Homework 7

This problem is about generalized linear models involving the gamma distribution, which is useful for modelling non-negative random variables. There are several equivalent parametrizations of the gamma density. One of the common ones is

$$f(y) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\lambda y}$$

Then

$$E(Y) = \frac{\alpha}{\lambda}$$
 $Var(Y) = \frac{\alpha}{\lambda^2}$

Sometimes it is more convenient to parametrize the distribution in terms of its mean $\mu = \alpha/\lambda$. Then

$$f(y) = \frac{(\alpha/\mu)^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} e^{-\alpha y/\mu}$$

Then $E(Y) = \mu$ and $Var(Y) = \mu^2/\alpha$. The ratio of the standard deviation to the mean is called the "coefficient of variation." In this case the coefficient of variation is $\alpha^{-1/2}$.

For the classical linear model the standard assumption is that the variance is constant and the mean changes as a function of covariates. The analogue for a generalized linear model based on a gamma is that the coefficient of variation is constant while the mean changes; that is, the standard deviation is proportional to the mean.

Suppose then that the mean, μ , is modelled as a function of $x\beta$, $g(\mu) = x\beta$ and it is assumed that α is constant.

1. Show that the gamma distribution belongs to the exponential family. Identify θ , $b(\theta)$, etc.

$$\log f(y) = -\log \Gamma(\alpha) + \alpha \log \alpha - \alpha \log \mu + (\alpha - 1) \log y - \alpha \log \mu$$
$$= -\alpha (y/\mu + \log \mu) + (\alpha - 1) \log y - \alpha \log \alpha - \log \Gamma(\alpha)$$
$$= \frac{y\theta - \log \theta}{a(\phi)} + C(y, \phi)$$

where $\theta = \mu^{-1}$ and $a(\phi) = -\alpha^{-1}$. This is in the canonical form of the exponential family, where $b(\theta) = \log \theta$. Also, note that

$$b'(\theta) = \theta^{-1} = \mu$$

$$b''(\theta)a(\phi) = \alpha^{-1}\mu^2 = Var(Y)$$

- 2. Consider the canonical link function, $g(\mu) = \mu^{-1}$. Suppose that the observations are (Y_i, x_i) , i = 1, ..., n, and the Y_i are independent.
- 3. Give an expression for the log-likelihood.

$$\ell(\beta) = \sum_{i=1}^{n} \ell_i(\beta)$$

= $-\alpha \sum_{i=1}^{n} (Y_i x_i \beta - \log x_i \beta) + \sum_{i=1}^{n} c(Y_i, \alpha)$

4. Using (3) show that the maximizing β does not depend on α , and that the maximum likelihood estimate of β satisfies a system of equations of the form, $X^T(Y - \mu(\beta)) = 0$.

$$\frac{\partial \ell(\beta)}{\partial \beta_j} = -\alpha \sum_{i=1}^n (x_{ij} Y_i - x_{ij} / x_i \beta)$$
$$= -\alpha \sum_{i=1}^n x_{ij} (Y_i - \mu_i(\beta))$$

where $\mu_i(\beta) = E(Y_i)$. Writing this in vector form we have

$$\nabla \ell(\beta) = -\alpha X^T (Y - \mu(\beta))$$

so the maximum likelihood estimate of β satisfies $X^T(Y - \mu(\beta)) = 0$ and does not depend on α .

5. Derive the form of the update $h^{(k)} = \beta^{(k+1)} - \beta^{(k)}$.

$$\frac{\partial^2 \ell(\beta)}{\partial \beta_k \partial \beta_j} = -\alpha \sum_{i=1}^n \frac{x_{ij} x_{ij}}{(x_i \beta)^2}$$
$$= -\alpha \sum_{i=1}^n x_{ji} x_{ik} V_i^{-1}$$

In matrix form $\nabla^2 \ell(\beta) = -\alpha X^T V^{-1} X$

$$\begin{aligned} h^{(k)} &= - [\nabla^2 \ell(\beta)]^{-1} \nabla \ell(\beta) \\ &= - (X^T V^{-1} X)^{-1} X^T (Y - \mu(\beta)) \end{aligned}$$

6. Give the form of the IRLS algorithm and identify the adjusted dependent variable. Show that it is equivalent to (5).

$$\beta^{(k+1)} = \beta^{(k)} + h^{(k)}$$

= $(X^T V^{-1} X)^{-1} X^T V^{-1} (X \beta^{(k)} - V(Y - \mu))$

Thus the adjusted variables are

$$Z = X\beta - V(Y - \mu)$$

or

$$Z_i = x_i\beta - V_i(Y_i - \mu_i)$$

This can be interpreted as a Taylor series approximation to $g(Y_i)$ where $g(\mu) = \mu^{-1} = x_i\beta$ is the link function,

$$g(Y_i) \approx x_i\beta - (Y_i - \mu)(x_i\beta)^2$$

Then, since $Var(Y_i) = \alpha^{-1}(x_i\beta)^{-2}$

$$Var(g(Y_i)) \approx \alpha^{-1} V_i$$

and the IRLS form above can be interpreted as weighted least squares on the adjusted variables.

7. What equation does the maximum likelihood estimate of α satisfy? Since the maximum likelihood estimate of β does not depend on α , the log likelihood of α is

$$\ell(\alpha) = -\alpha \sum_{i=1}^{n} (Y_i x_i \hat{\beta} - \log x_i \hat{\beta}) + \sum_{i=1}^{n} C(Y_i, \alpha)$$

This would have to be maximized by an iterative process.

8. An un-natural aspect of the link function above is that $x\beta$ must be positive. For this and other reasons it may be desirable to consider a link function which automatically guarantees that $g(x\beta) > 0$. For the choice $g(\mu) = \exp(x\beta)$, explain how IRLS can be used to estimate β .

There was a typo. I intended to write $\mu = \exp(x\beta)$, so $g(\mu) = \log(\mu)$.

Dropping the subscript *i*, the contribution to the total log likelihood from the ith observation is (neglecting the constant $C(Y, \alpha)$)

$$\ell(\beta) = -\alpha(Y_i\theta(\beta) - b(\theta(\beta)))$$

The derivative with respect to β_j is most easily expressed by using the chain rule:

$$\frac{\partial \ell}{\partial \beta_j} = \frac{\partial \ell}{\partial \theta} \frac{\partial \theta}{\partial \mu} \frac{\partial \mu}{\partial \eta} \frac{\partial \eta}{\partial \beta_j}$$

where $\eta = g(\mu) = x\beta$ Then

$$\frac{\partial \ell}{\partial \theta} = -\alpha (Y - b'(\theta))$$
$$\frac{\partial \theta}{\partial \mu} = \frac{1}{\partial \mu / \partial \theta} = \frac{1}{b''(\theta)}$$
$$\frac{\partial \mu}{\partial \eta} = e^{\eta}$$
$$\frac{\partial \eta}{\partial \beta_j} = x_j$$

Since

$$b''(\theta) = -\frac{1}{\theta^2}$$
$$= -\mu^2$$
$$= -e^{2\eta}$$
$$\frac{\partial \ell}{\partial \beta_j} = \alpha (Y - \mu) e^{-x\beta} x_j$$

Thus

$$\frac{\partial \ell}{\partial \beta_j} = \alpha \sum_{i=1}^n (Y_i - \mu_i) e^{-x_i \beta} x_{ij}$$

And the maximum likelihood estimate of β satisfies

$$\nabla(\beta) = X^T D(Y - \mu(\beta)) = 0$$

where $D = \text{diag}(e^{-x_i\beta})$. To solve for the maximum likelihood estimate using IRLS, form the adjusted variables

$$Z_{i} = g(\mu_{i}) + (Y_{i} - \mu_{i})g'(\mu_{i})$$

= $\log \mu_{i} + (Y_{i} - \mu_{i})/\mu_{i}$

which have variance

$$Var(Z_i) = Var(Y_i)/\mu_i^2$$
$$= \alpha^{-1}$$

Since this is constant, the iteration is

$$\beta^{(k+1)} = (X^T X)^{-1} X^T Z^{(k)}$$