Homework 7

This problem is about generalized linear models involving the gamma distribution, which is useful for modelling non-negative random variables. There are several equivalent parametrizations of the gamma density. One of the common ones is

$$f(y) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\lambda y}$$

Then

$$E(Y) = \frac{\alpha}{\lambda}$$
 $Var(Y) = \frac{\alpha}{\lambda^2}$

Sometimes it is more convenient to parametrize the distribution in terms of its mean $\mu = \alpha/\lambda$. Then

$$f(y) = \frac{(\alpha/\mu)^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} e^{-\alpha y/\mu}$$

Then $E(Y) = \mu$ and $Var(Y) = \mu^2/\alpha$. The ratio of the standard deviation to the mean is called the "coefficient of variation." In this case the coefficient of variation is $\alpha^{-1/2}$.

For the classical linear model the standard assumption is that the variance is constant and the mean changes as a function of covariates. The analogue for a generalized linear model based on a gamma is that the coefficient of variation is constant while the mean changes; that is, the standard deviation is proportional to the mean.

Suppose then that the mean, μ , is modelled as a function of $x\beta$, $g(\mu) = x\beta$ and it is assumed that α is constant.

- 1. Show that the gamma distribution belongs to the exponential family. Identify θ , $b(\theta)$, etc.
- 2. Consider the canonical link function, $g(\mu) = \mu^{-1}$. Suppose that the observations are (Y_i, x_i) , i = 1, ..., n, and the Y_i are independent.
- 3. Give an expression for the log-likelihood.
- 4. Using (3) show that the maximizing β does not depend on α , and that the maximum likelihood estimate of β satisfies a system of equations of the form, $X^T(Y \mu(\beta)) = 0$.

- 5. Derive the form of the update $h^{(k)} = \beta^{(k+1)} \beta^{(k)}$.
- 6. Give the form of the IRLS algorithm and identify the adjusted dependent variable. Show that it is equivalent to (5).
- 7. What equation does the maximum likelihood estimate of α satisfy?
- 8. An un-natural aspect of the link function above is that $x\beta$ must be positive. For this and other reasons it may be desirable to consider a link function which automatically guarantees that $g(x\beta) > 0$. For the choice $g(\mu) = \exp(x\beta)$, explain how IRLS can be used to estimate β .