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1) Introduction.

Let F; j=1,....n be probability measures on a o-ficld A, Let FS A be a
Vapnik-Cervonenkis class. IfE,, ..., Sn are independent observations with P, = L (§;)
the empirical process Z_ is defined on A by

o LOR T iy
Z,(A) = = &) - BA)].

Let G, be the Gaussian process that has mean zero and the same covariance structure
as Z,. Consider the space B of bounded functions on the V.C. class F with its uni-
form norm. It is well known that G, defines a probability measure, say M,, on B,
Similarly, under standard measurability conditions Z,, will define a measure, say L, on
a reasonably big o-field of subsets of B.

We are interested in the Prokhorov distance m (L, M,) between these two meas-
ures. Our purpose is to prove the following:

There exists a universal function (v,n) ~> $(v,n) of the V.C. exponent v of F and
the integer n such that

1) ¢(v,n) = 0 as n— =
2y m{L,M)) = div,n)

Acmally this result is known. It has been proved by Pascal Massart in [5] and the
proof given below differs little from that of Massart, The reason for rewriting it is to
emphasize the universality of the function ¢. It does not depend on the Pj at all. It
depends on the class F only through the exponent v. The proof will supply a particu-
lar ¢. It is not necessarily the optimal one. The same technique can be used to obtain
other resulis, with bounds that depend on P and on the class F. The proof uses three
known results; a) The entropy bound of R.M. Dudley [2] with the chain argument; b)
a bound on the norm of empirical processes on V.C, classes consisting of sets with
small probability and ¢) a theorem of Yurinskii on the Central Limit theorem in R*.

* Research Supported by National Science Foundation Grant DMS87-01426.
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Measurability requirements are essentially ignored at first. They are discussed in
the last section.
One could let the class F depend on n. The measures P, j=1,...,n can also

depend on n in an arbitrary manner. One can also obtain results where the Vapniks
exponent v of F (and F) varies with n provided that one puts restricions on the

E g 2 x}
entropy integrals of the form ]!L,..{xz]ldx with LI(x) = log K;: that occurs in the

application of the chaining argument. For further results, see Massart [1986].

For applications and v fixed ¢(v,n) can be taken equal to C(v) 'iﬂ where
In

Tiv) =

an , . . .
3% 30v d where C is a certain universal function of v,

Improvements in the exponent ¥{v) seem possible but they depend on improve-
ments in the Central Limit theorem in R for the uniform norm and arbitrary covari-

ance matrices. The literature contains several such improvements. In Section j/fm;
discuss briefly the possible use of a theorem of Zaitsev (1987).

-

2) A theorem of Yurinskii,
Consider the k-dimensional space R* and provide it with a norm [|-]. That norm
will be called “‘Hilbertian™ if it satisfies the median equality | “—;-"’-nl +1 -—L";" I =

%[IIxIFHI}'IF]-

Theorem 1. Ler X, X,, . . ., X, be independenr random variables with values in RE
Assume EX;=0 and E|IX; IP<ee, Let F be the distriburion af the sum
S5=X;+Xy+.+ X, and ler G be the Gaussian measure with the same expectation
and covariance structure as F, Then:

1) If||-|is Hilberrian then
R(F.G) < 8((S1+3 51 - llog S5k1])
2} If - Il is arbitrary, then
n(F.G) = B{(S:kY[1+ %%Hng{sjk"jﬁ}m
3 If -\l is the maximum coordinate norm of RE, then

R(F,G) < 8(S:k¥[1 +%%|mg|:sjk“}|11’“



where S3 = 2 ZEI|X; P

Remark. Statement (1) is imitated from Yurinskii (1977). It is not quite the same as
Yurinskii's because we had difficulties following some of his arguments and may have
redone them differently.

Statements (2) and (3) are obtained from statement (1), following a technique used
by Dehling (1983).

Proof. Take a function f defined on R*. Assume that f is twice differentiable. This
can be taken to mean that for each x « R* there is a vector A (x) and a marrix B (x)

;‘1 lf{x+}'}—flix}—h{x}r-%fﬂ{x}rl tends to zero as flyll — 0.

Assume in additdon that B satisfies a Lipschitz condition

such that

IBix)=B(z)] = Clix-2z|
50 that |2'[ B (x;) = B (3} 1yl < Cllxy = =3l Nzl Nyl
Let ¥y, ..., ¥, be independent, independent of the X; with EY;=EX; and
EY; Y] = EXX;" Let 8 = ZX;, T=LY,. Then Lindeberg's argument shows that
|Ef(8) = Ef(TH| < %{E.Elxjn?' - IE||‘fju3},

Now assume that ||-|| is Hilbertian and Y; Gaussian. Then
EIY;IF = 4[ENY;IFP? = 4[ENX;P 7
= 4ENIX;R.
Thus

|EF(S) - Ef(T)| < %CEEuxjn’-*
]

Now, assuming again that [|-|] is Hilbertian, let us create some function f that
satisfy the above differentiability conditions.
Let F;, i = 1,2 be two disjoint closed subsets of RE. Let p (x,F,)) = inf {|]x — v/;
ye F] and p=p(F.Fy) = inf (p(x,Fy): x ¢ F]. Then the function g defined by
pix,Fa) :

gix) = T F) + pFD satisfies the Lipschitz condition |g(x;) — g(x,)] =

%le,—n;il. Let Hy be the Gaussian density whose exponential term s

]
o7 1P

exp (-
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Consider the function f(x) =Eg(x + y) where y has distribution Hy,. This may
also be written

Kfa(x+ espl—— Iy ) oy
= K [s{ﬂ:xp{—ﬁ ly — x|} dy.

Look at f(x + Az) and take derivatives with respect to L. The second derivative of
ﬂpl—ﬁ Ny - x = Az [P} is given by the same exponential multiplied by

1 # L ] ] 2
— [y -xVz-Azz]" - —|l=
o ¥—x ] ui'-" I

= #[{y—{x+lz}'}z]z - ﬁ;lizllz-

Taking as a new variable of integraton v — (X + Az) one obtains
E‘_“:—Efcm Az) = ﬁEg[}w (x+i7)] x [z - o fzIP].

Therefore

@ a*
lﬁf{x-l- Az) - ﬁf{x+lzllh_—nl

L

< E‘E:g{wnm - gly+x)[z'y]* -z

1
s —MzIEIY? - o?llzIP|
X

2 2
s —ghlzllizIF s == lzIP.
po pa
Thus the derivative B (x) of the function f will satisfy the Lipschitz condition

¥ [B(x;) - Bixg))y| < %"ﬁ‘ﬁ”"}'[ﬁ

Now take any arbitrary closed set A, Let AP = {x; p(x,A) < B). Apply the fore-
going to F, = AP and F, = (AP*®)°. This will give a certain function f whose second
derivative satisfies a Lipschitz condidon with coefficient C = Lz In addition for

P
x€ A one will have f(x) = 1 - Priey2 > B?). For x e (AP one will have

f(x) s Prla®yd > B*]. If we lete = Pricdyd = B?] this will yield
PiSe A) = Ef(8) + &
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s Ef(T) + = —ZEIXIP + e
o Al |

3p

ERNT

s Pr[Te AP] + g4+ 5 mz?'i"xi'F + E

s Pr[Te A®®] + 2e4+ 2 ——ZE[XIP.
3 pat

To obtain & bound it will be sufficient to select o, B and p in an appropriate
manner. To do this note that Pr{c®y? > B?] is the probability that a gamma variable,

k
=1
say V, with density lk e*x? be larger than —2% To bound this probability

F{E}
note that Ee™ = (1 —0)™*2 for te (0,1). Thus Pr{V >v] = (1 — 3¢,

Write v = %z and minimize with respect to t. This gives
PriV>v] = exp{-k2[z-1-logz]).
Treating z > 1 as fixed for the time being we get an inequality of the type

s
Pr(Sec A] = PriTe AP+ 22 + —

par®

2
where J;—i =kz and € =exp{-k2[z-1-logz]] and 5; = %EEIIHJ-IF. This sug-

gests taking
5 Sqkz
po PR
This will gi 2 Sk g
is will give a value of p such that (p + f)* = 7 + B* and
Sikz
B+p = P+l ;, + P2 < 1|3+%(33kz:|”1.

Minimizing with respect to B we obtain
= L isska
and
P+p s IS kz)™
Finally we get
t(F.G) £ 3[S;kz]"™ + Zewp(-k2[z-1-logz]]
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Since the Prokhorov distance never exceads unity one can restrict all considerations 1o
the case where 3(S: k)" < 1.

To select a wvalue of z one can try to equate (S;kz)'®  and
exp(-ki2[z -1 - logz]}.
This yields the equality

1 i
=1=10(1-—=—"1l = — |log5:k|.
z ( H}ngz. Zlc|'1"‘53|

This equality can also be written x[1 - -E-Z—EI-I—DM]- z—lkuugsm with

x=z-1. Since :lﬂg(l + x) 15 decreasing, it follows that if x is substantial then it
will be about equal o %Ilﬂgﬂ;kl. We can assume, arbitrarily, x = 15. For such

values, x = él[ng 33k[. Then we shall have

R(F.G) s Bl(S;:k)[1+ &uugsakm““

For the second statement in the theorem one can proceed as follows. See [4] pages
16-17.

Let ||+l be an arbirary norm on R*, Let B denote the unit ball of (RX, |||} and let
B* be the unit ball dual o B.

Take an arbirary x; € B with |[x;]|=1. There is a y, e B* such that
<ypx>=1 Let Byj=(x:xeB <y, x>=0}. Take a x;¢ B) with [|x;]| =1
and a yye B® with €y, x> =1, Continue with By=[x:xe B, <w.x=>=0
i=12} and so forth. This gives a set of k pairs (x;¥;) with <y, x> =§ the
Kronecker &,

k
MNow consider the norm |- | defined by |x|* = % Ei [ = yj,w.}F-
Jl
Clearly x| = max|< ¥px>| = lixll. Also, by convexity [Ix] < Z|< ¥ % =]
j ]

< k:%Ei{ ypx>F1¥ = k|x|. Thus [x] < [x]l = k|x| and |-| is a Hilbertian norm.
The foregoing argument applies to |-|. Consider A, = (x: inill:.-'—xlli‘r}. If
:.'I

Yz(@Bp+plk then A = AP Thus we have P(Se A)cP[Te A iou]
E; kz
Ei

+

+ Eﬂ]l{-“—;‘kl.z =1 -logz]] as before. Here

5 5
5§ = ?EE|H}I3 > EEEnxjui’* < S



This suggest taking

Sqkz
2B +pk = — o of equivalently
PP
Sz
2B+ plp = F which yields
Pep 2B + %(5;:}”’3

and, minimizing with respect to
(2B + Phpin 5 3(S32)"
Thus we have
®(F,G) £ 3k(S;n" + Zexp-k2[z-1-logz]}.
Selection z by the same procedure as before we get

n(F,Q) s Efﬂgk‘*[H%%Ilﬂﬂﬁzk“llll““-

The same argument applies to statement (3) of the theorem except that now the sup
norm [|x]| = rnjnx[{ ¥ % >| satisfies the inequalities |x| = ||x|| = |x [Nk for the Hilber-

tian nomm defined by |x P = L £< y, x>
]

Remark. In the sequel we shall use statement (3) of the theorem under conditions
where the actual dimension of the space is not known but where it is known to be
bounded by a given k. The hounds are still applicable since the bound in statement
(3} is monotone increasing as function of k.

3} Reduction to the finite dimensional case.

In this section F will be a V.C. class of sets and Z, will be the empirical process
defined in the introduction. For each x > 0, F, will be a minimal subset of F with the

property that Sup igfIF[FﬂS l: 5& F,, Fe F) = x. The cardinality of F, will be K(x)

I{i 172
and L (x) will be [In-g %] .

If v is the exponent of the V.C. class it is known (see Dudley (1978), Le Cam
(1986)) that

Kix) £ exp{2v[logv + log2/x]).
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The following lemma is a version of a chain argument used by many authors

Lemma 1. Let m be an integer and let oo [0,1/2] be such thar 4L%(et) = noe, Then
there is a map t from F, to F = such thar

supllZ,(A) — Zy[t(A)]]: A e Fy)

(-1ya
<32 | Lxhdx

&
except for cases whose rotal probability doey nor exceed 4(2™ - 1) V2o
This will allow us to approximate the class F; by the class F_ .= whose cardinality
is or can be very much smaller than that of F.

It will remain to approximate F itself by F,. Later on the variable o will be made
to depend on n.

To pass from F, to F, introduce the class Dy of sets of differences SMVE(S) or
E(5)\ 5 where £ (S) is selected in F, so that P[ SAE (5)] = .

It is known (see Dudley (1978)) that D, is a V.C. class of exponent at most 2v.

Consider a set of pairs W = {(x;¥;): = 12,..., n} of points in the space X that
carries F. If § ¢ Dy it determines a *‘pattern™ on W as follows: The pattern of S on
W is a sequence {u;j=1,...,n) with wj=1if x;« 5, y;¢5. It is u=-1 if
X ¢35, y;% 5. Otherwise u; = 0.

The number of different patterns carved out on W by the elements § of D, will be
called M (D, W),

It is known (see Dudley (1978), Le Cam (1986)), that M (D, W) = (2n)* where v
is the V.C. exponent of F,

Consider also the sum vi{5W) = Elu_.i{S}I for the pattern carved by 5 on W and
let N{W) = 5up{E|uj (5); S« D,}.
]

According to Le Cam (1986), Lemma 6 page 546

Lemma 2. Let conditions [A) and (B) of Le Cam (T986) page 545 hold, Ler
2(2n)%
==
1) P {N(W) = 2[x, () + Yna+l ) < 8
2) Pr*{sup|Z,(S)|; S D,

= %ll +~.I'§xn[f}[1u|jf] +vno+111) = 206

x2(€) = 2log Then
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For this to be true one needs some conditions on D but they are of the nature of
measurability restrictions. They are satisfied in most usual applications.

To combine Lemma 1 and Lemma 2 we need to select a value o, of 0. According
to Lemma 1 one should take o, so that 4L% (@) s no,.

20+ K2ix) — 1
Recall that L*(x) = log 5 =2logKix) + log o
5 (2v + l}lugi + 2vlog2v. Ome can verify that
o, = 4(2v + l}lﬂﬁi

will satisfy the desired inequality. If so the bound in Lemma 2, for the probability
{200 will become

1 V2 2
— —_ 4 + 2log —
Wn * ".In[ ﬂﬂgh EE.]

+ %m{zw logn + 1] [4viog2n + zhgi]m,
n E

Keeping € fixed for the ime being, assume that g2 > tt, and let m be the smallest

integer such that 4™o, = €2 That is m = int = lug% + 1. The class selected
in Lemma 2 is a class Fy, Lemma I can be used to pass to the class F_g= selecting

V7
sets §;(5) € F, 4= 50 that supg [1Z,(5) - Z,[&,(5)]], S« F} = 32 { Lix®)dx. Since

L3 (x) < (2v + T]].-ug% + 2v10g2v one has

Lix) = Iﬂv+1]lng-i—!"1 + [2vlog2v]i?

and
AP EvE !
J Lix)dx = (av+2)'72 | l{lug:j"?dx + E[4viog2v]?
(i

g3
taking v = log % the integral | (log %}l”zdx can be written
0

foerdy = vyl o+ [ —=evay

= 1 .2
o —— 2
s (V2 {[log i il
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assumj;ngﬂ'is 1.
Combining the two maps § and £, one obtains a map t from F to Fy g such that
except for total outer probability at most 28 € one has

Mép{lznfﬂl- Z,[T(5)]]; S5« F)

L

Boxi e, 1 1 e
s 64V2v+lef[dviog2v]™s + 1+ﬂugEﬁj ]-i-ﬁ

+ "\']%[4vlugin+ilug%]

+ ‘\fJ% {[4(2v + l}logn + 1] [4viog2n + zlﬁg_i_”m_

A similar argument can be applied to the Gaussian process, say £, that has the same
covariance structure as Z,. However, here one can pass directly from F to F_ge with

a map T such that, except for probability at most 82 will sadsfy
Sgp[lznﬁ}l - Z.[T(8)]|: SeF]

1

By i, 1 1 n
£ (64)(v2v+]l) E{[dviog2v]™s + - + (log E‘-Ej I

Note that since a 4™ > g* the cardinality of F .= is at most

K < exp(2vioglv + chrlug%l

1
= (2w —.
E‘“
If one compares the bounds obtained above with the bound of theorem 1 with

k = K (%) this suggest the choice of an & of the type & = L‘r We shall make a paric-
o

ular choice of v in the next secton.

4y A bound on the Prokhorov distance.

We are now in a position o prove the following result:

Theorem 2. Let F be a V.O. class of subsers of X with expongnt v, Assume that suil-
able measurability restrictions are satisfied. Let 2 be the empirical process for n
independent observations £, 5, . . ., &, with arbitrary distributions L (§)) = F;.

Let & be the Gaussian process defined on F with the same covarigncoe striciure

as L.



11 -

Then one can consrruct a probability space Q2 and processes z,;“ and I,: defined
on L2 and such thar

1) L(Z) =LiZ)) and L(Z2) = L(Z_),
and

2) Pr* (sup,| 2y (8) — Z2(S)| = 0(vn)] s ¢v.n) where for y=[8 + 20v]"!
one has '
no{v.n) £ Cy(v) + CyiviVlogn
with Cy (v) = (128)Wq(2v+1) and
Cylv) = C'(v) + max(36,9(2v)™"4),

420v)

C(v) = (128)[(2v + Ddviog2v)? + (D@ + VD) 2v + 1) 310v)

Proof. For the time being we shall not bother about the measurability restrictions,
They will be debated in the next section.

Choose o, as described in Secton 3. Lete, = —}?
n
Consider the empirical processes Z, equal o Z, restricted to the class Fy gn
described in Section 3. On this class the processes can be considered as random vee-
tors in R¥™ with a dimension kin) s (2v)®¥ a7, According to Theorem 1, and the
remark that follows its proof, one can mawch Z, with Z__ in such a way thar, for the
uniform norm ||+ || on functions on Fo o

PrillZy, —Z.;ll =2 wiv,n)} < wyivn)

where W {v,n) is the function

- Swid Swe2=1/8 5 [kin) P2 14
yiv,n) = 5(2vy*“n x[1+ﬂkmr1og = 1.

To obtain a Z, reconstruct all the Z,_ (S) from the conditional probabilities of
(Z,(8); 3 = F} given {Z,(5); S € F_ 4]

Proceed similarly for 2: According 1o Section 3 one will have
PrisuplZy (8) - ZZ2(S) = wivin) + wy(v.n))

= 3oe, + yiv.n)
fior a function yy (v,n) egual to

(1280VET - {[4viog2v]? + L & (ylogn +log—=)2) + iy (v.n),
|_1'|I 2 R g
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Wslvn) = L + "'\|| i[{d\r + 2)log2 + (4v + 2y)logn]
“n n

+ ‘\i % {[1+4(2v+ 1)logn] [(4v + 2)log2 +I{4v + 27 lugn]}m.

Equating the powers of n in fromt of w(v,n) and w,(v.n) suggests taking
1

1= T Note that then yiv,n) and the first part of w, (v,n) start with powers n™.
. 172 _ 1 Bl
By conwrast W, (v.n) starts with powers m“=n where 7 = 3 20w

Using repeatedly the argument that for A<B and x e (0,1) the maximum of
x[A = Blogx] is not more than B one obtains that

—-[1+r[¢h‘+2}lﬂgl+ﬁ{dv+2ﬂhgn] < --ﬁ{dw+_?.'ﬂand
“I

L1440y + Diogn] s —4Qv+ 1),
nh i

Thus
2 172
WY (vn) £ = (VI + [[402v + D]V [4v + 2¥]]
1
< guz Vv + P+ 2+ 1]
1
< £{4+'~'§}{2v+ 1.
T
This yields
nfy(van) = C"(v) + Ci(v)Vlogn
where
'E f =T 12 ﬁ [
V) = (128)92v+] (dviog2v)'™ + T—{4+~2){2v+ 1)
1
and
Cyiv) = 128y (2v+l).
Finally
nfyiv,n) € B2V 1 & == |log ——— kin)? |1
’ E]-:{ ) n

with k{n) s (2v)& 0¥, By the remark made afier the proof of Theorem 1 one can
replace ki(n) by that upper bound. Using the same argument about function of the



- 13 -

type X [A — Blogx] and noting that (2 + 5v)y= 1/4 it can be seen that, whenever

. . oy : 51 0 (k)™ e
{2v)"" = n*", one will have 1+ 3 k{n}“ﬂg T | EF““"‘I than 8 v(2v)
This will yield
5 1
n? s BVl 4 = —— "
Yo s sVl e 2o )
Then

nf[wiva) + y(vn)] s G [\r}+C2{u}1[¢gn
with Cy (v) = (128) y¥2v+1 as above and
Citv) = € (v) + 9(2vp™

where we have replaced 1 + % “[21)1'

This yields a function ¢ (v.n) of the type described in the Theorem

by 41/36 forv = 1.

(Mote. The exponent ¥ = obtained here seems smaller than the exponent

1
B30
in Massart [5]. However Massart 2d 15 the same as our 4v. Thus the rates of conver-
genee are about the same). (See Section & for modifications)

5) Measurability conditions,

The argumenis of Section 4 require certain measurability restrictions for their vali-
dity. The conditions can be stated as follows:

A} Let D be the class of differences 35 \3; 5§« F. Let
LT8R T | 115 | P M,} =W be a sample of independent variables with
L5)=Lin;). Let & j=12....,n be independent variables, independent of W,
with Prg; = 1]1=Pr[g;=~1]= 1/2. Then

{Ze; (8 — B,)(S): 5 ¢ D]
i
has the same distribution as 11?'-{5;-15“1}{51; S« D) and that distribution can be
i
obtained by first conditioning on W,
B) Let m(S) be a median — (8 (S) - P;(S)] = Z,(S). Then

Wn 1
Prisopg[1Z,(S) - m(S5)]: S5e 8] zx} = 2Pr{[sup|Z,(5) - Z, (S}
S e8]z x| for Z," a copy of Z, independent of it and for any subclass S of DD,
Dudley (1978) has given conditions that are sufficient for the validity of (A) (B).
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We have smated (A) (B) in terms of probabilities. However it is sufficient that they
be valid with outer probabilities.

Here one may note that Dudley’s conditions are meant to apply to the empirical
processes as narurally defined. (That is taking for measurable sets in the space B (D)
those whose inverse images are measurable in the space of the (£, .. ., §;]) They are
automatically satisfied if F is countable. If F is uncountable one may be tempted to
look at Z, as a process with trajectories in the space B (D) of bounded functions on D
and work with various “‘versions™’ of the process. For instance one may note that for
any system Py j=1....,n of disributions FJ-=L{EJ-}| the W.C. class D admitz a
countable dense subset for the distance P(5,AS;) = T:"EPJ (5,454). Indeed I» is

precompact for that pseudometric. Thus one can use **separable’” versions.

Moting that if nex < 1/4 the median of a binomdal B({n,o) varable is zero and
applying Lemma 6 page 346 of Le Cam (1986) one sees that if D (o) is the class of
sets (D« D; P(D) < ] then

Pr* (supg|Z,(D)]; D e Dia) 2 '\,’I%[x{e‘llll = 20e

where [:t.-[l:]l]j = dvlogdn + 4 Ing%

Thus the validity of conditions (A) (B) already implies that the asymptotic behavior
of Z, in F can be deduced, within terms of order log 2n/n, from its behavior in the

countable subclass Fy =_JF | union of finite classes Fy,, that approximate F within
m m

1
"E_:".

Kakutani defined a *“distribution™ for Z, in B (F) as follows. Consider the line R
compactified by adjunction of points at e=. Then Z; defines a unigue Radon measure
on (R)F. Since Z, has bounded paths the measure in question is already a Radon
measure on B (F) topologized by pointwise convergence on F. Since that Radon
measure is already well defined by its projection on subspaces of the type (R)S with

5 © F and countable, it will automaticallv satsfy (A) and (B) but need not coincide
with the natural version of L (Z ) for sets where both are defined.

The argument used in Section 4 conditoning on projections of the ype
[Z,(3); S« Fg} seems to require additional measurability restrictions, but it does not.
Since F is a V.C. class, the Gaussian process Z,. defined on F admits a version
with continuous paths for the pseudometric P(5,AS,). It is well defined. For a class
Fp that is finitc one can find a joint distribution Q in B R™ thar has marginal
L[Z,(5); S « Fp] on the first R and L[Z2.(5): § € Fg] on the second R It can
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be selected so that Q (||Z, — Z,lly, 2 ®] < = for the Prokhorov distance between the
two marginals, This joint distribution yields a Markov kemel Q(x,B) that maps the
first R'* to measures on the second. For the Gaussian process Z,, one can select
another Markov  kernel, say H(y,C), regular conditional distribution of
(Z.(5): § ¢ F) given (Z..(8): 8 « Fg). To pair Z, with Z,,, keep for Z, the original
process whether it is in its natural form or a modified version. Pass from
[Z,(S); S & F) to x = {Z,(5); S e Fg). Now apply Q(x,B) to get a y « R™* of the
form y = [y(3); S « Fg). Then apply H(y,-) to get a point z = [z(5): § « F}. This
will vield the pairing as needed.

In Section 2 we have used a Prokhorov distance m(P,() obtained from inequalities
P(A) = Q(A%) + e for closed sets A. In Section 4 we have used the fact, due o
Strassen, that such inequalities imply the possibility of a coupling with
PrillZ, ;= Z.;ll > €} = & There the Z , and Z_, are vectors in a finite dimensional
space. Thus Strassen's theorem is cerainly applicable. However we have stated
Theorem 2 in the coupling form and not in the P{A) < Q (A®) + & form because that
would necessitate specifying for which (closed 7) sets A the probabilities P[Z, € A)
arc defined. The coupling form, with outer probabilities, avoids this specification.

6} Application of a theorem of Zaitsev,

In this section we discuss briefly some possible improvements on the rates of con-
vergence obtained in Section 4. One small improvement can be obtained by replacing
the bound on K (e?) derived from Lemma 3 page 543 of Le Cam (1986). However it
seems that major improvements will depend on the use of better finite dimensional
results to replace Yurinskil's theorem (Theorem 1, here). There are several possibili-
ties, One of them is a theorem of Zaitsev (1987). Unforunately, as we shall see,
Zaitsev's theorem, as published, does not quite fulfill its promise. It does replace the
n'® of Theorem 1 by n'? but the power of the dimension k is increased. This m-v
just be a feature that could be changed by redoing Zaitsev's proof. However the proof
is rather complex and at the time of this writing we have not yet succeeded in carrying
out the necessary modifications.

Let us start with the improvement on K (£%). Here we have used the bound

Kix) = exp[2v[logv + log 2/ ]

as given in Le Cam (1986) page 543. This is obtained there by writing £ = %]:}EI{

and noting that § is at most equal to that solution y of the equation y = logy + a,

{with a = log (2v/x)) that is larger than unity. In fact that solution satisfies the inequal-
a

a-1

ityysa+ loga=a[l+(a—-1y"loga]. This was replaced by 2a in Le Cam
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{1986). For a large (a — 1! log a becomes small.
This means that, for small €, the bound K(e*) = (2v)**&* given at the end of

Section 3 can be replaced by (2v)"&™™ Wie,v) where pie v) = (a) I?' ’=1°51_:' -
E
This extra factor (g, v) is logarithmic in &

If this is taken into account the exponent ¥ =
by 1/(8 + 10w).

Mow let us pass to Zaitsev's theorem. Zaitsev considers a random vector X with
distribution given by a measure F on RE Tt is assumed that EX =0 and that for
v € R the variance (Dv,v) = E(v'x)* exists. Let G be the Gaussian measure with
expectation zero and the same covariance system as F

It is assumed that R¥ is provided with a Hilbertian norm denoted | <. This norm is
extended o the product €* of k complex planes as usual. The corresponding inner
product will be denoted < z, x>, z ¢ €F, x ¢« R* or C*. Define ¢ on C* by

31207 in the rat= nf can be replaced

¢(z) = logEe=2X>,
The function ¢ is subject to the following restrictions: There is a © > 0 such that
A,) ¢ is defined and analytic for
tlzj<1, ze Ck

A;) For all u and v in R the mixed third derivative satisfy the condition

d &
lﬁ:ﬁ‘,h” £ |ul(Dwv,vit.
Oz + eu) = ¢ (z)
E

The derivatives are taken as usual so that LR & (z) means lim
du £l

One of Zaitsev's results 15 as follows.

Theorem 3. Let F satisfy the conditions A, and Ay for a 1> 0. Then for the norm
|-| rhe Prokhorov distance m;(F,G) berween F and the Gauwssian with the same first
and second moments sarisfies the ineguality

R, (F.G) s Ckit[1+|logt|]
where C i5 @ universal consiani.

To apply this result here consider the case where X is the empirical process
Z = [Z,(A); Ae A} where A is a class of k subsets of the sample space. For com-

k
plex vectors z = {2;,25, ..., 7} let < 2,2, > =;'.I 3,7, (A).
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The function §{z) is easily obtainable even though a bit messy looking. The third
mixed derivative can be computed. Its main term contains an expectation of the type
Hiuv) = E|< u,Z,>|[< v,z,>]". This can be bounded by

1
H@v) s =[uf@v.v)
k
where |ul, is the L,-norm |u], = 'Eilujl < |u|k for the Hilbertian norm (Elqu}ln_
F

Thus Zaitsev's theorem applies with a number T of the type *|:=I:|"l\,||E for a cer-
n
tain constant b.

To obtain a theorem similar 1o Theorem 2 of Section 4 we need to use the Pro-
khorov distance ®(F,G) computed for the uniform norm ||-|| instead of the 7, (F,G)
computed for the Hilbertian norm. Since |x]|<fIx]l < |x|vk one will have
#(F.G) < ®,(F, G)k. Finally this gives the following result

Theorem 4. For the disiribution F of the empirical process on k subsets of the sam-
ple space and for the uniform norm there are constants C, and b such thar

K k
®(F.G) = Cl?n[l-FllﬂE{b F:Il]

Note the term k* /Vn. It corresponds here to the [k*2/Vn " of Theorem 1. This
shows that Zaitsev's result 15 a considerable improvement on Yurinskii's as far as
powers of n are concerned. Unfortunately we were unable to beat down the & to a
k. Whether this is possible by rewriting Zaitsev's proof or by a better evaluation of
the term T is not known to this writer at this time.

In any event application of the above result to the computations carried out in Sec-
tion 4 will give a bound where the Prokhorov distance between Z_ and the correspond-

ing Gaussian process will tend to zero as n™", ignoring some logarithmic terms, but
1
24 12v”

This is a definite improvement over the ¥ =

here ¥ can be taken equal to ¥ =

T of Section 4. It 15 unfortunate

that this particular ¥ was replaced by (B + 10v)™! at the beginning of the present sec-
tion. Since & + 10w and 2 + 12v are not comparable it suggests that a better argument
should lead to a value of ¥ larger than (2 + 10v)7Y,

We shall return to this question and to other possible approaches in a later report.
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