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1 Introduction

1.1 What is R?

R is both a programming language and a software program bundled into one neat little package.
Normally, software and languages are developed separately, and the program uses the language
by compiling the language into something the software can understand, then finally running the
program. R, however, is an interpreted language, which means that every command you type into
the prompt is immediately read by the software and interpreted, without having to compile and
build a whole program. Therefore, most of the things you do in R will be by typing one line at a
time, at the command prompt, which is represented by the ’> ’ symbol.

Another thing you must know is that R is composed of objects. These include functions,
variables, data, etc., and are stored in the memory of the computer for later use. To perform action
on these objects, we have functions and operators.

1.2 What can I do with R?

R is quite versatile, with capabilities ranging from data analysis to data scraping. We will explore
some analyses that may be performed in R later, but for now here is a list of fundamental things R
can do:

R is a calculator:

> (2+3)

[1] 5

> 273

[1] 8

> cos(4.7)

[1] -0.01238866

R can operate on scalar variables:

>x =6

> 2%x

[1] 12

> exp(x)

[1] 403.4288

R can operate on vectors:

>x =c¢(1,2,3,4)
> X

[11 1 234

> x[2]

[1] 2

> x+1

[11 2345

> x72

[11] 1 4 9 16
> cos(x)

[1] 0.5403023 -0.4161468 -0.9899925 -0.6536436
>y=x+3

>y

[11 4567



> x/y
[1] 0.2500000 0.4000000 0.5000000 0.5714286

R can do logical operations:

>x > 2
[1] FALSE FALSE TRUE TRUE

R can calculate statistics:

> mean (x)
[1] 2.5

> sd(x)

[1] 1.290994

R can plot:

> x seq(from = -1, to = 1, by = .01)
>y =x"2
> plot(x,y)

Here, the seq is a function that creates a sequence, hence the name, of numbers from negative
one to one, with each number separated by .01. If you're thinking this is very self-explanatory, it
is. If you’re thinking the typing is tedious, don’t worry, seq(-1, 1, .01) does the same, but we’ll
get to that later.

Figure 1: What R graphs as a result of plot(x,y):

R can generate random numbers:

> x = rnorm(1000,10,20)
> mean (x)

[1] 9.998576

> sd(x)

[1] 19.93155

> min(x)

[1] -50.95176

> max (x)

[1] 65.02984

> hist(x)



1.3 How Can I Get a Copy?

To obtain a copy of R, visit the site http://cran.cnr.berkeley.edu/, and visit one of the three links
Linux, MacOS X, or Windows in the section Download and Install R. Then simply choose the
distribution of R you desire.

1.4 The Focus of this Tutorial, and other References

This tutorial is written for people who have no experience with R. In turn, we only cover what we
feel to be the most fundamental areas. This allows us to explain the fundamentals in more detail
than might be found in more broadly focused tutorials. Detailed statistical examples have been
provided wherever possible to show how to combine the topics covered. We strongly reccomended
observing the help options for each function covered, to see their full capabilites; something not
covered in this text. Such investigation will also lead to alternatives that may better suit the readers
programming style.

This being said, for a more broad coverage of R, see _An Introduction to R, by W.N. Ven-
ables, D.M. Smith and the R Development Core Team, at http://www.r-project.org/. Another
is R for Beginners, by Emannual Paradis. Paradis explains in more detail the inner workings
of R, with nice drawings, for those interested. For a summary of commands, vist the website
http://www.stat.berkeley.edu/ epurdom/RNotes.pdf. Charlotte Wickham’s Introduction to R
contains simulation, with exercises and solutions, located at http://cwick.co.nz/camp.html.

2 Objects

We have said before that everything in R is an object. In order to better differentiate these objects,
every object has a mode and a length. The mode gives the basic type of the elements of an object,
and the four main modes are as follows:

e Numeric - A number; either an integer or a double (fraction).
e Character - A string or word.

e Logical - A TRUE or FALSE value.

e Complex - A complex number (i)

The length is the length of the object, or how many elements are contained within the object.
You can find out the mode and length of any object using the mode and length functions.

> numl = 3

> mode (num1)
[1] "numeric"

> charl = "hello"
> mode(charil)
[1] "character"
> booll = TRUE
> mode (booll)
[1] "logical"

> compl = 1i

> mode (comp1l)
[1] "complex"

> length(numi)
[1] 1



> length(c(l, 2, 3, 4, 5))
[11 5

Also, for all modes, missing values are always represented as NA (Not Available).

While working in R we will sometimes be dealing with a single number value, or sometimes
even a large dataset. We need a way to store these objects or values for later use. That’s where
variables come in. Variables can be thought of as an attribute which may change its value while it
is under observation. We usually give variables a name or a letter, in order to recognize that it is
a variable. We have already seen an example of using variables when we wrote charl = "hello"
above. When saving a value to a variable, we call it an ”assignment”. Assignments take the result
of the statement on the right of the =" symbol and stores it in a variable whose name is given on the
left. In place of the ’=" symbol, we can also use the <=’ symbol. In the examples provided above,
the result of the expression on the right is simply the number that we happened to type it. We then
printed out a variable’s value by typing the name of the variable.

Further note that just as <- says “Take what is on the right of this operator and store it into
the name listed to the left of the operator”, the symbol -> says just the opposite. The intuition is
the same in that we are storing into the direction of the arrow. The latter comes in handy when
you have made a long computation and want to go back and store the value of that computation.
For example, suppose you were calculating your estimated grade in a class as

> 90%.1 + 89%.15 + 91%.15 + 95%.20 + 91x.4
[1] 91.4

But if we wanted to store this, we could either re-enter the operation, with a grade = or grade <-
at the beginning, or push the up arrow key to retrieve the previous line. If in a GUI, we could move
the mouse cursor to the beginning of the line and enter the same grade = or grade <-. The easiest
way of course is to push up and then -> grade. Though the example may seem trivial, keep this
option in mind, because it will come in handy as your experience with R expands.

2.1 Numbers

Numbers make up the numeric mode. Numbers can be a simple integer

>a=3
> a
[1] 3

They can be a decimal

> a = 3.50
> a
[1] 3.5

or they can be a large value in exponential notation.

> a = 3.0e24
> a
[1] 3e+24

They also have some special values, Inf (c0), ~Inf (—o0), and NaN (Not a Number).

> infty = 1/0
> infty
[1] Inf



> neg.infty = -1/0
> neg.infty

[1] -Inf

> infty + neg.infty
[1] NaN

We can also perform mathematical functions on numbers and variables:

> a(4) #Attempts to pass the integer 4 to a function a, but it doesn’t exist
Error: could not find function "a"

Ja

> sqrt(a)
[1] 1.732051

a’®

> a’h

[1] 243
> ax*bh
[1] 243

| —al

> abs(-a)
[1]1 3

a*x3/5+7—2

> a*3/5+7/2
[1] 5.3

2.2 Vectors

Vectors are a variable in the commonly understood meaning: a listing of elements in one dimension
that are indexed so that individual items can be selected later by one or more indices. In R, all the
elements of a vector must be of the same mode. For a vector object, the length becomes the number
of elements in the vector.

2.2.1 Creating Vectors

Vectors are most commonly created by using the 'c’ function:

> vec = c(1, 8, 4, 2, 6)
> vec

[11 18426

> c(TRUE, FALSE, TRUE)
[1] TRUE FALSE TRUE

> c("hello", "world")
[1] "hello" "world"

10



When looking at a vector when printed out onto the window, the numbers in brackets (in this
case the '[1]) tells you the index in the list of results of the element immediately following the
bracketed number. So, since when the vector was printed out it only needed to use one line for
output, you will see a '[1]’ to begin the line of output; this means that the element immediately
following the "[1]’ is the first element in the vector. If there were enough numbers to use up more
than one line of output, there will be one bracketed number per line of output, like so:

> numeric.vector = 1:50

> numeric.vector

[1] 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[30] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Notice that the number '30’ has a ’[30]’ in front of it. That is because it is the first element
of that line of output and it is element number 30 in the vector. This numbering system becomes
a little more complicated when dealing with lists, because we can have lists contained within lists.
But you don’t need to worry about that for now.

There are three other tools for vector creation that come in handy:

> seq(from = 1.575, to = 2.075, by = 0.05)
[1] 1.575 1.625 1.675 1.725 1.775 1.825 1.875 1.925 1.975 2.025 2.075
> 1:10
[11] 1+ 2 3 4 5 6 7 8 910
> rep(1:3, times = 3)
[1] 123123123

seq is a function that generates a sequence of numbers, beginning at from and ending at to, with the
interval given by by. The next example, 1:10, is much like a simplified version of the seq function,
where it sequences automatically by from the first number to the second number, either by +1 or
-1, depending on whether the first number is greater than the second. rep is a function that repeats
a vector a designated number of times.

If you try to put objects of different modes into a vector, R will convert all elements to a mode
which all the elements can be converted to:

> c(3, "three")

[1] ngn "three"

> ¢(3, TRUE)

[1] 3 1

> c(3, 3i)

[1] 3+0i 0+3i

> c(3, 3i, "three")

[1] "3~ "0+3i" "three"
> ¢(3, 3i, FALSE)

[1] 3+0i 0+3i 0+0i

We can also append two vectors together using the same ¢ function:

> vec2 = c(5, 3, 7)
> vec3 = c(vec, vec2)
> vec3

[1] 18426537

11



2.2.2 Indexing Vectors

Now we can index one or more of its elements by using brackets containing the indeces we want
following the name of the vector:

> vec

[11 1842686
> vec[2]

[1] 8

If we want to grab more than one element, we can provide another vector inside the brackets, with
an element for each index we wish to grab:

> vecl[c(1,2)]
[1] 1 8

> vec[c(1,1,3)]
[1] 11 4

If we pass a logical test on the vector, out pops a logical vector telling which elements of the vector
pass that test:

>a=1:10
> a > 6
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

Now we can use this logical vector to subset the original by putting the logical test within brackets
like so:

> ala > 6]
[11 7 8 9 10

Notice how it only returns the values of a that are greater than 6. Here is one more example:

>a =3

[1] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> ala '= 3]

[1] 1 2 4 5 6 7 8 910

2.2.3 Vector Arithmetic

Similarly to numbers, we can also do arithmetic on vectors:

>a=1:3

>Db = 4:6

> a+b

[11 579

> axb

[11] 4 10 18

> a”2

[11 1 4 9

> a/b

[1] 0.25 0.40 0.50

12



2.3 Strings

Anything in between pairs of single or double quotes are defined as members of the character class,
also called a ”string”:

> b <- "Category A"

We can convert numeric objects to character objects and back:

> pi=3.14

> pi = as.character(pi)
> pi

[1] "3.14"

> pi = as.numeric(pi)
> pi

[1] 3.14

We can also paste strings together:

> a = "stringl +"

> b "string2"

> paste(a,b)

[1] "stringl + string2"

and use them in vectors just like numeric objects:

> x = "element 1"
>y = "element 2"
> c(x,y)

[1] "element 1" "element 2"

To split a string, we use the strsplit function, with the form strsplit(string to be split,
what to split the string by). For example, to split the string “1234567890” by each empty
string 7, do the following :

> strsplit("1234567890", "")->myString; myString
[[1]1]
[1] ||1l| II2II Il3ll I|4II lI5|l |I6Il I|7l| Il8l| Il9|| IIOII

Note the double brackets around the 1 above, in [[1]]. This states that myString is a list.
The [[1]] denotes that what follows is the first element in the list. To refer to this element,
we must call myString[[1]]. We will put this to use in a moment. Of course, it always nice
to know how to put things back together once we have taken them apart. This can be achieved
here with the paste function, with the form paste(what to paste together, what you want to
separate these items with) . For example, if we wanted to put the string back to it’s original
form, we would paste the elements of myString, separating each element with an empty character :

paste(myString[[1]], collapse = "")
[1] "1234567890"

We will cover other String manipulations and issues related to data frames in the the sections on
reading data into R!.

LIf you just can’t wait, check out gsub with the call help(gsub).

13



2.4 Factors

A factor is a categorical variable, that can be of either the numeric or character mode. They
can be used when needing to categorize data into different groups. A factor includes a vector of
‘labels’ for the categories, as well as number of different levels that the factor contains. Factors can
be created using the factor function:

factor(x, levels = sort(unique.default(x), na.last = TRUE),
labels = levels, exclude = NA, ordered = is.ordered(x))

The first argument, x, is a vector of data, that will be attempted to convert into a factor
object.

> factor(1:5)

[11 12345

Levels: 1 23 45

> factor(c("high", "high", "low", "medium"))
[1] high high low medium

Levels: high low medium

Notice how the levels contain only the unique values found in the vector of values. The
levels argument designates all the possible levels of the factor, which includes all possible values
that the data could have taken on. Notice that by default this is set to be all of the unique values
of the vector x. Here is an example where we specify the levels ourselves:

> factor(1:3, levels = 1:7)
[11 1 2 3
Levels: 1234567

Notice that all of the values in x were also found in the levels vector we specified. However,
if values in x are not found within the vector of levels, they are replaced by <NA> values:

> factor(1:3, levels = c("A", "B", "C", "D", "E"))
[1] <NA> <NA> <NA>

Levels: ABCDE

> factor(1:3, levels = c("A", 3, "C", 2, 1))

[1] 1 2 3

Levels: A3C21

labels determines the names of the levels. If you decide to specify the labels of the factor, the
vector of labels must be of the same length as the number of different levels, and R automatically
determines which label goes with which value by assigning the next unique value in the vector x
with the next unique label in labels. Here is an example where we specify the labels ourselves:

> factor(1:3, labels = c("low", "medium", "high"))
[1] low medium high
Levels: low medium high

The number of labels must equal the number of levels, which again is the number of unique
values found in x.

> factor(c(2, 3, 3, 1, 2), labels = c("low", "medium", "high"))
[1] medium high high low medium
Levels: low medium high

14



Notice that every ‘1’ is replaced by ’low’; ‘2’ replaced by 'medium’, and ‘3’ replaced by ‘high’.
This is because ‘1’ is the first of the ordered unique values, and ‘low’ is the first label found in
labels. exclude is a vector of values to be excluded when forming the set of levels:

> factor(1:3, exclude = 2)

(11 1 <NA> 3

Levels: 1 3

> factor(1:3, levels = c("A", 3, "C", 2, 1), exclude = 2)
[1]1 1 <NA> 3

Levels: A 3 C 1

Notice how if a value in exclude is found within the vector of values, then it is replaced by
<NA> and removed from the levels as well. If you set exclude to be null, the missing value (NA)
is treated as a valid level, as in:

> factor(c(3, 3, 2, 8, 6, 4, 2, NA), exclude = NULL)
[11 3 3 2 8 6 4 2 <NA>
Levels: 2 3 4 6 8 <NA>

ordered is a logical argument used to specify whether the levels should be regarded as ordered.
The default value is determined by is.ordered(x), which tells if the values in x are ordered or not.

factor(c("high","high","low","medium"),
+ levels=c("low","medium","high") ,ordered=FALSE)
[1] high high 1low medium
Levels: high low medium
factor(c("high","high","low", "medium"),
+ levels=c("low","medium","high") ,ordered=TRUE)
[1] high high 1low medium
Levels: high < low < medium

Notice that if ordered is set to TRUE, ‘high’ is considered earlier in order than ‘low’ or ‘medium’.

2.5 List

A list is pretty much what sounds like: a listing of objects. Lists can contain any object, even lists.
In fact, when lists are created, every object within the list is converted to a list object. Therefore,
lists can go several layers deep:

> list(x, y)
[[11]
[11 1234

[[2]1]
[1] 12345678

> list(x, list(y))
[[1]1]
[1] 1 23 4

[[21]

([2110[11]
[1] 123456738

15



Notice that the indexing style for lists is different. [[1]1] is indicating that this is the first list
in the list, and [1] is indicating the first element of the vector contained in that list. We can then
select either the list objects or the objects they contain, depending on the sets of brackets we use:

> 11 = list(x, y)
> 11

[[11]

[1] 1 23 4

(211
(11 12345678

> 11[1]
[[1]1]
[1] 1 2 3 4

> 11[[1]1]
[11 1 23 4

11[1] grabs the first list in the list, whereas 11[[1]] grabs the object contained in that list.
Like data frames, the elements of a list can also be named.

> 12 = list(independent = x, dependent = y)
> 12
$independent
[1] 3.03 5.53 5.60 9.30 9.92 12.51 12.95 15.21 16.04 16.84

$dependent
[1] 3.19 4.26 4.47 4.53 4.67 4.69 12.78 6.79 9.37 12.75

We can now access these elements using the ’$’ notation:

> 12$dependent
[1] 3.19 4.26 4.47 4.53 4.67 4.69 12.78 6.79 9.37 12.75

2.6 Matrices

A matrix is just a vector in 2 dimensions, so therefore it has a vector of values, and a dim attribute
which specifies the number of rows and columns of the matrix. To see some examples, we will be
creating matrices using the matrix command.

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)

data is the vector of data to be used. nrow and ncol specify the number of rows and columns,
respectively. dimnames can be used to specify the names of the rows and columns, by passing a list
of length 2, containing a vector of names for the rows and a vector of names for the columns.

> matrix()
[,1]
[1,] NA

> matrix(1:6)

[,1]
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[1,] 1

[2,] 2

[3,] 3

[4,] 4

(5,1] 5

[6,] 6

> matrix(1:6, ncol = 2)
[,11 [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

> matrix(1:6, ncol=4)
(.11 [,21 [,3] [,4]
[1,] 1 3 5 1
[2,] 2 4 6 2
Warning message:
In matrix(1:6, ncol = 4)
data length [6] is not a sub-multiple or multiple of the number of columns [4]

Notice that when specifying the number of rows or columns, if the length of the data is not a
multiple of the rows, columns or rows and columns, then the function wraps the data until it fills
the necessary dimensions. byrow is a logical option telling the function to fill the data along the
rows. By default, it is set to FALSE, so the function fills down the columns.

> matrix(1:6, ncol = 2, byrow = TRUE)

(.11 [,2]
[1,] 1 2
[2,1] 3 4
[3,] 5 6

Given that a matrix is two dimensional, we can call on its elements by row and column. Suppose
we had a matrix as follows :

> matrix(1:6, ncol = 2, byrow = TRUE)->DATA

Now to access the it" row and j*" column, we use the form DATA[i,j] to obtain that element.
For example,

> DATA[1,2]
[1] 2

Although matrices are usually indexed with two subscripts, it’s still valid to use just one, in
which case the matrix is treated like a vector consisting of the columns of the matrix. In other
words, the matrix is referenced like a vector, whose elements are ordered by the columns. For an
example:

> DATA[S5]
(1] 4

To expand a matrix by row or column, we use the rbind or cbind functions respectively with

the form rbind{data to bind to, data to bind}. For example, we could bind the vector (1, 2,
3), as a column and then as a row, to DATA as follows :
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> cbind (DATA, 1:3)->DATA; DATA
[,11 [,2]1 [,3]

[1,] 1 2 1

2,1 3 4 2

[3,1] 5 6 3

> rbind (DATA, 1:3)->DATA; DATA
[,11 [,2]1 [,3]

[1,] 12 1
[2,] 3 4 2
(3,1] 5 6 3
[4,] 1 2 3

To remove a row or column, use the form DATA[-i,] or DATA[, -j] to remove the ith or jth
column respectively. To get back to our original matrix DATA :

> DATA = DATA[-4,]; DATA = DATA[,-3]; DATA
[,11 [,2]
[1,] 1 2
[2,] 3 4
6

The same rules apply with removing multiple columns or rows at once with the colon, :,
operator.

If we think of DATA[i,j] as saying "I want DATA, such that I am in the i** row and j**
column” we can begin to see new ways of accessing data. For example, DATA[DATA[,2]==0,] says
7T want DATA, such that I am in a row where the second column of DATA is equal to zero.” This
can come in handy when having to subset your data (try help(subset) for more on subsetting).
The initial step is to decide what we want, in this case rows, conditional on the columns meeting
some requirement. Note, the setup positions the logical requirement in the row position, stating we
want rows. The logical condition simply states which rows we want. For example,

> DATA[DATA[,2] == 2, ]
(11 12
> DATA[DATA[,1] == 5, ]
[11 56

This should get you quite far in your subsetting tasks.

2.7 Data-Frames

While a matrix can contain only one type of data, a data-frame may hold many different types, so
long as individual columns of the data-frame contain only one type throughout that column. To
create a data-frame, we use the data.frame function, with one of many forms. One way is to create
a data-frame from vectors : data.frame(vl, v2, v3, ..., vn), where each v is a vector. In this
case the columns of the data-frame will take on the names of the vectors. Another way is to create
a data-frame from a matrix or vector : as.data.frame(ml), where m1 is a matrix or vector. If you
want to set the names of the columns on your own, use the function names with the form names (your
data-frame here) = c(c_namel, c_name2, ..., c_namen), where each c_namei is the name you
want to give to column i. Once a data-frame is created you may add a column or row to it using basic
indexing. However, with data-frames, we have many ways of refrencing our variables (columns). For
example, suppose we created the following data-frame :
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vl 1:10

v2 = 2:11

v3 = 11:2

d1 data.frame(vl, v2, v3)
d1

vl v2 v3

1 211

3 10

4

V V V Vv V

© 00 ~NO O WN -~
0 N O O WwN
© 00 N o U;

W 0o N0 ©

9 10
10 10 11
> names(dl) = c("coll", "col2", "col3")
> di

coll col2 col3

1 2 11

N

© 00N O WN -
© 00 ~NO O W
© 00 ~NO O W
[
o

10
11

N Wd 01O N 0 ©o

[
o
—
o

Now, d1[,2] is equivalent to d1$coll, which is equivalent to d1[,’col1’]. That is, instead of
saying we want d1 such that we are in the second column, if it is easier for us to remember the
name of the second column, we may use that instead, by placing a $ after the data-frame name and
before the column name, or call the data-frame column, refrencing the column name instead of its
location. For example, the following asks whether or not the first sentance of this paragraph is true,
and the notation will be covered soon.

> di$coll == d1[,1]; di[,1] == di[,’coll’]
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

More on this in a moment. The following code displays one of the many ways to add a column to
di.

> di1[,4] = 21:30; names(dl) [4] = "col4"
> d1
coll col2 col3 col4d

1 1 2 11 21
2 2 3 10 22
3 3 4 9 23
4 4 5 8 24
5 5 6 7 25
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6 6 7 6 26
7 7 8 5 27
8 8 9 4 28
9 9 10 3 29

10 10 11 2 30
> d1[,5] = strsplit("1234567890", ""); names(dl) [5] = "String Column"
> dil
coll col2 col3 cold String Column

1 2 11 21
22
23
24
25
26
27
28
29
30

© 00N O WN -
© 00 ~NO O WN
© 00 ~NO O W
[
o

10
11

N Wd 01O N 0 ©o
O O©W O NO ULk WN -~

[
o
[
o

We can delete columns just as we can with matrices to obtain our original data-frame, by using the
negative subscript as follows

> dl = di[,-4:-5]

> dil

coll col2 col3
1 1 2 11
2 2 3 10
3 3 4 9
4 4 5 8
5 5 6 7
6 6 7 6
7 7 8 5
8 8 9 4
9 9 10 3
10 10 11 2

Just as a Matrix, with the name MatrixName, can be subsetted with a call like MatrixName [MatrixName[, j]
== 1, 1, to call on some matrix MatrixName where its j** column equals one, so too can a data-
frame be referenced. However, with the data-frame, say dataName we could equally make use of the
fact that data-frame columns have names, and do the following. Supposing a column name of a data-

frame dataName was colName, we could use dataName[ dataName$colName == 1, ], instead of us-
ing the more cryptic dataName[ dataNamel[,j] == 1,]. Similar use with dataName[,’colName’]
works?.

2.8 Tables

The table function will create a table counting the number of occurances of a factor in what object is
passed to it. For an illustrative example, we prematurely introduce you to the rnorm function, which
has the form rnorm(how many numbers to generate, mean, sd) . So, to create and store in, say
OurRV, 1000 randomly generated observances of a random variable following a Normal distribution

2Some functions you may be interested in at this point, with respect to data-frames are subset, with, head, tail,
and summary
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with mean 0 and standard deviation 3, we would write OurRV = rnorm(1000, 0, 3). The round
function is also used in the following example, with the form round(number to round, by how
many decimal places), so round(3.5, 0) results in the integer 3. To observe through a table
the distribution of counts of randomly generated N(0,9) observances, when rounded to integers, we
could do the following :

> table(round(rnorm(1000, 0, 3), 0 ) )

-9 -8
2 3

-7
11

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 T 8 9 10
22 40 65 66 86 134 115 134 103 70 66 39 20 13 6 2 3

We may also compare two objects to eachother. For example, we could see how closely generating
two sets of N(0,9) variables match eachother, when rounded to the nearest integer, element by
element; that is, if the i*" element of the first vector matches the j** element of the second vector,
then table will represent this with a count.

> table(round (rnorm(1000, 0, 3), 0), round(rnorm(1000, 0, 3), 0))

-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 912
-2 0 0 6 00 00600 01 0 O0OOOO0OO0OO0OO O0TO
-8 6 o0 o0 o0 o0 o0 o0 06 0 0 0 0 0 0 21 000 00O
=7 o6 o010 00O OO0O21 00 2 00000 00O
-6 o060 o0 0001212213 3 0010000
-5 o o0 o0 o0 0 323 23310310100 0O
-4 0 o0 o0 01 0 3 5 6 711 4 9 5 3 2 01 0 0 O
-3 0 o0 o0 0 2 1 3 21313141311 4 6 7 1 1 1 0 O
-2 0 0 1 0 0 1 31710141312 8 9 56 4 1 1 1 1 O
-1 01 0 0 3 6 9 31314 8151112 56 4 0 2 1 1 O
0 0 0 1 3 2 4 5141526101414 612 4 0 2 1 0 O
1 i1 0 0 1 2 41113 9211913151510 6 2 1 1 O O
2 6 o0 o0 1 2 111 71011161110 7 3 3 3 0 0 1 O
3 00 01 2 0 4 813 8111511 9 7 2 0 1 0 0 O
4 00 0 2115 3 81010 2 4 5 3 0 3 0 1 0 1
5 o0 01113 43 2 45123120010
6 oo o0 0011 2 4115 21 2 0000 0O
7 6o o0 00011 001 20110100 0O
8 o6 o0 o0 o60o0o00011 010102 000 0O
9 06 o0 o0 o0 o0 0 o0 0 0 0 01 0 O0O0OO0OO0OO0OO0O0 O

This is called a contingency table. A better example might compare, say, the number of days
it takes different plants to grow to a certain height under different treatments.

2.9 Operators

Operators are a special type of function. They are functions that are used more often, so the designers
decided to make it more easy to use them3. They do not use the 'name(arguments, operators, ...)
format, so they lose some of the control that functions provide. Operators include things such as
arithmetic (+,-, *, ...), comparison (<, >, <=, >=), and logical (==, !=, &&, ||). As you can see, it is
much easier to do something like

3Some more information on the operators that R provides can be found here:
http://www.statmethods.net/management/operators.html
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> 2+2
than it is to do
> add(2, 2) # Won’t work

which won’t even work unless you create a function called add = function(x,y) = x + y, though
such would not make much sense, since + works fine for adding two numbers.

2.10 Other Things You Must Know About R

¢ R is Case Sensitive - When you’re dealing with names of variables, functions, etc., be aware
that R is case sensitive, so “item1” is a different variable than “Item1”.

e R Ignores whitespace - The only time that whitespace becomes important is when you're
creating names for variable and functions: they must contain no form of whitespace.

> item one = 3
Error: unexpected symbol in "item one"

Other than this, the R interpreter ignores all whitespace (spaces, tabs).

e Commands Are Separated by Either a “;” or a Newline - You can either type

> 242
[1] 4
> 3+3
[1] 6

or

> 2+2;3+3
[1] 4
[1] 6

If you do not complete a command before hitting ’enter’; the prompt will continue to the next
line with a ’+’ prompt, allowing you to continue typing in the command on the next line.

> mean(c(1, 2, 3, 4),
+ na.rm = TRUE)
[1] 2.5

e Sessions - As you know, R saves all objects in memory When you load R for the first time,
a brand new session is created and no new obects (those other than R’s defaults) have been
created. At any time during your session, you can save your session by selecting File > Save
Workspace. Also, when you exit the R interface, you will be prompted as to whether you
would like to save your session. The next time you load R, all of the objects that you created
during your last session will be restored.

e rm() and Is() commands - To view all of the objects that you have created so far, use the
"1s()’ command; this will list the names of any variables or functions that you have created
and are currently stored in memory. To remove all of these objects, simply use the 'rm()’
command, like so:
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> numl = 3
> 1s()

[1] "numl"
> rm("numl")
> 1s0)
character(0)

e Up/Down Arrow Keys Cycle Through History - All of your previous commands are
remembered in your session’s history. To cycle through them, you may use the up and down
arrow keys, the up arrow key giving you the previous command and the down arrow giving you
the next command. If you entered in a command across multiple lines of prompt, the history
will save the command line-by-line as well.

e Tab Completion - Sometimes, after you have created lots of objects, you might begin to
run out of short, creative names for them. That’s where tab completion comes in handy. Tab
completion makes it faster to reference a variable or function name. After typing in n characters
if you press the 'tab’ key once, sometimes the prompt will automatically choose an object name
that it thinks you are trying to obtain and fills in the rest of the name automatically. If this
is not the object name that you were looking for, you can press the ‘tab’ key until you get a
list of all objects that have a name that begins with those n characters. For example, if you
type in

> mea

and then press the 'tab’ key once, R thinks that you are trying to get the 'mean’ command,
so it will fill in the rest of the command like so:

> mean

If this is not the object name that you were looking for, you can press the 'tab’ key until you
obtain a list like so:

> mean
mean mean.data.frame mean.Date mean.default mean.difftime
mean.P0SIXct mean.P0SIX1t

2.10.1 Logical and Comparison Operators

Logical and comparison operators result in an expression being true or false. For example :

Question : First, is 3 equal to 47 Secondly, is 3 not equal to 4?7

>3 ==4; 3 !=4
[1] FALSE
[1] TRUE

Question : First, is 3 less than 47 Secondly, is 3 less than or equal to 47

>3<4; 3<=4
[1] TRUE
[1] TRUE

Question : First, is 3 greater than 47 Secondly, is 3 greater than equal than 47
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>3>4; 3> 4
[1] FALSE
[1] FALSE

Question : First, is 3 greater than 4 and (&&) 4 greater than 37 Secondly, is 3 greater than 4 or (
[l ) 4 greater than 37

>3>4& 4>3;3>411 4>3
[1] FALSE
[1] TRUE

You will find that these come in handy when subsetting data and programming in R. Also
note we can compare two objects element-wise( & or |). Compare :

> sc = 1:10; scl = sc; scl1[10] =0

> sc == 1:10 && scl == 1:10
[1] TRUE
>sc == 1:10 & scl == 1:10

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

The && compares only the first element in sc with the first in 1:10, and then the result with the
comparison between sc1[1] and 1, while the rest is not compared. On the other hand, the &
compares every element and lets the user know exactly where the FALSE occured. The same goes
for || and |.

2.11 Functions

We have actaully introduced you to a couple of built-in functions already. Functions have a name
followed by a pair of parantheses where the user specifies arguments and options. Arguments are
parameters that must be specified for the function to work, while options are simply optional. For
example, if we wanted to find the mean of the group of numbers 1, 2, 3, 4 and 5, we might type:

> mean(c(1, 2, 3, 4, 5), na.rm = TRUE)
[1] 3

The argument for the function is the vector of numbers, represented by c(1, 2, 3, 4, 5).
We'll learn more about vectors later on. na.rm = TRUE is an option for the function, which tells
the function to ignore any NA (Not Available) values. Many of the optional parameters have default
values, which can be overwritten by the user. The arguments and options for each function are
discussed in more detail in R’s built-in Help documentation.

R has most of the functions that you're going to need already built-in. However, R does allow
you to write your own functions, which will be discussed later.
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3 Plotting

This section covers the basic graphical techniques to observing data.

3.1 Histograms

Suppose we wanted to see how well random generation of a normal variable with mean 0 and
sd 1 does compared to the theoretical Normal(0,1). We can see this by comparing plots of the
theoretical distribution to that of our randomly generated data. The following code will yield the
desired comparison, as seen in the graph below.

> RandomNormal = rnorm(1000, 0, 1)
> summary (RandomNormal)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.036000 -0.679200 -0.008942 -0.014720 0.669100 3.420000
> hist(RandomNormal, seq(-3.2, 3.6, .2), prob = TRUE)
> legend(legend = c("Theoretical N(O, 1)", "Randomly Generated N(O,1)" ),
+ col = c(2, 3), x = "topright", 1ty = 1)
> lines(density(RandomNormal, bw = .2), col = "green") # same as col = 3
> curve ((1/sqrt(2*pi))*exp(-.5*(x)"2), add = TRUE, col = "red") # same as col = 2

Figure 2: Histogram :

Histogram of RandomMNormal

M| — Theoretical N(D, 13
—— Randomly Generated N(0,1)

Randomiormal

The first line should be familiar. The second line is used to obtain upper and lower bounds for
seq in the call tohist , in the third line. The prob = TRUE option displays the histogram in terms of
the probability of each value in seq(-3.2, 3.6, .2). In the call to the function legend we specify a
vector of labels in 1legend = c("Theoretical N(O, 1)", "Randomly Generated N(0,1)" , colors
with col =c(2, 3), location for legend with x= and that we want lines in the legend by 1ty =.
lines draws a line based on its arguments. density estimates the density of the data passed to
it, RandomNormal, where bw is a smoothing bandwidth. It can be adjusted to make the line more
or less smooth. curve is passed the density function of our theoretical Normal(0,1) and the add =
TRUE option to plot over the existing histogram.

3.1.1 colors

To see a list of colors recognized by R enter colors(), or colours(). Passing col a number in
1 through 8 will assign to col one of eight basic colors, and repeats for numbers greater than 8.
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That is, col = ”black” is the same as col = 1 + 8k for k € Z Alternatively, passing col the value
colors() [i] passes the i*" color name stored in colors to col. If the following list isn’t enough
variation for you, please see colors() for an extended list.

#  Color

1 black
red
green
blue
aqua
pink
yellow
grey

0 ~NO Ok WwWwN

3.2 Box-Plots :

Box-plots can be used to compare the distributions of two variables, or data sets. Medians, 25%
and 75% quantiles are shown on each graph for each variable along with a show of outliers in the
data. For example, suppose we created the following data-frame

> DATA.oner = data.frame(NORM = rnorm(1000), TEE = rt(1000, 12), CHI = rchisq(1000,1))
Then we could create a box pot of the vectors in that data frame with boxplot as follows :
> boxplot (DATA.oner)

In the graph below the thick horizontal lines represent the respective medians, while the thin hori-
zontal lines directly above and below are the 75% and 25% quantiles respectively. The lines above
and below these represent a threshold beyond which points are considered outliers.

Figure 3: Boxplot of DATA .oner

T T T
MNORM TEE CHI

26



3.3 Scatter-Plots :

To plot data points from two vectors, we can use the plot function with the form
plot(vectory, vectors)

or similarly plot one vector by an index use the form plot(vectory). For example,

> plot(NORM, TEE, ylim = c(-4, 5), main = "NORM and TEE plot")

Figure 4: Scatter Plot :

NORM and TEE plot

The limits, or range, on which to plot can be specified in terms of x1im = c(lowerBound,
upperBound) and ylim = c(lowerBound, upperBound) as can be seen in the call to ylim above.
main = specifies the title of the plot. Labels may also be specified with the x1ab and ylab options.
We may superimpose points on top of our original plot with the points function. For example, to
distinguish all points (TTEE;, NORM,) such that TEE; < NORM? —1 as blue points, we could call
points as follws

> points(NORM[NORM"2 -1> TEE], TEE[ TEE + 1< NORM"2], col = "blue")
> legend(legend = c("TEE > NORM"2 - 1 ", "TEE < NORM"2 - 1" ),
+ col = c(1, 4), x = "topright", pch = 1)
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Figure 5: Points on Scatter Plot

NORM and TEE plot

© TEE » NORMrZ - 1
© TEE « NORM~Z -1

TEE

Note, the call to pch = 1 tells R to use the point symbol in each label. You could also use pch
=c(1,1).

Lastly, if we wanted to plot all vectors of a data frame against each other, we could pass the
name of the data frame to plot. For example,

> plot(DATA.oner)

yields the following plot

Figure 6: Plotting all vectors in a data frame :

NORM

TEE

CHI
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3.4 Putting Multiple Graphs in One Figure
3.4.1 par

Multiple graphs may be placed on one figure by using the par funcion along with the mfrow option.
mfrow is used with the following format mfrow = ¢(# rows, # columns). For example,

> par(mfrow = c(1, 2))

> plot(NORM, TEE, ylim c(-4, 5), main = "NORM and TEE plot")

> plot(NORM, TEE, ylim = c(-4, 5), main = "NORM and TEE plot")

> points(NORM[NORM"2 -1> TEE], TEE[ TEE + 1< NORM"2], col = "blue")

Figure 7: A figure with two graphs :

NORM and TEE plot NORM and TEE plot
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3.4.2 split.screen

You should find that split.screen is more flexable than par. With split.screen you tell R how
you want your figure divided, but then specifically state where you want each plot to go. Upon doing
this, if you change your mind and only want to alter one graph, you can do this without starting the
whole figure over from scratch. To begin the procedure, make sure that the grid library is loaded.
You should also change the background to a non-transparant color. Even if your background looks
white, do the following step before proceeding

> par(bg = "white") # set backgraound to non-transparant color

otherwise, you will end up plotting over existing plots when attempting to update screens.

Then use split.screen with the following form split.screen(c(# rows, # columns), screen to be
split, erase = TRUE). We show its use through a couple of examples :

3.4.3 Replacing a Screen

Suppose we wanted all of the plots from this plotting section on one figure. We could do this with
split.screen as follows

> screen.split(2,2)

[11 1 234

screen(1) # what follows goes in slot (1,1)

hist (RandomNormal, seq(-3.2, 3.6, .2), prob = TRUE)
lines(density(RandomNormal, bw = .2), col = "green")
curve (1/sqrt (2*pi) *exp(-.5*%x"2), add = TRUE, col = "red")

screen(2) # what follows goes in slot (1,2)
boxplot (DATA. oner)

screen(3) # similarly for (2,1)
plot(NORM, TEE, ylim = c(-4, 5), main = "NORM and TEE plot")

screen(4) # similarly for (2,2)
plot (NORM, TEE, ylim = c(-4, 5), main = "NORM and TEE plot")
points(NORM[NORM"2 - 1 > TEE], TEE[TEE + 1 < NORM~2], col = "blue")

V VV VYV VYV VYV VVYVYV
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Figure 8: Multiple Plots via split.screen

Histogram of RandomNormal

Density
02 03 o4

0.1

00

-3 -2 -1 ] 1 2 2 NORM TEE CHI

RandomNormal

NORM and TEE plot NORM and TEE plot

TEE

Now, suppose you wanted the box plot in the upperleft slot and the histogram in the upper
right and in addition you wanted to give a title to the boxplot. Simply reassign the contents of each
screen accordingly

screen(1l) # Watch the screen (1,1) go blank
boxplot (DATA.oner, main = "Box Plots of DATA.oner")

screen(2) # again for slot (1,2)

hist (RandomNormal, seq(-3.2, 3.6, .2), prob = TRUE)
lines(density(RandomNormal, bw = .2), col = "green")
curve (1/sqrt (2*pi) *exp(-.5*%x"2), add = TRUE, col = "red")

V V V V V V V
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Figure 9: Multiple Plots via split.screen

Box Plots of DATA.oner Histogram of RandomNormal
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3.4.4 Split Screens within Split Screens

You may have noticed that the legend for the histogram was left out of the plot. That is becuase
it is difficult to fit the legend in so small of a screen. Suppose, to solve this problem, we wanted
a figure containing a large histogram and smaller box plot and scatter graph below. We can split
screens that have already been split to achieve this goal. Observe the following example

> split.screen(c(2,1)) # The screen is now split in two

[1] 1 2

> split.screen(c(1,2), screen = 2) # splits the second into 2
[1] 3 4

> screen(1l) # note screen 2 is now refered to as 3 and 4

> hist(RandomNormal, seq(-3.2, 3.6, .2), prob = TRUE)

> lines(density(RandomNormal, bw = .2), col = "green")

> curve(1/sqrt (2+pi)*exp(-.5%x"2), add = TRUE, col = "red")

> legend(legend = c("Theoretical N(O, 1)", "Randomly Generated N(O,1)" ),
+ col = c(2, 3), x = "topright", 1ty = 1)

>

> screen(3) # We call on screen 3 and 4, not 2

> boxplot (DATA.oner, main = "Box Plot of DATA.oner")

>

> screen(4)

> plot(NORM, TEE, ylim = c(-4, 5), main = "NORM and TEE plot")
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Figure 10: Splitting Split Screens with split.screen
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3.4.5 abline

To draw straight lines over an existing plot, use abline with the format abline(a = intercept, b =
slope, h = y value for horizontal line, v = z value for a vertical line). For example,

plot(c(1:10), col = "white")
abline(h = 2, col = "green")
= "blue")

abline(-1,2, col = "red")
legend(legend = c("y = 2","x = 2","y = 2x - 1"), col = c(3, 4, 2), lty = 1,

>
>
> abline(v = 2, col
>
>
+ x = "topright")

Figure 11: lines y =2,z =2, and y =2z — 1 :
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3.4.6 lines

To plot a line estimating the density of a vector over an existing histogram of that same vector, we
use the lines function with the form lines(density(vector), col = color of choice). For
Example,

> dens.oner = rnorm(1000, 0, 1)

> max(dens.oner); min(dens.oner)

[1] 2.657019

[1] -3.660971

> hist(dens.oner, seq(-3.8, 2.8, .2), prob = TRUE)
> lines(density(dens.oner), col = "blue")

Figure 12: Using lines to plot the density of data.oner:
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3.5 QQ-Plots :

Quantile on Quantile plots, used to compare data-sets via comparison of quantiles, can be produced
with the functions qgplot or qqnorm — the first comparing two vectors and the second comparing
one vector to the appropriate normal distribution.

3.5.1 qqgnorm :

To compare the quantiles of a vector to those of the Normal(0, 1) distribution use qgnorm with the
form ggnorm(vector_1). To plot the line the graph should follow if the distributions are the same,
you can use the qqline function, with the form gqline(vectory, datax). For example, to observe the
relationships between a randomly created x? with 12 degrees of freedom to the Normal(0,1), we
could type

> CHI <-rchisq(1000, 12)
> qqnorm(CHI)
> qqline(CHI)

Figure 13: qgqnorm plot :

Normal G-Q Plot
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3.5.2 qgmath (requires installation of lattice package) :

If you want to compare quantiles between your vector and a theoretical distribution that is not
standard normal, you can use the qgmath function, found in the lattice package, with the form
qgmath(x = vector, distribution = q followed by distriution name). However, if your dis-
tribution requires a parameter, like degrees of freedom to the x? distribution, then you must make
your own function to pass to gmath. Don’t worry, this is not difficult. For example, suppose we
wanted to compare a randomly generated x2 with 12 degrees of freedom to the theoretical distribu-
tion. The first step is to define a function, say qchisq.df12, as follows

> qchisq.df12 = function(p) qchisq(p, df = 12)
Then we can pass qchisq.df12 to qgqmath as follows
> qgmath(x = CHI, distribution = qchisq.df12 )

Resulting in the following graph

Figure 14: qqmath plot :

10 = n
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3.5.3 qqplot :

To compare the quantiles of two vectors with qqplot the form is qgplot (vector_1, vector_2). For
example, to compare a vector named D. set with an unknown distribution to a random exponential(A =
.5) we could use the ggplot correctly as follows

> EXP = rexp(1000, .5)
> qqplot(D.set, EXP)
3.5.4 Adjusting the qqline

If you try to plot a qqline on either of the non-qgnorm plots you will see that it doesn’t work. The
fix is really quite simple. If you ever feel the need to have a qgline on your qgplot, please look to
the Useful Functions section for a discussion on how to create QQ-lines for these plots.

3.6 Linear Regression
Linear regression can be achieved using the function 1m in R. The form is

Im(y ™ x_1 + x_2 + ... + x_n, data = name.of.data.frame)

where y is the dependent varaible and the x’s are independent variables. The data option is available

in the case that you do not want to explicitly state name.of .data.frame$x_i, or name.of .data.frame[,
i], but instead want to use the above x_i. The function will give Ordinary Least Squares estimates
for the coefficients corresponding the the x’s and an intercept term. We show how to use 1m with

an example.

Suppose we had the following data set, which is not real data, but randomly created with the
runif function on 0 to 10 and 0 to 1.

> Dating.Data

Men Intelligence Personality Looks Want.Date
1 Jimbo 1.5034497 9.172070 0.1458388 0.18518639
2 Billy-Bob 0.3673967 4.220902 5.1043472 0.57990543
3 Alfonso 9.5904054 5.865495 9.3900688 0.54772520
4 Li 3.1206422 1.941095 2.0819623 0.58571364
5 Bob 2.8993410 3.799475 8.8072740 0.01670105
6 Willie 2.6205701 8.098286 9.0606828 0.65386037
7 Vince 8.7863347 9.397780 4.2379685 0.96369422
8 Roberto 2.9002601 9.055264 9.7020046 0.77544638
9 Hugo 2.2993369 8.883192 2.3891803 0.27258566
10  Gerardo 6.8163340 4.719020 5.9723394 0.51717118

Assuming the second through fourth columns correspond to average rankings from a set of 100
women and the last column is the percentage of women willing to date each man, we could attempt
to run a regression model for Intelligence, Personality, and Looks on the percent of women willing
to date each man.

> Im(Want.Date ~ Intelligence + Personality + Looks, data = Dating.Data)->1m.Dating
and then get a summary of this regression with the summary function

> summary (lm.Dating)

Call:
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Im(formula = Want.Date ~ Intelligence + Personality + Looks,
data = Dating.Data)

Residuals:
Min 1Q Median 3Q Max
-0.42193 -0.19071 0.04056 0.23386 0.25035

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.17964 .32309 0.556 0.598
Intelligence 0.03360 .03343  1.005 0.354
Personality 0.02176 .03718 0.585 0.580
Looks 0.00896 .03040 0.295 0.778

O O O O

Residual standard error: 0.3032 on 6 degrees of freedom
Multiple R-squared: 0.2278, Adjusted R-squared: -0.1583
F-statistic: 0.5901 on 3 and 6 DF, p-value: 0.6437

and similarly, get an analysis of variance table with anova

> anova(lm.Dating)
Analysis of Variance Table

Response: Want.Date

Df Sum Sq Mean Sq F value Pr(>F)
Intelligence 1 0.12546 0.12546 1.3647 0.2870
Personality 1 0.02930 0.02930 0.3187 0.5928
Looks 1 0.00798 0.00798 0.0869 0.7781
Residuals 6 0.55156 0.09193

Now, we can observe if the OLS assumptions hold. Recall, there should be a constant variance
for the residuals and no correlation between these and the independent variables. We can observe
correlation with the cor function

> cor(Dating.Datal[,c(-1, -5)], 1lm.Dating$residuals)
[,1]

Intelligence -8.661888e-17

Personality  1.473017e-16

Looks 5.867616e-17

These are essentially zero, so one assumption holds. How about correlation between indepen-
dent varaibles?

> cor(Dating.Datal[,c(-1, -5)1)

Intelligence Personality Looks
Intelligence  1.00000000 0.06213098 0.27256812
Personality 0.06213098 1.00000000 -0.05558863
Looks 0.27256812 -0.05558863 1.00000000

We can observe the assumption of independent and identically distributed (iid) residuals, by plotting
1m.Dating and hitting the Return key until we obtain the qgnorm plot of standardized residuals.

> plot(lm.Dating)

Hit <Return> to see next plot:
Hit <Return> to see next plot:
Hit <Return> to see next plot:
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Figure 15: qqnorm Plot of Standardized Residuals :
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This hovers around the QQ-line, but also has outliers. So an assumption is violated. Lastly, to
test for constant variance, you could plot the residuals against the independent variables.

> split.screen(c(2,1))

[11 12

> split.screen(c(1,2), screen = 2)

[1] 3 4

screen(1)

plot(Dating.Data[,2], lm.Dating$residuals)
screen(3)

plot(Dating.Datal[,3], 1lm.Dating$residuals)
screen(4)

plot(Dating.Datal,4], 1lm.Dating$residuals)

V V V V V V

Figure 16: Plots of Residuals Against Independent Variables:
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3.7 Saving Plots

To save plots into pdf files, you can use a combination of the pdf function and the dev.off function.
The format for pdf is pdf (file = "file name to save plot to"). There are many other options
to the pdf function we will not be covering, so we suggest observing the help page for this function
if you want more flexible use of the function. We then enter the commands for the plots we want
to have in the pdf. When finished with the commands, we enter dev.off() to close the process
and finish creation of the file. To save, for example, the plots from a linear regression model, say
1m.Dating, we would do the following

> pdf(file = "Dating.Regression.Plots.pdf")
> plot(lm.Dating)

> dev.off()
null device
1

Then looking for this file in the current directory, we would find all plots from the regression plot,
one per page.

Please note that there are similar functions for png, jpeg, bmp, tiff, and other formats. As usual,
use one of the help functions to see if a function relating to another format exists.

3.7.1 Adding Text :

We can actually write a report in pdf format using split.screen, pdf and mtext to plot and write
text directly into pdf files, but this is not very practical. However, for small comments to plots
mtext can be very useful. The format is mtext("place text here, or a character vector",
line = 0, adj = NULL). Please see the help page for this function for a detailed description. We
show its use in an example.

> split.screen(c(2,1))

[11 1 2

> split.screen(c(1,2), screen = 1)

[1] 3 4

> screen(1)

> screen(3)

> plot(Dating.Datal[,2], 1lm.Dating$residuals)

> screen(4)

> plot(Dating.Datal[,3], 1lm.Dating$residuals)

> screen(2)

> mtext (" Observe that the graphs above show no linear relationship
+ between the variables \n and the residuals.", line = 0, adj = 0)
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Figure 17: An example of using mtext:
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Observe that the graphs above show no linear relationship between the variables
and the residuals.

Here, we make use of the newline character, \n. The placing of text can be altered with line,
increasing the height of the starting line by using 1ine > 0, and decreasing the height with 1ine
less than zero. Leaving adj in its default setting centers the text, while setting it to O aligns the
text to the left.
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4 Packages

4.1 Introduction

In R, built-in functions are stored in packages — collections of functions, and sometimes datasets.
Some come with R upon installation — standard packages — while others you must obtain manually.
We discuss how to install and load packages for use in R.

4.2 Listing Loaded and Installed Packages

To observe the standard packages enter the following after beginning your session

>search()
[1] "stats"
[7] "base"

"graphics"

"grDevices" "utils"

"datasets"

"methods"

These packages are always available upon starting an R session. We will add to this list in the
following sample sessions. However, each time a new R session is started the libraries loaded will
be reset to the above list. (We introduce a function to make reloading packages a little easier in the
Function section.)

4.2.1

.packages

To list all R packages you have installed, use the .packages function along with the option all.available
= TRUE. (If you have not installed any packages yet, feel free to skip ahead to the Listing All R Pack-
ages section, install a couple and come back to this section. Note how the list from .packages is
different from search before loading of new packages.)

> .packages(all.available =TRUE)

[1]

[5]

[9]
[13]
[17]
[21]
[25]
[29]
[33]
[37]
[41]
[45]
[49]
[53]
[57]
[61]

4.2.2

Alternatively, a page containing descriptions

"CGIwithR"
"RMySQL"

n adapt n
"cluster"
"fAsianOptions"
"fCopulae"
"fGarch"
"fOptions"
"fTrading"
"grDevices"
"lpSolve"
"mnormt"
"quadprog"
n SIl"
"stats4"
"urca"

library

IIDBI n

"RUnit"
"base n
"codetools"
"fAssets"
"fEcofin"
"fImport"
"fPortfolio"
"fUnitRoots"
"graphics"
Ilmapsll

Ilnlme n
"rcompgen"
"spatial"
"survival"
"utils"

library function as follows

>library()

"KernSmooth"
"Rmetrics"
llboot n
"datasets"
"fBasics"
"fExoticOptions"
"fMultivar"
"fRegression"
"fUtilities"
n gI.]-d.ll
"methods"
llnnetll
"robustbase"
"splines"
"tcltk"

Z0Oo
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"MASS"
"XML"
"class"
"fArma"
"fCalendar"
"fExtremes"
"fNonlinear"
"fSeries"
"foreign"
"lattice"
"mgcv"
"polspline"
"rpart"
"stats"
"tools"

of each package installed can be obtained with the



If you are not operating out of the R Graphical User Interface (GUI), but instead from your com-
puter’s command line on a Unix system, then to search for a specific word on the page, enter /
followed by your keyword. For example, /base will highlight all instances of base on the page.
Enter q to exit the page.

Use the library function along with the help = option to look at all functions in a particu-
lar package. To do this for "survival", type

>library(help = "survival")

A page titled Information on the package "survival" will appear, listing every function in the
package. At the top of the page is a description of the package. Note the line

Depends: stats, utils, graphics, splines, R (>= 2.0.0)

Compare these packages to the ones listed earlier in calling search().

In order to make a package available for use, use the library function with the general form
library(package of interest). Upon doing this, the package of interest will show up in search() for
the rest of the session. For example, to make survival available for use, type

> library(survival)
Loading required package: splines

Note that survival and splines are now listed with search()

> search()
[1] ".GlobalEnv" "package:survival" '"package:splines"
[4] "package:stats" "package:graphics" '"package:grDevices"
[7] "package:utils" "package:datasets" '"package:methods"
[10] "Autoloads" "package:base"

4.3 Listing all R packages

To get a complete listing of all R packages you can use the available.packages() function

> available.packages()
—-— Please select a CRAN mirror for use in this session —--
Loading Tcl/Tk interface ... done

4.4 Installing Packages
4.4.1 From the Command Line :

Upon entering available.packages () you will be prompted to choose a Comprehensive R Archive
Network (CRAN) mirror. This is basically a website or collection of files containing R documentation
copied from the original CRAN server so that we can access the documentation quickly from the
closest mirror. Naturally, you should choose the location closest to your own. Then the list will be
displayed. To install a package, use the install.packages function. For example, to install the
xtable package, type

> install.packages("xtable")

Don’t forget to use library(xtable) to make the package available for use in your R session.
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4.4.2 Using a Graphical User Interface (GUI)

If you are not using the command line, in one way or another, to navigate through your R session, you
are using the R application GUI. In this case, you can use a ”point and click” approach to installing
packages. Find the Packages and Data or Packages option and choose Package Installer. An-
other GUI should appear called R Package Installer. To find a package, enter a keyword in the
search path, click Get List to display a list matching your keyword. Find the package of interest
and then click the Install Selected button. If you look at your R GUI you should see a lot of
script rolling by the page. When this finishes, the last line should display the location where the
package(s) have been stored.

If you are not the administrator on the system you are operating out of, use the At User Level
option.
4.5 Removing Packages

To remove a package, use the remove.packages function with the form remove.packages(package to
remove, directory where package is stored). To remove the xtable package, for example, type

> remove.packages("xtable", "/Library/Frameworks/R.framework/Resources
+ /library/xtable")

Leaving out the second argument yields the following warning :

> remove.packages("xtable")
Warning in remove.packages("xtable")
argument ’1lib’ is missing: using /Library/Frameworks/R.framework/Resources/library

Unless you specify otherwise, the location of the package should be in
/Library/Frameworks/R.framework/Resources/library/put-package-name-here
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5 Help R help you

In R there are many sources of help to the user. The importance of knowing how to access information
about R through its help pages cannot be stressed enough. Without a firm grasp of them, you will
no doubt be lost. We cover the main help options and when to use them.

5.1 help.start

The help.start () help option gives an html version of R documentation. Not only is this more
interactive than help with links to manuals on similar inquiries not available through command line
help, it also offers tutorials, lists of packages and other information at the click of a link. To start
the help.start () mode, simply type

> help.start()

5.2 help

In R different functions are stored in libraries, or packages. To see which ones are available in your
session enter search(). If you want information on a command (or summary of commands) you
know exists in any of these libraries, use the following format :

Zcommand
OR
help(”command”)

For example, to get help on the mean function, type
>7mean

OR

>help(mean)

A page will appear telling you all about the mean function. As with library(), if operating out of
the terminal, press q to exit the page. Similarly, in this case, to search for a word or phrase in the

help page type
/word or phrase

followed by the Enter or Return key. Recall, the / puts the page into a search mode, search-
ing for what follows the slash on the page.

However, if your query is not in any of the packages or libraries currently available for use in
your session (but has been installed) then help will not be able to locate the relevant information
unless you use the option try.all.packages = TRUE. For example :

> 7RollingAnalysis
No documentation for ’RollingAnalysis’ in specified packages and libraries:
you could try ’help.search("RollingAnalysis")’

Before calling on help.search we can try using the try.all.packages= TRUE option whereby the
help function tells us where to find the package necessary for use of RollingAnalysis, given this is
the exact name of some help page.
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> help(RollingAnalysis, try.all.packages = TRUE)
Help for topic ’RollingAnalysis’ is not in any loaded package but can
be found in the following packages:

Package Library
fTrading /Library/Frameworks/R.framework/Resources/library

To make the package available for use, type the below line. After doing so, help("Rolling
Analysis") will work.

> library(fTrading)

In general, the form is library(package of interest) where the package of interest has already been
installed.

5.2.1 Graphical User Interface (GUI) Specific Tip

5.2.2 Mac OS X

If working out of the R GUI, using help(query) will open a page for query if this is the name of a
built in loaded function, or the name of a help page corresponding to a loaded package. Similarly,
if it is not, then R will tell you this and the search will be over. However, if you open the help page
for a function you know exists, like, say, help(mean), then type your inquery in the search engine
on the GUI help page, you will notice that it matches keywords just as help.search does. That is,
by always keeping the GUI help page open, you always have access to help.search without having
to type help.search each time you want to use it.

5.2.3 Windows OS

On a Windows operating system the idea is similar, but searching is not akin to help.search as
much as it is to a list of topics similar to the query. Nonetheless, you may find it worthwhile to just
keep the help page open throughout your session.

5.3 apropos and find

Alternatively, if you know a keyword that is a part of the function’s name you can use the find and
apropos functions in combination to search for functions from installed packages containing that
keyword. The general format is :

apropos(”keyword”, what = TRUE/FALSE, mode = "mode of the keyword”)

find("keyword”, simple.words =TRUE/FALSE, numeric = TRUE/FALSE)

Using the what = TRUE will list the accompanying packages’ locations in search(), while allow-

ing the default what = FALSE omits this. The mode option allows you to specify the mode of the
object you are looking for. By default, this is set to "any".
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5.3.1

searching for functions and their packages

If you are interested in knowing a summary where each function resides, a general strategy is to use
find to list the packages containing the keyword, then use apropos to list the matching functions.
We can easily use the where = TRUE to match. Lets look for packages containing the keyword

"mean” :

> find("mean", simple.words = FALSE, numeric = TRUE)

.GlobalEnv
1 2
package:stats package:base
17 24
> apropos("mean", where = TRUE)
1 9
"boot.mean.rep" "colMeans"
24 24
"mean" "mean.Date"
24 24
"mean.data.frame" "mean.default"
2 3
"meanvar" "rollMean"
9 24
"rowMeans" "rowMeans"

package:rpart package:fUtilities

9

24

"colMeans"

24
"mean.POSIXct"
24
"mean.difftime"
10

"rollmean"

17
"weighted.mean"

package:z

"kmean

00
10

17
sl|
24

"mean.POSIX1t"

9

"mean.timeSeries"

10

"rollmean.default"

Now, if we were interested in weighted.mean, we would match 17, so it is in the stats package. If
we just wanted the exact name of the function, we could have typed

> apropos("mean")

then used the help function.

5.3.2

searching for lost objects :

From time to time you will misplace an object you have created. However, typically, you will be
able to recall the mode of this object — ie, was it a list, a vector of characters, numbers, etc? For
example, suppose you had recently created an object and all you can recall about it is that it’s a
vector of mode numeric and has the string ”icker”, in its name. Could be tickers, bickers, ickers,

etc. By calling apropos("icker", mode

"numeric") you can get a reduced list for you query if

there happens to be other non-numeric mode objects with ”icker” in the name. For example, the
following code lists 27 matches to apropos("ickers") but only one to apropos("ickers", mode

"numeric")

> apropos("icker"); apropos("icker", mode

[1] "TICKERS" "ickers.1" "tickers
[7] "tickers.E" "tickers.F" "tickers
[13] "tickers.K" "tickers.L" "tickers
[19] "tickers.Q" "tickers.R" "tickers
[25] "tickers.W" "tickers.X" "tickers
[1] "ickers.1"

5.4 help.search

LAY
.G"
M
.s"
.Yll

= "numeric")

"tickers.B" "tickers
"tickers.H" "tickers
"tickers.N" "tickers.
"tickers.T" "tickers

‘Cll
.Ill

.UII

"tickers.
"tickers.
"tickers.
"tickers.

The limitations of apropos and find are that (1) the object name must contain the keyword
and (2) it only searches in the loaded packages. Recall, to see what packages are installed type
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.packages(all.available = TRUE or library(). With help.search all R installed packages will
be searched. If you have no idea about the name of a command but know a keyword relating to it
use the help.search function which has the general format :

help.search(”command”)

Upon doing this, a screen will appear listing all matches to your inquery, “command” in this case.
The list will consist of functions or the name of the help page where the function can be found. Each
is accompanied by a description of its use along with the name of the library necessary for its use in
parentheses. This can be seen in the example below. Further note that when help.search("mean")
is typed, functions such as colSums appear that did not with the use of apropos("mean").

>help.search("mean")
Help files with alias or concept or title matching
’mean’ using regular expression matching:

DateTimeClasses(base) Date-Time Classes

Date(base) Date Class

colSums (base) Form Row and Column Sums and Means
difftime(base) Time Intervals

mean (base) Arithmetic Mean

sunspot (boot) Annual Mean Sunspot Numbers
meanabsdev (cluster) Internal cluster functions
tmd(lattice) Tukey Mean-Difference Plot

meanvar (rpart) Mean-Variance Plot for an Rpart Object
kmeans (stats) K-Means Clustering

oneway.test(stats) Test for Equal Means in a One-Way Layout
weighted.mean(stats) Weighted Arithmetic Mean

Type ’help(F00, package = PKG)’ to inspect
entry ’FOO(PKG) TITLE’.

Scrolling down the help page shows many more functions matching the query. We see that
the mean function requires the base library, which is already available upon starting R. However,
observe meanpart, the 9th function on the list. This requires the library rpart. Let’s try to call
meanvar :

>meanvar
Error: object "meanvar" not found

Now, lets try it again after making the rpart library available for use :

>library(rpart)

>meanvar

function (tree, ...)

UseMethod ("meanvar")
<environment: namespace:rpart>
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Which in simplest terms means R now recognizes the function meanvar (and all others now in
the rpart library). Now we can use the help command to take a more in depth look at the function
meanvar. Type the following and see what you get :

>help(meanvar)

If you want to narrow your search to a specific package, use the package = option. For example, if
you were confident that the function giving means and sums of the columns and rows of a data-frame
was in the base library, you could write the below code and get the following limited list:

> help.search("mean", package = "base")

DateTimeClasses(base) Date-Time Classes

Date(base) Date Class

colSums (base) Form Row and Column Sums and Means
difftime(base) Time Intervals

mean (base) Arithmetic Mean

5.5 RSiteSearch

Lastly, there is the option of searching uninstalled packages online through the RSiteSearch func-
tion. To search use the form RSiteSearch("query"). There are many options available for this
function that can be stated explicitly in the call to RRSiteSearch or accessed trough the browser
it calls. In particular, at this level, there are pleanty of interesting pages on datasets available upon
installation of neccessary packages.

5.6 Summary

In summary, if you know the exact name of the function and think it is in a loaded package, use
help. If not in a loaded package, try the option try.all.packages = TRUE. If you don’t know the
exact name of the function, but know it is in an installed package, use apropos — along with find
if you need to know the accompanying package. If you are not sure of the name but have a keyword
on the gereral operations of the function, use help.search — along with package = if you have
an idea of what package the function resides in. Using this strategy, you should be able to answer
most questions you have about functions on your own.
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6 Reading Data Into R

Most data can be read into R through the use of one of the read functions or through scan. We
cover read.table, scan, an exmple of analyzing data, and an example of cleansing data in R in this
section. While cleaning may often be done outside of R in a text editor, it is good to know how to
do it in R. It is also worth noting that the scan function reads the data in as a vector. In turn, we
show an example of reorganizing this data into an appropriate data-frame form, when the data is
not intended to be a single vector.

6.1 read.table

R has a workhorse in the function read.table. In short, it reads data into R from a file or url
according to your specifications. The general format at this level is (note the quotes around the
filename or url):

read.table("filename or url", header = FALSE, sep = "", skip = 0 , dec = ".", row.names,
col.names, nrow, stringsAsFactorso = TRUE)

While a filename or url must be specified, the rest is optional, available to meet your particular
needs. Here sep tells read.table how to separate the entries. dec = "." indicates that in the data
the decimal is ”.”. The skip option describes how many lines to skip. col.names (row.names) is a
vector containing names for the columns ( rows ) of the data-frame. header will tell read.table
if the column names are already given in the data. If so, just set header = TRUE. nrow tells the
function when to stop reading rows of data. Lastly, stringsAsFactors set to TRUE, by default, will

change any strings in the data to factors, while setting it to FALSE will read in strings as character
types.

In the rest of this section, we first show a simple example of inputting data followed my an ex-
ample of possible statistical analysis of this data. Secondly, we show a more complex example of
reading data with read.table and scan.

Assume we had the following file, poundData.tzt, containing the days that dogs of different breeds
resided at particular pounds :

dogs,pound.A,pound.B,pound.C
Pit-Bull,124,64,46
Jack-Russell-Terrier,35,13,43
Akita,102,81,100
German-Shephard,51,19,56
Pug,23,30,17

Afghan-Hound, 129,48,64
Beagle,54,6,13

Basset-Hound, 123,17,92
Cocker-Spaniel, 144,80,98
Austrailian-Shephard,21,7,47

We can read this data into R many ways. One way to do this and then display the contents is to
do the following :

> pet.data = read.table("poundData.txt", sep = ",", header = TRUE)
> pet.data

dogs pound.A pound.B pound.C
1 Pit-Bull 124 64 46
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2 Jack-Russell-Terrier 35 13 43
3 Akita 102 81 100
4 German-Shephard 51 19 56
5 Pug 23 30 17
6 Afghan-Hound 129 48 64
7 Beagle 54 6 13
8 Basset-Hound 123 17 92
9 Cocker-Spaniel 144 80 98
10 Austrailian-Shephard 21 7 47

You can check to see that pet.data$dogs isindeed a "factor", by entering class (pet.data$dogs).
We can change this with

> pet.data$dogs = as.character(pet.data$dogs)

or by originally using stringsAsFactors = FALSE when reading in the data with read.table.

We could then proceed to do statistical analyses on the data. A nice first step is to use the summary
function on the data

> summary (pet.data)

dogs pound.A pound.B pound.C

Afghan-Hound :1 Min. :21.0 Min. : 6.0 Min. : 13.00
Akita :1  1st Qu.: 39.0 1st Qu.:14.0 1st Qu.: 43.75
Austrailian-Shephard:1  Median : 78.0 Median :24.5 Median : 51.50
Basset-Hound :1  Mean : 80.6 Mean :36.5 Mean : 57.60
Beagle 01 3rd Qu.:123.8 3rd Qu.:60.0 3rd Qu.: 85.00
Cocker-Spaniel 1 Max. :144.0  Max. :81.0 Max. :100.00
(Other) 14

Assume for a moment that the dogs’ types were unknown and that the dogs were just picked
at random from the pounds — that is, assume we didn’t have the first column of data. Then
considering we don’t know the distribution of the dogs’ time in each pound, we may be interested
in ranking the observances, using the rank function, and then finding the means of ranks as follows

> Rankings = rank(c(pet.datal,2], pet.datal,3], pet.datal,4]))

> # use Rankings = rank(sapply(sapply(pet.datal,-1], as.matrix), as.matrix))

> # if you have many columns, or treatments

> Rankings.A = Rankings[1:length(pet.datal,1])]

> Rankings.B = Rankings[(length(pet.datal[,1]) + 1) : (2+length(pet.datal,1]))]
> Rankings.C = Rankings[(2*length(pet.datal[,1]) + 1) : (3*length(pet.datal,1]))]
> mean (Rankings)

[1] 15.5

> mean(Rankings.A)

[1] 20.1

> mean(Rankings.B)

[1] 10.65

> mean(Rankings.C)

[1] 15.75

In the code above, recall that ¢ combines its arguments to form one vector. Since Rankings has
elements one through 10 from pound.A, elements 11 through 20 from pound.B, and elements 21
through 30 from pound.C, we can just pull the appropriate elements from Rankings to get the over-
all rankings of the elements from each of the three pounds. In turn, Rankings.A is defined by simply
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indexing the first 10 elements (1:1length(pet.datal,1])) of Rankings and assigning these values
to Rankings.A; and a similar pattern holds for the others — Rankings.B and Rankings.C. Please
observe what follows, even if it is above your knowlege of statistics for appreciation of the built-in
function kruskall.test

We could then proceed to do a non-parametric test on the data, such as a Kruskal Wallis Test,
to see if there is a significant difference in the means of the times at each pound, in one of two
general ways. The first is to calculate the approximately XiTreatmems_l statistic K = %,
where N is the total number of observances, 30. SSg is the sum of squared differences between each
treatement’s mean rank and the overall mean rank, times the number of observances per treatment.

mean(Rankings.A) -> M.R.A

mean (Rankings.B) -> M.R.B

mean (Rankings.C) -> M.R.C

mean (Rankings) -> M.R.Overall

K = 12%(10*(M.R.A - M.R.Overall)"2 + 10*(M.R.B - M.R.Overall)“"2 +
10x(M.R.C - M.R.0Overall)~2)/(30%31)

K

[1] 5.773548

V + V V V V V

We could then see if the statistic falls in the acceptance region with a Type I error level (or significance
level) of 0.05 : (x3(0.025), x3(0.975)) as follows

> K < gchisq(.975, 2) & K > qchisq(.025, 2) # see the section on Probability
[1] TRUE

This literally asks the question ”Is K between the .025 and .975 quantiles of the x? distribution with
two degrees of freedom, TRUE or FALSE?”. The answer is TRUE, so K is in the acceptance region.
So, we would not reject the null hypothesis at the 5% significance level that the distribution of times
in the different pounds have the same location parameters. Here & stands for the logical operator
?” AND”. Note that | stands for 7OR”. So, to ask ”Is K not between the 0.025 and 0.975 quantiles
of the x? distribution with 2 degrees of freedom” we could ask

> K >= qchisq(.975, 2) | K <= qchisq(.025, 2)
[1] FALSE

So, the test statistic is not in the rejection region, as we would hope given the previous answer.
We could also get a P-value, using the cumulative density function pchisq to see the probability of
seeing the K value we did or something more extreme, as follows

> pchisq(X, 2)

[1] 0.9442442 # is greater than 0.5, so we want 1 - pchisq(K, 2)
> 1 - pchisq(X, 2)

[1] 0.05575578 # our P-value

The second approach would be to use the built-in Kruskal Wallis test. Try finding it with help.search.
After you do, (or, don’t) observe that the work above is done with one line of code using the built-in
function.

> kruskal.test(pet.datal,-1])
Kruskal-Wallis rank sum test

data: pet.datal, -1]
Kruskal-Wallis chi-squared = 5.7774, df = 2, p-value = 0.05565
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You may alternatively want to observe the data using categorical tests. Try this as an exercise
if you have the background.

6.1.1 setwd

You can change your working directory in your R session by using the setwd command. For example,
suppose we were on a Unix system in our home directory /, but poundData.tzt was actually located at

/Users/JoeShmoe/Animal. Data/poundData.tat.
By originally typing
setwd("/Users/JoeShmoe/Animal.Data")

we could then proceed as above by passing poundData.txt to read.table, as opposed to passing the
entire location to read.table. This is very useful if you keep many data sets in one directory.

6.1.2 An Example of Cleaning Data

Assume we had a small file Jimbos.baseball.stats.txt consisting of the following

Jimbo’s Baseball Statistics

Year BA AB BB H R RBI SO HR
1988 .300 10 2 1 3 1 3 1
1989 .300 300 60 90 30 60 90 30
1990 .313 400 80 125 100x* 120*% 100 60*
1991 .325 400 80 130 70 100 120 40

*There is much controvercy surrounding Jimbo’s 1990 season.

We see that the first line of the file contains Jimbo’s Baseball Statistics, which we do not
want to read into R, so we will tell read.table to skip one line in reading the data with skip =
1. Further, we see that the columns already have names. Why not just use these for the column
names of our dataset? We can do this with the header = TRUE option. Lastly, we will get an error
message when reading data into R if we don’t deal with the last line *There is much .... To deal
with this we tell R to stop reading the data after four rows have been read — recall the first line
was ignored and the second used as a header, so the count starts with the first observance, or row
of data in our case. We tell read.table to stop reading after four rows with nrow = 4 option. We
can now use these options to read the data into R with the following code :

>Jimbo.data.l = read.table("Jimbos.baseball.stats.txt", skip = 1, header = TRUE, nrow
= 4)

Checking the data-frame Jimbo.data.l, we have :

> Jimbo.data.1

Year BA AB BB H R RBI SO HR
1 1988 0.300 10 2 1 3 1 3 1
2 1989 0.300 300 60 90 30 60 90 30
3 1990* 0.313 400 80 125 100* 120* 100 60
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4 1991 0.325 400 80 130 70 100 120 40

Now we run across the problem of making computations involving the third row or 6!, 7¢*, and 9**
columns, which will be recognized as factors by R. As a solution, we could do the following:

> Jimbo.data.l = read.table("Jimbos.baseball.stats", nrow = 4, skip
+ = 1, header = TRUE, stringsAsFactors = FALSE)

> Jimbo.data.1[3,] = gsub("[~.0-9]","",Jimbo.data.1[3,])

> Jimbo.data.l = sapply(Jimbo.data.l, as.numeric)

> Jimbo.data.1 = data.frame(Jimbo.data.1)

> Jimbo.data.1l

Year BA AB BB H R RBI SO HR
1988 0.300 10 2 1 3 1 3 1
1989 0.300 300 60 90 30 60 90 30
1990 0.313 400 80 125 100 120 100 60
1991 0.325 400 80 130 70 100 120 40

SwWw N e

The Details :

We read the data, as is, into R and then use built in functions to remove the ”*”’s from row 3.

This will involve manipulation of characters, or strings of characters, so we can make things easier
on ourselves by reading the * data into R as characters, with the stringsAsFactors = FALSE op-
tion for read.table.

> Jimbo.data.l = read.table("Jimbos.baseball.stats", nrow = 4, skip = 1, header = TRUE,
stringsAsFactors = FALSE)

Next, we use the built in function gsub which has the following form :
gsub("text to be replaced", "text to substitute its place", Vector of interest)
Along with a regular expression [. A0—9] . Placing A inside of brackets tells R we do not want what
is to follow the A. In this case, [A.0 — 9]. 0 — 9 represents the numbers zero through nine. Hence in
passing this regular expression to the pattern to be replaced section of gsub, we are replacing

anything in the vector of interest, Row 3, that is not a number or a dot. This will rid the data of
the *’s.

> Jimbo.data.1[3,] = gsub("[~.0-9]","",Jimbo.data.1[3,])

Lastly, we can use the sapply function to convert the character type columns of our data set into
numeric columns. The basic form of sapply is :

sapply(Data to perform a function functionName on, functionName)

> Jimbo.data.l = sapply(Jimbo.data.l, as.numeric)
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Since sapply turns Jimbo.data.l into a matrix, this last step turns Jimbo.data.l back into a
dataframe.

> Jimbo.data.1 = data.frame(Jimbo.data.1)
> Jimbo.data.1

Year BA AB BB H R RBI SO HR
1988 0.300 10 2 1 3 1 3 1
1989 0.300 300 60 90 30 60 90 30
1990 0.313 400 80 125 100 120 100 60
1991 0.325 400 80 130 70 100 120 40

S wWw N e

6.2 The Rest of the read Family:

The following table summarizes the read functions that will probabaly be of interest to you. Note
”\t” is tab. Each has a varaition in the sep = and dec = options from read.table

read. sep = dec =
csv n s n n . n
CSV2 n ; n n , n

delim n \t" non

delim? n \t" n s n

For example, if your data is separated by tabs, but the decimals are commas, and you don’t
want to explicitly state this in read.table, you could just use read.delim2. There are many more
read functions in R. Another read function of interest is ReadLines. To find out more about this
and other read functions, use apropos("read") and then the help function accordingly.

6.3 scan

Alternatively, we could have used the scan function which has the general form at this level :
scan("filename or url", skip, nlines, what)

Since scan reads the data as a vector, we can take a different approach in creating a data frame from
the file. We cleanse the data as a single vector, then form a data-frame from it :

Jimbo.data.2 = scan("Jimbos.baseball.stats.txt", skip = 1,

nlines = 5, what = "");

Jimbo.data.2 = gsub("[".0-z]","",Jimbo.data.2);

my.names = sapply(Jimbo.data.2[1:9], as.character);

Jimbo.data.2 = Jimbo.data.2[-1:-9]

Jimbo.data.2 = as.numeric(Jimbo.data.2)

Jimbo.data.?2 data.frame(matrix(Jimbo.data.2, nrow = 4, byrow = TRUE));
names (Jimbo.data.2) = my.names

Jimbo.data.2

V VV V V VYV + VvV

At this point you should understand what each step does. If you don'’t , please reread the read.table
example and see the section on objects and indexing. As an exercise, we suggest you create your
own small file of data and read it into R using the two methods above.
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6.4 Missing Values

From time to time you will observe missing values in your data. The examples above are given in
part to help you deal with this problem. If the data is not salvageable, then you will have to ommit
the missing values from calculations involving R. The way to deal with this is to pass the option
na.rm = TRUE to the function you are using to make your calculation. Further, there is another
option to read.table not mentioned above called na.string that will convert values of a particular
pattern to NA in character fields. If for some reason you note an alternative to "NA" used for data
that is not available in a character field of your dataset, then set na.string equal to that value.
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7 Probability

Distributions make up a very important part of statistics, and R contains a very wide range of them.
The following table lists the distributions along their name in R.

Distribution R name
Beta beta
Binomial binom
Cauchy cauchy
Chisquare chisq
Exponential exp

F f
Gamma gamma
Geometric geom
Hypergeometric hyper
Logistic logis
Lognormal Inorm
Negative Binomial | nbinom
Normal norm
Poisson pois
Student t t
Uniform unif
Tukey tukey
Weibull weib
Wilcoxon wilcox

There are a few functions that are common to all distribution objects, given by the following table:

Name Description

() | density or probability function
pname() | cumulative density function

() | quantile function
rname() | random number generation

We will not be able to cover all of these distributions in this text, but it should be intuitive enough
from the following examples to carry over to any of these distributions.

7.1 Binomial

A binomial(n,p) distribution is the number of successes in n independent trials where each trial has
probability p of success.

nl = 50; p1 = .5

n2 = 50; p2 .3

n3 = 100; p3 = .95

x1 = rbinom(1000, ni, pl)

x2 = rbinom(1000, n2, p2)

x3 = rbinom(1000, n3, p3)

hist(xl, probability = T, main = "Binomial Distribution\n
n =50, p=.5")

lines(density(x1), col = "red", lwd = 2)

> curve(dnorm(x, mean = nl * pl, sd = sqrt(nl * pl * (1-p1))),
add = TRUE, col = "blue", 1lty = 2, lwd = 2)

V V V V V V VvV

\4
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> hist(x2, probability = T, main = "Binomial Distribution\n
n =50, p=.3", ylim = c(0,.13))

> lines(density(x2), col = "red", lwd = 2)

> curve(dnorm(x, mean = n2 * p2, sd = sqrt(n2 * p2 * (1-p2))),
add = TRUE, col = "blue", 1lty = 2, lwd = 2)

> hist(x3, probability = T, main = "Binomial Distribution\n
n = 100, p = .95")

> lines(density(x3), col = "red", lwd = 2)

> curve(dnorm(x, mean = n3 * p3, sd = sqrt(n3 * p3 * (1-p3))),
add = TRUE, col = "blue", 1ty = 2, lwd = 2)

Figure 18: Binomial Histograms

Binonia Distributon Binoma Distrbut on

rbinom is the function we use to generate 1000 values of the binomial distribution with parameters
n and p. As we can see, for large values of n, the binomial distribution can be approximated by the
normal distribution.

7.2 Normal Distribution

To work with the normal distribution, first we will show how to plot the standard normal distribution.

> x <- seq(from = -4, to = 4, length=100)
> r.dist <- dnorm(x)
> plot(x, r.dist, type = "1", xlab = "x value",
ylab = "Density", main = "Standard Normal Distribution")

The seq function returns a sequence of length numbers from from to to in the form of a numeric
vector. So, for the example above, x is a vector containing the numbers -4, -3.92, ... | 3.92, 4.
The dnorm function is simply the likelihood function of the normal distribution. The parameters
of the distribution may be specified with additional arguments, such as the mean and sd (standard
deviation). The defaults are mean 0 and a standard deviation of 0.

> x <- seq(from = -4, to = 4, length=100)
> r.distl <- dnorm(x, mean = 3, sd = 3)
> plot(x, r.distl, type = "1", xlab = "x value",
ylab = "Density", main = "Standard Normal Distribution")
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Figure 19: The Standard Normal :
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Figure 20: Normal(mean = 3, sd = 3)
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We can also plot the cumulative distribution using the pnorm function:

> x <- seq(from = -4, to = 4, length=100)
> r.cumdistl <- pnorm(x)
> plot(x, r.cumdistl, type = "1", xlab = "x value",
ylab = "Probability", main = "Standard Normal Cumulative Distribution")

Figure 21: CDF for Normal(0,1)
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The quantiles give us the inverse of the cumulative distribution function, and this is given to us by
the gnorm function. This time, we will plot it using the curve function, which takes in an expression
written as a function of x, and from and to variables used to specify the min and max x values:

> curve(qnorm(x), from = 0, to = 1, main = "Standard Normal
Distribution\nGaussian Quantiles\nInverse CDF", xlab = "Percentile")

Figure 22: Inverse CDF :
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Now we can simulate random variables that take on normal distributions by generating random
numbers using the rnorm function. In the following examples, we are working with the standard
normal distribution, with mean 0 and standard deviation 1:

> n = 1000

> x = rnorm(n)

> hist(x, main = "Gaussian Distribution\nStandard Normal")

> hist(x, main = "Gaussian Distribution\nStandard Normal", probability = T)

Figure 23: Histograms of Gaussian :

Gaussian Distribution Gaussian Distribution
Standard Normal Standard Normal
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Notice that the graph on the right was created using the probability argument, which, when set to
TRUE, prints the y-axis as probability densities, and not the frequency. Now we can fit a smoothed
line for the sample density:

> lines(density(x), col = "red", lwd = 2)

The density function computes kernel density estimates for the numeric vector we provide. Now
let’s add a dashed line for the theoretical distribution, in addition to a legend:

> curve(dnorm(x), add = TRUE, col = "blue", lty = 2, lwd = 2)
> legend(x = .9, y = .35,legend = c("Sample Density",
"Theoretical Density"), lwd = 2, 1ty = c(1, 2), col = c("red", "blue"))
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Figure 24: Theoretical versus Randomly Generated N(0,1)
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8 Scripting

You will find that it is useful to have a history of your R code from a particular session available for
viewing during that session.

8.0.1 From the Command Line

If you are operating on a Unix system, you may directly open a vi, pico, or emacs editor using those
commands, along with the argument file = "file name". Upon saving your file and exiting you
will return to your R session and the commands from the file will be run immediately. For example

> vi(file = "testing.vi.option.R")

Will bring us to the vi editor. If we entered the following text, and then saved and exited by holding

Figure 25: vi editor :

‘@006 Terminal — vim — 60x9

print("Cool! The vi editor, straight out of my R session!") 2
print("Let's calculate a trivial mean...™)

mean(1:10)

- o
—- INSERT -- *

shift and entering zz, we would return to the following output in our R session

> vi(file = "testing.vi.option.R")

[1] "Cool! The vi editor, straight out of my R session!"
[1] "Let’s calculate a trivial mean..."

[1] 5.5
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8.0.2 Mac : From the GUI

Scroll the pointer across the icons until you reach either the Create a new, empty document ...
option, or open an existing script from a saved file with the Open Document in Editor option, and
start scripting. Then copy and paste your script into your R session.

8.0.3 Windows : From the GUI

Here you should scroll the pointer to the File option, then to the New Script, or else Open Script
option, and commence scripting.

8.0.4 source

Another option is source, which reads a file of R code into your session, silently. The format is
source(‘‘filename"). As usual, tab completion holds. For example,

> source("testing.vi.option.R")
[1] "Cool!The vi editor, straight out of my R session!"
[1] "Let’s calculate a trivial mean..."

Note how the mean of the sequence 1:10 was not output?.

4] need to elaborate on this
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9 Functions

9.1 Introduction

R contains built-in functions found in different packages. To see a list of all functions in a particular
loaded package, use the 1s function with the form 1s("package:name of package"). For example,

> library(survival)

> head(ls("package:survival"))

[1] "Surv" "aml" "as.date" "attrassign" "basehaz"
[6] "bladder"

> tail(ls("package:survival"))

[1] "survreg.fit" "survreg.old" "tcut"
[4] "tobin" "untangle.specials" "veteran"
> length(ls("package:survival"))

(11 77

> 1s("package:survival") [77]
[1] "veteran"

From time to time you may want to create your own functions. For example, suppose you
just didn’t like the fact that function var calculated the sample variance, and you wanted your
own function that calculated the population variance, say my.var. Being able to make your own
functions means you should never be confined to the built in functions R provides for you. The
following code shows how to solve the mentioned problem above and compares the built-in function
to our own function for the population variance.

> my.var = function(vector){

+ sum((vector - mean(vector))~2)/length(vector)

+ 3

> my.var(c(1,2,3)) # from a popuation size 3

[1] 0.6666667

> var(c(1,2,3)) # a sample size of 3 from larger population

[1] 1

9.2 Functional Form

The general form for creating a function is as follows :
functionName = function(argy,args, ..., argy, optiony, ..., option,

+commandy
+commands

+ command,,
+ return(value)

}

To use the function, the form is :
functionName(arg, args, ..., anrgy,, optiony, ..., option,, )

In the first line, calling function() tells R we want functionName to be a function. arg; and
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option; are arguments and options, and command,; are expressions to be evaluated, in the function.
The return(value) will return value when the function is called. If you intend to return more than
one object from the function, you will have to make value a list containing the relevant objects. If
we omit return(value), then the last line evaluated would be returned by default, command, above.

As an example, if we wanted to create our own mean function, our.mean, we could do the
following :

>our.mean = function(x){
+ sum(x)/length(x)
+}

9.3 Naming Functions

If a function is created that has the same name as a built-in function, then the newly created function
will over-ride the built-in. For example, naming a function q will make it impossible to cleanly exit
your session. To restore the built-in function, use rm with the form rm(”function name”). To take
precaution against over-riding the built-in functions, before naming your function use the exists
command with the form exists(”proposed function name”). If the name exists already, TRUE will be
displayed; if not, then FALSE will be displayed. The function get is similar, with the same form,
but it displays the contents of a function, if it exists and an error message otherwise. For example,
compare the following:

> exists("our.mean")

(1] TRUE

> exists("our.mean.xyz")

[1] FALSE

> get("our.mean")

+  function(x){

+  sum(x)/length(x)

+}

> get("our.mean.xyz")

Error in get("our.mean.xyz") : variable "our.mean.xyz" was not found

You may find get expecially useful if you have not been using a text editor to create your functions,
and you realize a non syntax error in your function. Calling get will allow you to display, then copy
and paste the ”good” parts of the function into R. It is also useful if you have forgotten what the
function does, perhaps, because you haven’t used it in a while.

9.4 Functions and Loops

More often we will have to either slightly modify or use multiple built-in functions to accomplish
some desired result. Typically we have the option of working with loops or with built in functions. It
is important to stress that the choice is a matter of taste. Some will feel more comfortable with for,
while, or repeat loops. Many times the use of loops can be omitted with the use of functions like
replicate, sapply, tapply, or mapply. In the following two sections if you begin to feel bogged
down in the complexities of the for or repeat loops, please skip immediately to the replicate
section.
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9.4.1 for loops

The general form of a for loop is as follows :

for(dummy.variable in sequence){
+commandy; commands; ...; command,,
+}

First, to understand what follows, the body of the loop is what lies between the { and the} .
If the loop is just on one line, such as for(dummy.variable in sequence) commandy, then command,
is the body of the loop. What the for loop does is execute the commands within its body n times
— if n is the length of your sequence — incrementing the dummy variable once on each run through
the body. We’ll show this in the following example of bootstrapping the difference in means between
two vectors:

> Boot.mean.oner = function(T.1, T.2){

+ F.P.B = rep(0,1000)

+ F.N.B = rep(0,1000)

+ for(i in 1:1000){

+ if(i %% 100 == 0) print(paste(c("index = ", as.character(i)), collapse = ""))
+ F.P.B[i] = mean(sample(T.1, length(T.1), replace = TRUE))

+ F.N.B[i] = mean(sample(T.2, length(T.2), replace = TRUE))

+ }

+ Diff.oner = F.P.B - F.N.B
+  hist(Diff.oner)
+ return(sort(Diff.oner))

+}

Note how the two vectors that were filled by the for loop were initialized before the loop. If you run
this function with two vectors of equal length, and at the same time set an object equal to the run
function, such as Boot.run.1 = Boot.mean.oner(r.1, r.2), you will see the following wiz by the
screen

> Boot.run.1 = Boot.mean.oner(r.1, r.2)
[1] "index = 100"
[1] "index = 200"
[1] "index = 300"
[1] "index = 400"
[1] "index = 500"
[1] "index = 600"
[1] "index = 700"
[1] "index = 800"
[1] "index = 900"
[1] "index = 1000"

and a histogram will appear. The function, in turn, tells you how many hundreds of times the loop
has been run, as soon as the index is set. Note that after the 1000*" index has been set the histogram
appears. This is because the for loop is not finished until the index, i in the code, is set to 1000 and
the body of the loop on that run is completed. Also note how the function could be simplified as :

> Boot.mean.oner = function(T.1, T.2){
+ Diff.oner = rep(0,1000)
+ for(i in 1:1000){
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+ Diff.oner[i] = mean(sample(T.1, length(T.1), replace = TRUE)) -
+ mean (sample(T.2, length(T.2), replace = TRUE))

+ 7

+  hist(Diff.oner)

+ return(Diff.oner)

+ }

9.4.2 repeat loops

Alternatively, we could use repeat, which has the following form :

initialize incremeting variable

repeat{

+ incrementing rule; expression.l; expression.2; ...; expression.m;
+condition to stop repetition

+}

We could do the previous example as follows :

>i=0

> Diff.oner = rep(0, 1000)
> repeat{

+oi=di+1

+ Diff.oner[i] = mean(sample(T.1, length(T.1), replace = TRUE))
+ - mean(sample(T.2, length(T.2), replace = TRUE))

+ if(i > length(Diff.oner) - 1){

+ i=0

+ break

+ }

+ 3

Note that when using repeat we must initialize our incrementing (or dummy) variable before the
repeat loop, as done in line 1. Line two should be no surprise. The remainder is the body of the
repeat function. We begin the body with an incrementing rule, basically stating that each time we
run through the body of the loop we will increment our counter i by one. The second and third
lines are straight from the previous example. Lastly,

+ if (i > length(Diff.omer) - 1){

+ i=0
+ break
+ 3}

can be interpreted as if (i > length(Diff.oner) - 1){: ”When the incrementor i is greater than
999 execute the commands that are listed before the next }”. i = 0 is obvious. break : ”exit the
repeat loop”.

As with the for loops above, we can create a function for this. In so doing we can make the
same computations in one line of code :

> boot.mean.rep = function(T.1, T.2, n){
+ i=0

+ Diff.omner = rep(0, n)

+ repeat{
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+ i=1i+1

+ Diff.oner[i] = mean(sample(T.1, length(T.1), replace = TRUE))
+ - mean(sample(T.2, length(T.2), replace = TRUE))

+ if(i > length(Diff.oner) - 1){

+ return(Diff.oner)

+ break

+ X

+ }

+ 3

Now, boot.mean.rep(T.1, T.2, 1000) calculates similar values to boot.mean.oner(T.1, T.2),
with slight differences arising from randomness from sampling.

9.4.3 replicate

If the previous examples seemed like a lot of work, then replicate is probably the right function
for you. The general form is :

replicate(# replications, expression to replicate, option to simplify to vector (or matrixz) or a list)

The last argument is simplify set to TRUE whereby the result is a vector or matrix. Setting
simplify = FALSE will create a list. Now we illustrate the power of the built-in function. The work
done by the previous loops are done by replicate as follows :

> Diff.oner = replicate(1000, mean(sample(T.1, length(T.1), replace = TRUE))
+ - mean(sample(T.2, length(T.2), replace = TRUE)))

That’s it! Though it may seem like a dirty trick to put such a gem at the end of the list, we wanted
the reader to first experience the alternatives, for appreciation. As a general rule, you should check
to see if an operation can be performed by a function like replicate or one of the apply functions
before creating loops.

9.5 Useful Functions :
9.5.1 Uploading a set of Packages

Suppose you wanted to load a certain set of installed packages at the beginning of your R sessions.
The following function solves the mentioned problem.

>.packages(all.available = TRUE) # for matching

>#create vector, vector, containing the locations of entries you want
>package.loader = function(vector)

+ for(i in vector){

+ library(.packages(all.available = TRUE) [i], character.only = TRUE)
+}

9.5.2 Adjusting the QQ-line for Comparisons with Theoretical Distributions

To plot QQ-lines for non-standard normal distributions, we have to modify the built in qgline. To
figure out how to create qqglines that meet our needs, we examine the qqline function.

> gqline
function (y, datax = FALSE, ...)
{
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y <- quantile(y[!is.na(y)], c(0.25, 0.75))
x <~ gnorm(c(0.25, 0.75))
if (datax) {

slope <- diff(x)/diff(y)

int <- x[1] - slope * y[1]

}
else {
slope <~ diff (y)/diff (x)
int <- y[1] - slope * x[1]
}
abline(int, slope, ...)

}

We see that our needs can be met by adjusting the line x <- gnorm(c(0.25, 0.75)), in creating
our own slightly modified qqgline function. We know that rexp(1000, .5) is approximately the
theoretical exponential(A = .5). We can make an altered qqline to compare D.set to the theoretical
exponential(A = 0.5) as follows (simply changing lines 1 and 3 of qqline)

> exp.qqline = function (y, datax = TRUE, rate, ...)
+ 1

+ y <- quantile(y[!is.na(y)], c(0.25, 0.75))
+

+ x <- qgexp(c(0.25, 0.75), rate = rate)
+ if (datax) {

+ slope <- diff(x)/diff(y)

+ int <- x[1] - slope * y[1]

+ }

+ else {

+ slope <- diff(y)/diff(x)

+ int <- y[1] - slope * x[1]

+ b

+ abline(int, slope, ...)

+ 3

Now, we can pass D.set to exp.qqline and get an approximate qqline. All we did is replace the
normal quantile function gqnorm with the exponential quantile function qexp and allowed for the
passing of a rate of decay rate to the gexp.

> exp.qqline(D.set, rate = .5)

Similarly, we could create an adjustable ggline function for theoretical Normal means # 0 and sd #
1. That is, by changing the first line to FunctionName = function(y, datax = TRUE, mean, sd){
and the third line to x<-gqnorm(c(0.25, 0.75), mean, sd) we could achieve the mentioned goal
— as would similar appropriate changes work for other distributions. See the section on Functions
for m.qqline which will graph a qqline for any bulit in density function.

9.5.3 adjusting qqline for two sample comparison

Lastly, we could compare the quantiles of the actual data by adding x to the arguments and replacing
the line x <~ gnorm(c(0.25, 0.75)) with x <- quantile(x[!is.na(x)], c(0.25, 0.75)).

9.5.4 A More Adjustable QQ-line :

The following function will plot a qgline for comparison of a vector with any built in base package
density function in R. The first argument y is the vector to compare with the density function. The
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Figure 26: approximated qqline by using exp.qqline

second argument datax should be True if this vector is on the x axis of the existing plot, otherwise
False. The third argument fcn is the name of the quantile density for comparison, in quotes — for
example fcn = "gexp". See the vector fcn.list for possible entries.

>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

m.qqline = function(y, datax, fcn, pList, ...){

exit = 0
y = quantile(y[!is.na(y)], c(0.25, 0.75))
fcn.list.f = c(qexp, gnorm, gbeta, gbinom, qcauchy, qf, qchisq, qgamma,
qgeom, ghyper, glogis, glnorm, gnbinom, gpois, qt, qunif, qtukey,
qweibull, qwilcox)
fcn.list = c("gexp", "gnorm", "gbeta", "gbinom", "qcauchy", "qf",
"qchisq","qgamma", '"qgeom", "ghyper", "qlogis", "qlnorm", "gnbinom",
"gpois","qt", "qunif", "qtukey", "qweibull", "qwilcox")
fcn.par.1 = c¢(1, 2, 2, 2, 2, 3,1, 2,1, 3, 2,2, 3,1, 2, 2, 3, 2, 2)
exit = 0
j=1
repeatq{
if ((fcn == fcn.list[jl) && (length(pList) == fcn.par.1[jl1)){
if (length(pList) == 1){
fen.list.£[j10[1]]1(c(0.25, 0.75), pList[1])->x
exit = 1} else
if (length(pList) == 2){
fen.list.£[j10[1]1]1(c(0.25, 0.75), pList[1], pList[2])->x
exit = 1} else
if (length(pList) == 3){
fen.list.£[j10[11]1(c(0.25, 0.75), pList[1], pList[2], pList[3])->x

exit = 1}
}
if (exit == 1){
if (datax){

slope = diff(x)/diff(y)
int = x[1] - slopexy[1]
}
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else {
slope = diff (y)/diff(x)
int = y[1] - slopex*x[1]
}
abline(int, slope, ...)
break}

if(j > length(fcn.list.f)){"You have entered too many or too few parameters

for the function, or an invalid function name for fcn"
break
}
j = j+1

For example :

r.2 = rexp(1000, 2)
r.1 = rexp(1000, .5)

par(mfrow = c(2, 1))

qqplot(r.1, r.2)

m.qqline(r.1, datax = TRUE, "qexp", 2, col = 2)
m.qqline(r.2, datax = FALSE, "gexp", .5, col = 4)
legend(legend = c("Line if both exp(2)", "Line if both exp(.5)"),
col = c(2, 4), x = "topleft", lty = 1)

n.1 = rnorm(1000, 1, 2)

n.2 = rnorm(1000, 2, 2)

qgplot(n.1, n.2)

m.qqline(n.1, datax = TRUE, "gnorm", c(2,2), col = 2)
m.qqline(n.2, datax = FALSE, "gnorm", c(1,2), col = 4)
legend(legend = c("Line if both N(2,2)", "Line if both N(1,2)"),
col = c(2, 4), x = "topleft", lty = 1)

Figure 27: Results from the m.qgplot :
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To compare exponentials and normals and x?:

qgplot(r.2, n.1)

m.qqline(r.2, datax = TRUE, "gnorm", c(1,2), col = 2)
m.qqline(n.1, datax = FALSE, "qexp", 2, col = 4)

legend(legend = c("Line if both N(1,2)", "Line if both exp(2)")
, col = c(2, 4), x = "bottomright", 1ty = 1)

CHI = rchisq(1000, 12)

qqplot (CHI, n.1)

m.qqline(CHI, datax = TRUE, "gnorm", c(1,2), col = 2)
m.qqline(n.1, datax = FALSE, "qchisq", 12, col = 4)

legend(legend = c("Line if both N(1,2)", "Line if both chi~2(12)"),
col = c(2, 4), x = "bottomright", lty = 1)

Figure 28: Results from the m.qgplot :
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