

placement of a finer grid. We typically used 20 local minima.

δ The width of the finer grid about the initial estimate of a local minimum. Since the troughs are

expected to have width of approximately 2T−1, a value likeT−1 is a good choice.

This optimizationmethod has been found quite effective in extensive use on the MACHO

data. Previous frequency estimation programs in Astronomy have used single-grid minimization,

but we recommend the use of a two-stage minimization to achieve high levels of precision in the

frequency estimate without much of a penalty in computation time.

3.3 Example Analyses

We applied the methods of Section 3.1 (except the PDM method) to the example data of

Chapter 1, in order to compare their performance. The methods that were used are:

C1 Cosine model estimated by least-squares.

C2,C4,C6 Fourier decomposition method with 2, 4, and 6 terms in the expansion. The 2-term

model (5 parameters) was chosen as the minimum model that should correctly identify an

eclipsing binary, and the 4-term (9 parameters) and 6-term (13 parameters) models were

chosen because they were of moderate and high complexity.

S5,S9,S13Periodic cubic spline method with 5, 9 and 13 knots over the phase interval [0,1], using

the modified knot placement described in Section 3.2. The number of knots were chosen so

that the number of parameters was the same as in the Fourier decomposition models to allow

direct comparison of these methods.

LF,RN Lafler and Renson measure of dispersion methods.

SM Estimation using Supersmoother.
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Optimization of the objective function for each method was done using the two-stage

scheme of Section 3.2 with[a, b] = [T−1, 5], r1 = 10, r2 = 200,M = 20, andδ = T−1. For a

typical data set with 300 observations taken over a 400-day period, this method requires calculation

of the objective function at 20,000 frequencies in the first stage and at 4000 frequencies in the

second stage. Running this as optimized code on a SPARC-10 workstation gave the following

computation times (CPU time in seconds):

C1 C2 C4 C6 S5 S9 S13 LF RN SM

100 180 370 620 290 340 360 70 80 370

For each data set and estimation method, the deepest four local minima of the objective function

were inspected and the fundamental frequency identified among them.

Summary of Results

• Each of the estimationmethods was able to provide an estimate of the fundamental frequency,

which was usually found at the global minimum of the objective function. The multiple

estimates of the fundamental frequency obtained from the various methods differed by only

0.13T−1, and most estimates fell in a range of length 0.05T−1. As the estimates from

the Lafler and Renson methods were virtually identical we present only the Renson results,

giving nine estimation methods in all. Since these latter two methods differ only in how

they weigh points distant in phase, and these data sets were so large that large differences in

phase were rare, it was not surprising that the methods behaved similarly.

• The estimation methods behaved differently with regard to the best frequency estimates

that they chose. For strictly periodic and unimodal curves, the cosine method located the

fundamental frequency and its pseudo-aliases, the Fourier and spline methods located the

fundamental frequency and some subharmonics and aliases, and the nonparametric Renson

and supersmoother methods located only the fundamental frequency and its subharmonics.

For a strictly periodic but bimodal curve, the results were similar except that most methods

also located the first harmonic 2w. For a semiperiodic curve, the nonparametric models and

the high-parameter spline method also locatedT−1, which corresponds to the period that is

the span of the sampling times.
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1: w= 0.69293  p= 1.44315  rss= 2.154  sar= 1.181
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2: w= 1.6933  p= 0.590561  rss= 17.557  sar= 3.311
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3: w= 0.3075  p= 3.25199  rss= 17.984  sar= 3.524
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4: w= 2.69546  p= 0.370994  rss= 20.783  sar= 3.779

Figure 3.4: Phase plots and fitted values of the red band of star 77021:1992 for the best four
frequency estimates using the cosine (C1) method.

Unimodal Periodic Curve

We performed analyses on the red band of the data displayed in Figures 1.1 and 1.2,

which is from a cepheid star with an approximately sinusoidal light curve. The fundamental period

is approximately 1.443 days and corresponds to frequencyw
.= 0.693.

Figure 3.4 shows the phase plots of these data at the best four frequencies chosen by the

cosine (C1) method. The upper-left plot is that of the best estimate, the upper-right that of the

second-best estimate, and so on. The frequency estimate, corresponding period estimate, weighted

RSS, and weighted SAR are displayed along the top of each plot. For this method, the best

frequency chosen was the fundamental frequency with estimate ˆw = 0.69293. The RSS dropped

rapidly at the other estimates, identified as the pseudo-aliases 1+ w, 1− w, and 2+ w.

Table 3.1 shows the corresponding results for all nine estimation methods, namely the

estimate of the fundamental frequency ˆw and the identification of the best four estimates chosen

by that method. By best, we mean the estimates corresponding to the deepest local minima of the

objective function. Since the spacing in the fine frequency grid is approximately 0.000012, the

frequency estimates are reported to 5 decimal places. The estimates ˆw span 0.04T−1 in frequency.

The more interesting part of the table is the identification of the best frequency estimates. The
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Table 3.1: Estimate of the fundamental frequency and identification of the best
four frequency estimates, for nine estimation methods applied to the red band
data of star 77021:1992.

Identification of Estimate

Method ŵ 1st 2nd 3rd 4th

C1 .69293 w w + 1 −w + 1 w + 2
C2 .69290 w w/2 w + 1 w/2+ 1/2
C4 .69290 w w/2 w/4 w/3
C6 .69290 w/2 w w/3 w/5
S5 .69286 w w/2 w/2+ 1/2 w + 1
S9 .69290 w w/2 w/3 w/4
S13 .69290 w/2 w w/3 w/4
RN .69284 w w/2 w/3 w/4
SM .69288 w w/2 w/3 w/4

2-term Fourier decomposition model (C2) found the fundamental frequency and first subharmonic,

and then pseudo-aliases of these two frequencies. In comparison, the 4-term Fourier method (C4)

located only the fundamental frequency and its subharmonics, since it can model curves with up

to 4 maxima over the phase interval. The three spline methods behaved similarly to their Fourier

counterparts. Remember that we chose the number of knots to match the number of parameters in

the Fourier methods. The spline and Fourier methods with the same number of parameters usually

located the same frequencies in the same order. The two nonparametric methods, the Renson and

supersmoother methods, acted like the higher-parameter Fourier and spline methods in locating

the fundamental frequency and its subharmonics.

Similar analyses were done on data from Figures 1.4 and 1.8, which are both periodic

with unimodal curve shape. The results did not differ markedly from those above.

Bimodal Periodic Curve

It is more interesting to compare the estimation methods for a more complicated curve

shape: the eclipsingbinary example of Figure 1.6. Table 3.2 shows the estimates of the fundamental

frequency and identification of the best four estimates for the nine estimation methods applied to

these data. The estimates ˆw span 0.07T−1 in frequency, with an outlying estimate of .40454
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Table 3.2: Estimate of the fundamental frequency and identification of the best
four frequency estimates, for nine estimation methods applied to the blue band
data of star 77043:4317.

Identification of Estimate

Method ŵ 1st 2nd 3rd 4th

C1 .40463 2w 2w + 1 −2w + 1 w
C2 .40462 w 2w 2w + 1 w + 1/2
C4 .40464 w w/2 2w 2w/3
C6 .40465 w w/2 w/3 2w
S5 .40454 w 2w 2w + 1 w + 1/2
S9 .40465 w w/2 2w 2w/3
S13 .40471 w w/2 2w w/3
RN .40467 w w/2 w/3 w/4
SM .40465 w w/2 w/3 2w

given by the 5-knot spline method (S5). The cosine method chose the first harmonic 2w as the

best estimate, followed by a couple of pseudo-aliases, with the fundamental frequency appearing

only as the fourth-best estimate. The phase plots and fitted values for this method are shown

in Figure 3.5. We see that as the cosine function does not provide a good fit to the data at the

fundamental frequency, it chooses frequencies that by visual inspection produce a much worse

description of the data. Thus the cosine model is a less useful tool for estimating frequency in data

of this type.

All of the other estimation methods correctly identified the fundamental frequency as the

best estimate, and chose the subharmonics and first harmonics for the other estimates. Figures 3.6

and 3.7 show the phase plots for the best four frequency estimates from the 4-term Fourier method

(C4) and the 9-knot spline method (S9), both of which contain nine parameters. Both methods

chose the fundamental frequency as the best estimate, and for the next-best estimates chose the

first subharmonicw/2, the first harmonic 2w, and the second subharmonic of the first harmonic

2w/3. The fit to the phased light curve at the fundamental frequency is reasonably good in both

cases. There is noticeable oscillation in the fitted curve which could be reduced by using a higher

number of parameters, but at the expense of additional computation time. Observing the phase

plots from these methods, we do not see that the spline method gives a better fit to the curve than
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1: w= 0.80931  p= 1.23562  rss= 30.953  sar= 4.06
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2: w= 1.81015  p= 0.552441  rss= 51.821  sar= 5.019
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Figure 3.5: Phase plots and fitted values of the blue band of star 77043:4317 for the best four
frequency estimates using the cosine (C1) method.
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Figure 3.6: Phase plots and fitted values of the blue band of star 77043:4317 for the best four
frequency estimates using the 4-term Fourier method (C4).



94

Phase

A
-1

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0
.4

-0
.2

0.
0

••••••••
••••
••
•
•••••
••••••••••••
••••••••
••••••••••
•••••••
••••
•
•••••••••
••••••••
•
••••
•
•
••

•

•••••••••••
••••••••••••••••

••••••••••••••••••
•••••
•••
•••••
••••
•••••
••••••
••••
••••
•
••
•
•
••••••
•••••
•
••••
•••••••••••

•
••••
•••••••

•
•••••
•••••
•
••••
•
••
•
••••••••••••••••••••••

•

•
•••••
••••••
•••••••••

••••
•••
•

•

•
••
••
••
•••
•••••
••
••••••••
••••
••
•
•••••
••••••••••••
••••••••
••••••••••
•••••••
••••
•
•••••••••
••••••••
•
••••
•
•
••

•

•••••••••••
••••••••••••••••

••••••••••••••••••
•

1: w= 0.40465  p= 2.47125  rss= 2.384  sar= 1.203

Phase

A
-1

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0
.4

-0
.2

0.
0

••
••
•
•

•
•

••
•••
•••
•••••
•
•

•

•

••••••
•
•

••••
••
••••••
••
•
••••
•••••••
•
•••••
••••••••
•
•
•
•••••
••
••••
••
•••••••••••

•
••
•
••

••
•
•••
•••
•••••••
••
••

•
•••••••••••••

•
•••
•••
•
•
•
••
•
••
•

•

••
•••
•••

•
•
•
•

•

•
•
•
•
••
•
•••
•
•
••
••••
•
•
••••
•
••••••
••••••
•••••••
••••
•

•

•••••••••••••••••••••••
••••••
••
•
••
•
•
••
•••••
•
•••
•••
•••
•••••••••

••
•••••
•
••••••
•
•••
•
•••••
••
•
•

•
•

••
•••
•••
•••••
•
•

•

•

••••••
•
•

••••
••
••••••
••
•
••••
••••••
•
•••••
••••••••
•
•
•
•••••
••
••••
••
•••••••••••

•
••
•
••

••
•
•••
•••
•••••••
•

2: w= 0.20238  p= 4.94119  rss= 16.287  sar= 2.913

Phase

A
-1

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0
.4

-0
.2

0.
0 •

••
•
•
••••••
•
•
•
•
•••••••••
•
•
•
•
•••
•
•
•••••
•
••••••
•••••••••••••••••••

•
•••••••
•••••••
••
•
•
•••
••
•
•
•
•
•
•

•
••••
•
••••
•
•
•
•••
•

•
•
••
••••
•
•
•
••••
•••
••
•
••
••
•
••
••
•

•
•
•
•

•
•••
••
•

••

•

•
•
•

•

•

•
••

•••

••

••
••
•

•

••

•
••

•••

•
•

•

•••

•••

••

••

•

•

••••
•

•••

•

•

••

•
••

•

•

•

••

•

•

•
•

••

•
•

•

•

•
•

•

••

•

•••
•

••

•
•

•
•••
•
•

•

•

••
••
•

•

••

•

••

•
•
•
•••••
••
•
•••••
•
••••
•
••
•
•
•••••
•
•
•••••
••••••
••
•
•
••••••
•
•
•
•
•••••••••
•
•
•
•
•••
•
•
•••••
•
••••••
•••••••••••••••••••

•
•••••••
•••••••
••
•
•
•••
••
•
•
•
•
•
•

•
••••
•
••••
•
•
•
•••
•

•
•
••
••••
•
•
•
••••
•••

3: w= 0.80946  p= 1.23539  rss= 18.483  sar= 2.802

Phase
A

-1
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0
.4

-0
.2

0.
0

••

•

•••

•

•

••

•

••

•

•
•

•

•

•

•

•

•

••
•
•

•••

•••
••••••
•••
•
••
•
••
••••••••••
••••••••••••••

•
••••••••
•••
••
••
•
••
••••
•
••
••

•
•
•

•

••••

•
•

•

•

••

•

•

•••

••

•••

••

•

•••
•

••

•
•

•••
••••
•••
•
•••
••••••
••
••••

•
••
•••
•
•
•
•••••••
•
•
•
•
•
••
•

•
••••••
•
••
•

••••••
•••••
••

••

•
•
••

••

•

•

•

•

•

•

•
•
•••

•

•
••
•

••

•

••••••••
••••••
••••••••
••••••
•••••••••••

•
••
•
•
••
•
•
•
•
••
•
••
•

•••
•

••
•

•••

•••

••

•

•••

•

•

••

•

••

•

•
•

•

•

•

•

•

•

••
•
•

•••

•••
••••••
•••
•
••
•
••
••••••••••
••••••••••••••

•
••••••••
•••
••
••
•
••
••••
•
••
••

•
•
•

•

••••

•
•

•

•

••

•

•

•••

••

•••

••

•

•••
•

••

•
•

•
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Figure 3.7: Phase plots and fitted values of the blue band of star 77043:4317 for the best four
frequency estimates using the 9-knot spline method (S9).

the Fourier method with the same number of parameters as we had supposed. Nevertheless, the

spline method does have the advantage of smaller computation times, due to the band-diagonal

nature of the regression matrix. Figure 3.8 displays the phase plots of the best frequency estimates

using supersmoother. This method has computation times similar to those of the 4-term Fourier

and 9-knot spline methods, but the fitted curve is a much better description of the data at the

fundamental frequency, being less oscillatory and having a lower RSS. Supersmoother gives a

less satisfactory fit at the first harmonic, shown in the lower-right plot of the figure. The fitted

curve is similar to that from the Fourier and spline methods, but it not as smooth at the local level.

This is perhaps an unfair comparison, as no fitted curve can successfully describe the data at this

frequency.

The eclipsing binary example illustrates the practical benefits of using methods that are

able to successfully model curves of non-sinusoidal shapes. In section 3.4, we shall see that there

is also a penalty in precision for using the cosine methods to model data with a non-sinusoidal

curve.
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Figure 3.8: Phase plots and fitted values of the blue band of star 77043:4317 for the best four
frequency estimates using the supersmoother method (SM).

Semiperiodic Curve

The final example is that of a semiperiodic long-period variable star which was shown in

Figure 1.9. The methods that we are using are intended for use with strictly periodic functions, but

as semiparametric data occurs commonly in practice, it is instructive to see how the methods behave

in this situation. Looking at the data, we see six maxima over the 400-day observation period,

suggesting an approximate period of 80 days. Estimates of this frequency and identification of the

best four frequency estimates for the nine methods are shown in Table 3.3. The estimates span

0.13T−1 in frequency space, with an outlying estimate of 0.01258 from the Renson method. The

major difference between this example and the previous ones is that the frequency corresponding

to the span of the sampling times is located by the nonparametric methods and the high-parameter

spline method. Figure 3.9 shows the phase plots of the four best estimates using the supersmoother

method on these data. Note that the first frequency chosen corresponds to the entire data span, the

second is the first subharmonic, and only the third is the fundamental frequency. This could be

considered either a strength or a weakness of these methods. If the main objective is estimation

of the approximate periodicity, these methods are less suitable, as they prefer to fit a complicated

multimodal curve through long stretches of the data than to fit a simple but poorly-fitting curve
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Table 3.3: Estimate of the fundamental frequency and identification of the best
four frequency estimates, for nine estimation methods applied to the red band
data of star 78017:497. Note: There are three estimates that are unable to be
identified with a harmonic or pseudo-alias of the fundamental frequency. These
area

.= 1.0182,b .= 0.9943, andc .= 1.0083.

Identification of Estimate

Method ŵ 1st 2nd 3rd 4th

C1 .01285 w −w + 1 a b
C2 .01282 w/2 w −w + 1 −w/2 + 1/2
C4 .01278 w/2 w/3 w/4 w
C6 .01284 w/4 w/2 w c

S5 .01290 w/2 w −w + 1 −w/2 + 1/2
S9 .01282 w/4 w/2 w c

S13 .01289 T−1 w/2 w c
RN .01258 T−1 w w/2 b

SM .01289 T−1 w/2 w c
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4: w= 1.00834  p= 0.991727  rss= 10.049  sar= 2.572

Figure 3.9: Phase plots and fitted values of the red band of star 78017:497 for the best four
frequency estimates using the supersmoother method.
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through a short stretch of the data. The same reason makes these methods more suitable if the

objective is the most accurate but not necessarily periodic representation of the data. There are

also a number of frequency estimates that were not able to be identified as relatives of the 80-day

or 400-day periods, such as that of the fourth-best estimate in Figure 3.9. We suppose that these

are by-products of the semi-periodicity of the curve.

Conclusions

The choice of method for estimating frequency in practice depends on the particulars

of the estimation problem. The methods we used differ greatly in computation time, and that

alone may determine which methods are feasible. For curves that are periodic and unimodal over

the phase length, all of these methods worked well in estimating the frequency, but differed in

the fitted curve that was produced (or whether they produced a fitted curve at all). Some of the

higher-parameter models have the annoying property of occasionally choosing a subharmonic over

the fundamental frequency, since they can model the curve at these frequencies equally well. If

periodic function with multimodal curves over the phase length are expected, the cosine method

is less convenient, as are the Fourier and spline methods with too few parameters to approximate

the curve at the fundamental frequency. It is not clear which methods are most appropriate for

semiperiodic data; the choice of method depends on the objectives of the period search.

3.4 Simulation Study

In the previous section we saw how a number of estimation methods performed on some

example data with respect to location of the fundamental frequency and the quality of the fitted

curve. It is also useful to know what kind of precision can be expected from these methods. We

present here results of a simulation study which examines the precision of these methods on some

typical datasets, and compares the variance of the frequency estimates with an estimated variance

bound.

Study Description

Three models were used in the simulation: a unimodal but non-sinusoidal curve, a

bimodal curve like that of an eclipsing binary star, and a curve with missing information due to

uneven sampling in phase space. These models were chosen to represent common data types
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Figure 3.10: Phase plots of two of the MACHO light curves with fitted curves from a periodic
smoothing spline. The upper plot is of the blue band of star 77017:379 at period 4.017 days, and
the lower plot is of the red band of the star 77048:2523 at period 2.917 days.

observed in the MACHO data. Two levels of noise variance were used with each of these models

to mimic typical high-noise and low-noise light curves in the MACHO data.

The curve shapes were obtained by fitting a smoothing spline to the phase plots of two

of the MACHO star data sets. Smoothing splines differ from regression splines by having knots

at each of the data points and by estimating the parameters through minimization of the sum of

the RSS and a term which penalizes roughness in the fitted curve; see de Boor [15], Ch. 14, for

more details. The raw data and fitted curves are displayed in Figure 3.10. The data in the upper

plot comes from the blue band of star 77017:379, a relatively bright cepheid variable star with

a fundamental period of approximately 4.017 days. The fitted curve was produced by fitting the

data with a smoothing spline that had knots at all of the data points and smoothing parameter

(Spar) of 6.7 e-6. This was approximately equivalent to a 35-parameter fit, as the trace of the

regression projection matrix was 34.955. The data in the lower plot come from the red band of star

77048:2523, an eclipsing binary star with fundamental frequency of about 2.917 days. The fitted

curve is from a smoothing spline with smoothing parameter 1.4 e-5, approximately equivalent to

a 30-parameter fit. We decided to sacrifice quality of fit at the bottom of the troughs in order to

maintain a smooth-shaped curve at the plateaus. The fitted curves were shifted and scaled to have
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Figure 3.11: Phase plots of simulated light curves from model A at period 1.4432 days.

amplitude one, with maximum value of 0.5 and minimum value of -0.5. The same sampling times

were used for all the simulated data. They were a collection of 200 times spanning 243 days taken

from the red band of the data displayed in Figure 1.6.

The study used three combinations of curve shape and frequency, models A, B, and

C. Model A used the fitted values from the cepheid curve at period 1.4432 days, equivalent to

frequency 0.69290466. The frequency was chosen so that the observations covered the phase

interval approximately uniformly. Two levels of noise variance were used: a low-noise model in

which the errors were IID normal with SD=0.05,and a high-noise model with SD=0.20. Figure 3.11

shows typical simulated data from model A at the two noise levels. The upper plot is typical of

many of the cepheid light curves in the MACHO data and the lower plot looks like a typical RR

Lyrae light curve. Model B uses the fitted curve from the eclipsing binary data with period 1.4432

days. Typical simulated data from this model for the two levels of noise variance are shown in

Figure 3.12. Model C uses the fitted curve from the cepheid data with frequency 0.5. As this is

a 2-day period, data is only available over about half of the phase interval. This frequency was

chosen to see how the estimation methods behaved when there were large gaps in the phased data,

and to compare the precision attained in this model with that in model A, which has the same curve

shape but a different frequency. Typical simulated data from model C at the two levels of noise
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Figure 3.12: Phase plots of simulated light curves from model B at period 1.4432 days.

variance are shown in Figure 3.13.

It is useful to know what order of precision is expected for these models. Combining the

ideas in Sections 2.5.1 and 2.5.2, we propose the variance bound

Var[ŵ] ≥ n−1σ2

Var[t]E[s′(wt)2]
, (3.3)

in whichσ2 is the variance of the observational noise, Var[t] is the sample variance of the observation

times, and E[s′(wt)2] is the average squared-derivative of the curve at the observation times. The

sample variance of the 200 times in these models is 5775, and the average squared-derivative of

the curve at the observations is 8.5 for model A, 16.9 for model B, and 3.1 for model C. Thus the

estimated variance bounds for the three models and two noise levels are as follows:

Model A Model B Model C

σ = 0.05 2.5 e-10 1.3 e-10 7.0 e-10
σ = 0.20 41 e-10 20 e-10 110 e-10

This means that the smallest standard error we expect for the frequency estimate is approximately

1 e-5.
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Figure 3.13: Phase plots of simulated light curves from model C at period 2 days.

The estimation methods used in this study were the same as those of Section 3.3, with

the addition of the periodogram method (PG). One hundred simulated data sets were generated for

each of the combinations of model and noise level. The objective function of each method was

minimized over a grid of 4000 frequencies spanning the interval[w− 0.25T−1, w + 0.25T−1], in

whichw is the known frequency andT = 243.12 is the span of the sample times. The grid spacing

was chosen to be about 1/20 of 0.00001, the smallest anticipated standard error of the frequency

estimate.

Summary of Results

• Relative performance of the estimation methods depended strongly on the model and noise

level. The Fourier methods consistently performed the best, as measured by the mean

squared-error (MSE) of the frequency estimate. Next best were the supersmoother and

spline methods, and the least-precise methods were the cosine methods and the Lafler and

Renson measures of dispersion.

• The 4-term and 6-term Fourier methods had the highest precision, closely followed by the

2-term method. The MSE from these methods ranged from being approximately equal to
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the estimated variance bound to three times the variance bound.

• The next most successful method was supersmoother, although its performance was not

consistent over the models and noise levels. Supersmoother did well when the periodic

curve had a complicated shape or when the noise was small, but did poorly under high

observational noise.

• The spline methods performed slightly worse than supersmoother over the simulation models,

but were not as adversely affected by high noise. Each of the spline methods performed

worse than the Fourier method with the same number of parameters, although the spline

models were more competitive under model C. The results were not consistent for spline

models with different numbers of knots; it is possible that this erratic behavior is caused by

the non-smoothness in the RSS curve that was discussed in Section 3.2.

• The least-precise methods were the cosine methods (the periodogram and least-squares

versions) and the Lafler and Renson measures of dispersion. The cosine methods suffered

from high bias (especially the periodogram) and high variance, while the dispersion methods

had low bias but highvariance. The Lafler and Renson methods performed almost identically,

but the Renson method was a little moreaccurate under model C.

Comments

• It is surprising that the Fourier methods performed significantly better than the spline meth-

ods, considering that they had the same number of parameters and showed similar fits in the

examples of Section 3.3. It would be interesting to see if similar results are obtained when

using smoothing splines instead of regression splines.

• There is a definite advantage to using methods that fit the periodic function more closely

than the cosine methods.

• The Lafler and Renson measure of dispersion methods were not competitive, due to their

high variance. In a comparative study of a number of estimation methods commonly used

in astronomy, Heck, Manfroid, and Mersch [23] found that the Renson and Stellingwerf

methods performed slightly better than the others. This suggests that the more precise but

computationally intensive Fourier expansion method could be used to improve the quality

of period estimation in astronomical data. It should be noted, however, that our simulations
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used data sets considerably larger than those commonly used in variable star analysis, and

our conclusions might not generalize to the general case.

• As the estimated variance bound was a good guide to the best precision attained in Models

A and B, and was a lower bound for the precision in Model C, it can be useful in choosing a

global optimization strategy for the estimation.

Model A

Table 3.4 is a summary of the results of the frequency estimation using the model A

simulated data. It presents the bias of the frequency estimate divided by its estimated SE, the

variance of the frequency estimate, and the mean squared-error, for the eleven estimation methods

and the two levels of observational noise. Boxplots of the frequency estimates are displayed in

Figure 3.14.

For the lower level of noise variance, the methods with the lowest MSE were the three

Fourier methods, the spline method with 13 knots, and the supersmoother method. The most

precise of these was the 6-term Fourier method which had an MSE of 4.0 e-10, 1.6 times the

estimated variance bound of 2.5 e-10. The methods with the highest MSE were the periodogram

and the 5-knot and 9-knot spline methods; this was caused by large bias rather than large variance.

[The 5-knot method had especially high bias compared to its low variance.] The Lafler and Renson

methods also had low bias, but as they had the largest variance of any of the methods, they were

not competitive. As the number of parameters increases within a given method, one would expect

the bias to decrease and perhaps the variance to increase. At first glance this is not verified for

the Fourier methods, but looking at the raw biases, 1.27 e-5, 1.4 e-5, 2.1 e-5, and 8.7 e-6 for the 1,

2, 4, and 6-term expansions, then there is some indication that the bias is decreasing as parameter

size increases. In the spline methods, the bias seems to be decreasing and the variance seems to be

increasing as the number of knots increases.

For the higher variance case, the methods with the lowest MSE were the Fourier methods,

followed by the spline methods. The lowest MSE, 5.6 e-9 for the 4-term Fourier method, was 1.4

times the estimated variance bound of 4.1 e-9. Thus for both levels of noise, the estimated variance

bounds seem to be a good estimate for the attainable precision under the model. The Lafler and

Renson methods had the highest MSE due to their very high variance, while the spline models had

the largest bias.
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Table 3.4: Standardized bias, variance, and MSE of the frequency estimates for eleven estimation
methods on the model A simulated data.

SD = 0.05 SD = 0.20

Method Bias/SE Variance MSE Bias/SE Variance MSE
×10−10 ×10−10 ×10−10 ×10−10

PG -16.7 6.4 24.1 -3.9 94 107
C1 -8.7 9.4 16.4 -1.7 129 132
C2 6.9 4.4 6.4 0.8 59 59
C4 -12.1 2.9 7.2 -3.9 50 56
C6 -4.8 3.3 4.0 -2.3 69 72
S5 68.5 1.2 59.3 11.3 33 76
S9 -27.7 4.5 39.0 -8.2 51 85
S13 -4.7 6.3 7.6 -2.5 85 89
LF -0.7 16.6 16.5 0.0 257 254
RN -0.7 16.6 16.5 0.0 256 254
SM -1.9 6.3 6.4 -1.2 141 142
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Figure 3.14: Boxplots of the frequency estimates for eleven estimation methods on the model A
simulated data.
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Model B

Table 3.5 summarizes the simulation results using model B, and Figure 3.15 displays the

boxplots of the frequency estimates. Under the low-noise model, the methods with the lowest

MSE were the 4-term Fourier, 6-term Fourier, and supersmoother methods, followed by the Lafler

and Renson methods. The best Fourier method has an MSE of 1.1 e-10 which was a little smaller

than the estimated variance bound of 1.3 e-10. The cosine models fared poorly for this model,

probably because the cosine curve is such a poor approximation of the bimodal shape in the data.

The periodogram was especially bad, with MSE 1500 times as large as under the best method. The

spline methods also did not perform well, having high bias and high variance.

In the high-noise case, the Fourier, 13-knot spline, and supersmoother methods had the

lowest MSE, with the lowest value of 2.5 e-9 for the 6-term Fourier method being 1.25 times as large

as the estimated variance bound. Again the cosine methods performed badly: the periodogram

had MSE 100 times as large as the best method, mostly due to high variance.

Model C

Table 3.6 shows the results of the model C simulations, and boxplots of the frequency

estimates are displayed in Figure 3.16. For the low-noise case, the lowest-MSE methods were the

4-term and 6-term Fourier methods and the high-parameter spline methods. The 4-term Fourier

method had MSE of 1.2 e-9, 1.7 times larger than the estimated variance bound. Although the

higher-parameter Fourier and spline methods performed well, the 2-term Fourier and 5-knot spline

methods had surprisingly large bias. The cosine, Lafler, and Renson methods all performed poorly

in comparison to the best method. Note the difference in MSE between the Lafler and Renson

methods. In models A and B these methods behaved identically, but in this model, the Renson

method performed better. This is unsurprising, as the Renson method was intended to perform

well when the phase values are unevenly distributed on [0,1], as is the case for this model.

The results for the high variance model are a little confusing. The methods with the lowest

MSE were the periodogram, Fourier, and lower-parameter spline methods. None of the methods

came close to the estimated variance bound of 1.1 e-8, but whether the methods are inefficient or

the bound is inappropriate is unclear. For the low-noise and high-noise cases, the periodogram had

very low variance but high bias. This may be related to the fast rate of convergence derived for

thew = 0.5 case in Hannan [22]. Again the Renson method did better than the Lafler method, but

neither were competitive. Supersmoother performed the worst of all these methods, mostly due to
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Table 3.5: Standardized bias, variance, and MSE of the frequency estimates for eleven estimation
methods on the model B simulated data.

SD = 0.05 SD = 0.20

Method Bias/SE Variance MSE Bias/SE Variance MSE
×10−10 ×10−10 ×10−10 ×10−10

PG 36.5 111.4 1597.0 8.8 1383 2433
C1 9.0 47.8 86.2 0.8 688 685
C2 11.1 2.2 4.8 5.0 45 55
C4 9.5 1.7 3.2 3.9 38 43
C6 -0.2 1.1 1.1 2.3 24 25
S5 4.6 15.4 18.6 8.4 87 146
S9 14.5 23.4 72.2 5.8 145 193
S13 12.4 10.0 25.3 2.7 56 59
LF -0.2 4.5 4.5 1.4 102 103
RN -0.1 4.5 4.5 1.4 102 103
SM -2.5 2.2 2.3 0.5 55 55
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Figure 3.15: Boxplots of the frequency estimates for eleven estimation methods on the model B
simulated data.
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Table 3.6: Standardized bias, variance, and MSE of the frequency estimates for eleven estimation
methods on the model C simulated data.

SD = 0.05 SD = 0.20

Method Bias/SE Variance MSE Bias/SE Variance MSE
×10−10 ×10−10 ×10−10 ×10−10

PG -117.5 2.2 305.7 -25.4 49 364
C1 -31.2 15.6 167.2 -6.1 368 501
C2 -41.8 8.6 157.6 -11.2 151 338
C4 -3.6 11.1 12.4 -1.1 367 368
C6 -0.2 15.4 15.2 -0.9 468 467
S5 -54.4 7.5 229.6 -8.0 265 432
S9 3.1 17.8 19.3 -0.3 454 450
S13 1.4 22.5 22.7 0.3 641 635
LF 0.5 153.0 151.8 -0.2 1015 1005
RN -0.7 85.9 85.5 -0.4 848 841
SM 0.2 38.6 38.2 1.3 1004 1010
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Figure 3.16: Boxplots of the frequency estimates for eleven estimation methods on the model C
simulated data.
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high variance.

3.5 Further Topics

Three aspects of the frequency estimation problem that we did not pursue in this research

are estimation of multiple periodicities, evolution of the phase and amplitude over time, and tests

of significance of the estimated frequency.

Estimation of multiple periodicities was discussed in a tangential fashion in Sections 2.2.4

and 2.3.3, but there are many other interesting issues. The estimation problem is much more

complicated when several frequencies are estimated together. This can be simplified by estimating

and subtracting the largest component first, then estimating and subtracting the remaining periodic

components in turn. This method gives inferior estimates of the frequencies, however, and better

results can be obtained by using a cyclic descent method ( Bloomfield [8], pp. 20-25 , and

McDonald [30], p. 673). In Fourier analysis of unequally-spaced time series, deconvolution

methods can be used to improve the estimation of the secondary periodic components (Schwarz

[41]).

Many phenomena have semiperiodic behavior which is not well-representable by a

harmonic component at a given frequency, due to changes in the phase and amplitude over time.

The long period variable star of Figure 1.9 is a good example of this. Estimation of changing phase

and amplitude for equally-spaced data can be achieved bycomplex demodulation(Bloomfield [8],

Tukey [45]), while MacDonald [30] proposes an estimation method for unequally-spaced times.

A pure noise time series may show large peaks in the periodogram or deep troughs in the

RSS, and tests of significance are needed to check that an estimated frequency is not the spurious

product of the observational noise and the spacing in the sample times. Fisher [19] derived a

test of significance of the largest peak in the periodogram for equally-spaced data, and this work

has been extended by many authors (Shimshoni [42], Brockwell and Davis [13], pp. 324-332.).

There is little in the literature for unequally-spaced times, however. For the MACHO data, it is not

relevant to test the hypothesis of a periodic component against that of a pure noise series, since the

variable stars have been screened from the pure noise series on the basis of RSS about their mean.

Thus all of the series contain a systematic component, though not necessarily a periodic one. It

would be more useful to quantify the degree of periodicity in the data, on a scale from periodic to

semiperiodic to nonperiodic, but how this could be done is uncertain.
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