Homework 4

- 1. Consider the effects of multicolinearity on predictions from a standard linear model.
 - (a) How does multicolinearity affect the global measure trace $(\Sigma_{\hat{V}\hat{V}})$?
 - (b) Consider predicting a new response with covariate value x_0 . What is the effect of multicolinearity?
- 2. Consider a standard linear model with design matrix

$$X = \begin{pmatrix} -2 & -2 \\ -1 & -1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 2 \\ -1 & 1 \\ 1 & -1 \end{pmatrix}$$

and unknown coefficients β_1, β_2 .

- (a) Which linear combinations $\hat{\psi} = a_1 \hat{\beta}_1 + a_2 \hat{\beta}_2$ have largest and smallest variance, subject to $a_1^2 + a_2^2 = 1$?
- (b) If the columns of the design matrix are thought of as values continuous variables x_1 and x_2 , then we are fitting a plane through the origin: $y = \beta_1 x_1 + \beta_2 x_2$. If $u = (u_1, u_2)$ is a direction vector, what is the estimated slope of the plane in that direction? In what direction is the estimated slope most variable? Least variable? Do the answers "make sense?"
- 3. Suppose that $Y \sim MVN(0, \sigma^2 I_n)$. Show that \bar{Y} is independent of $\sum_{i=1}^{n} (Y_i \bar{Y})^2$.