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Introduction. Let 8 be a set. An experiment indexed by &

is often described as a family [PE; 8 ¢ 8] of probability
measures on a given o-field. Two experiments & = {PE; 6 ¢ 8]

and J = [QE; 8 € 8] indexed by the same © are called equivalent
if, for all decision problems, the risk functions achievable for 4§
or J are the same.

Following the terminology of [1l] we shall call the equivalence
class of an experiment & the type of #. We shall make no
notational distinction between experiments and their types. This
abuse will not ordinarily lead to excessive confusion.

Let E(8) be the set of all experiment types indexed by a
glven 8. A distance, noted & was introduced on E(8) in the
paper [2]. The number A(#4,7) measures how cleosely one can match
the risk functions available in the two experiments. One can also
introduce on E(8) a weak topology as follows.

If Acs, let fa = Pgi
E(A) by the distance 4. Define the weak topology of E(8) as

8 ead . When A 1is finite, metrize

the weakest which renders continuous all the maps & —4,, A finite
Proposition 2 of [3] asserts that for this weak topology the

space E(8) 1is a compact Hausdorff space. Unfortunately the

proof given there appears to be invalidated by an algebraic

mistake, which was pointed out to me by M. W. Moussatat.



If th2 result itself was incorrect, severzl arguments in
asyrptotic theory would have to be reorganized. They would lose
in simplicity. Even though the mathematical damage could be
considered comparatively slight, the ensuing complications would be
a thorough nuisance. What is perhaps even more annoying is that
the general theory of comparison of experiments would acquire
bizarre features not expressible in terws of finite dimensicnal
distributions of likelihood ratics. These features would appear,
in particular and perhaps surprisingly, in the theory of sampling
from finite populations.

For these reasons we give here an alternate proof of compact-
ness of E(8). It is based on the correspondence between
experinent types and the conical measures introduced by Chogu=t
(see [4]).

These same conical measures can also be considered as a
nztural vehicle for the representation of the eassential fzatures
of distributions of likelihood ratioes.

After introduction of appropriate symbols, in Section 2, we
pive in Section 3 a description of some relations between tho
conical measures and the distributions of likelihood ratios.

Section I uses a transfinite induction argument to coneiruct
experiments from canonical measures.

5. lHotational definitions., Let ~” denote a o-ficld carried

by a set %. Let A be a finite set. For each 6 ¢ A let P,



be a probability measure on (%,2). Blackwell [5] associates to
this family & = [PE; 8 € Al a certain messure B as follows.
Take the sum S = EEPB and select Radon-Nikodym densities dPEIds
in such a way that dP,/dS > O and I (dP,/dS) = 1. Let V be
the vector V = [(dP,/dS); 6 ¢ Al. Consider the finite dimensional
space RA and its unit simplex U formed by vectors
v = [ve; 68 € Al such that Vg > 0 and Eva =1,

The likelihord vector V is a measurable map from (~,5) to
U. The image of 8 by V is a finite measure f£ carried by U.
It is called the Blackwell measure of & = {PE; 8 ¢ Al. (In fact,

Rlackwell uses the average l-E n = card A instead of our

n OHeA PE’

eam S. This is an inessential difference.)

The measure p 1is the sum of the individual distributions
#(V|8) of the likelihood vector. It determines these distributions.

Conversely, let P be a positive measure carried by U and
such that Ivadﬁ =1 for all 6 € A. To such a Blackwell measure
one may associate a family (P,; © ¢ A}, taking for P

A

measure on R~ which has density Vg

g that
with respect to B. In
symbols dPﬁ = vadﬁ, or in a simpler notation Py = v -E.
A,
Give to R its maximum coordinate norm and define a metric

on Blackwell measures by the dual Lipschitz norm
“51 = E'E”D = s'i:lF ”fd{ﬁl - E‘g] I

where f is allowed to range through the set of functions

satisfying [f| <1 and |[f(v) - £(v')]| < ||v-v".



Since U 4ie compact, the set of all Blackwell measures is
obviously compact for the metric so defined.

Consider more generally an arbitrary set & and an experiment
¢ = (Py; 6 € 8] in the semnse of [1].

In this text experiments are defined as maps E!H'FE.
Py~ 0, /Pl =1 from & to a space L which is an L-space in
the sense of Kakutani [6]. Any experiment in this abstract sense
can be represented by a family {PE; 8 € 8] of probability
measures on a suitable space (¥,8). Thus, even though the abstract
definition is preferable, we shall proceed here as if £:-[PE; gen)
was such a famlly of probability measures.

For infinite sets ® one canncot readily construct Blackwell
measures. The entity which replaces them is a "conical measure"
in the sense of Choquet [4]. In the present context it is
convenient to introduce these measures as follows.

Consider the space R” of all functions from © to the
line R = (-=, 4») and the cone 0 = [U,w}a which consists of
the nonnegative elements of 2%, If w« , the value of & at

will be denoted w(®) and also {,(w), the symbol £, being

the name of the linear functional defined on R® by evaluation
at 6.

The finite linear combinations Z L., € A with A

o So*os
finite form a linear space dual of rRY,
We shall call Hy the space of functions defined on 0 as

pointwise suprema of finite sets of linear functions of the type
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Zeyl,, 0 ¢ A with ¢, » 0. The linear space H spanned by H,

is the space of differences h = hl - hE with hi € HD'

Definition. A positive linear functional u defined on H

is called a conical measure on (. The resultant of | 1is the

function defined on 6 which takes value u(f,) at @.

It will be shown in the following sections that one can
establish a one-to-one correspondence between the set E(8)
experiment types and the set of conical measures on o whose
resultant is identically unity.

For the present, note that if 9 is finite and if p 1is a
Blackwell measure on the unit simplex of R then the integral
fhdpg 1is a conical measure of resultant unity on 0. Conversely
any conical measure on  has a unique localization on the unit
simplex of R® and this localization is a Blackwell measure. Qur
task, in the infinite case, is to bypass the Blackwell localization
to construct directly the bijection between conical measures and
experiment types.

Before passing to this note that, for arbitrary 8, one may
metrize the space of conical measures having resultant unity, by
a distance between experiments introduced in [2]. The construction
is as follows.

By definition an element h of H., is a pointwise supremum

0

h(w) = sup, hj{uﬂ for h,, j=1,2,::+,k finite sums of the form

jl

hj = EE cj,EEE'



We shall say that such an h belongs to Hy if there is

some finite sum h, = Z i, such that (1) €y gz 0 and
3

€0,6%s
EBEG,E =1 and (ii) for all j and w one has hj{m} < hy(w).
If Hys 1=1,2 are two conical measures of resultant unity

one can define their distance by
luy =uJl = sup(luy(h) - uy(h) |5 b e Hy).

It is then easily verifiable that, for finite &, this distance
is not larger than the dual Lipschitz distance Hﬁl - BE“H of the
corresponding Blackwell measures. Hence the two distances are
topologically equivalent (see [7] and [8]). The reasons for the
equality between ”Ml - “J‘ and the distance of the corresponding
experiments are described, in some detail, in [1].

3. Conical measures and likelihood ratios. Take an arbitrary

9 and the space 0 = [0, =) C R® of Section 2. Let B denote
a o-field carried by some set %. For each 6 € 86, let Q, be
a finite positive measure on ~£.

If % is any other positive finite measure on F, one can
always define the Radon-Nikodym density dqafdh of the part of
Qg which is dominated by A.

Consider then some element h of the space H of functions
used to define conical measures., The linear functionals which
define h all arise from some set iﬂa; 6 € Al where A is a
finite subset of 8. Thus h may also be identified to a function
on the component Q, = []::1,,1:-n]|"!'L of the product o).

Take a » which dominates all the QE; 8 € A and compute



T
the integral e(h) = [h[v(x) JA(dx) where v(x) 1is the evaluation
at x € ¥ of the vector v = {dqafdh; 6 ¢ Al of Radon-Nikodym
densities,

Note that every h € H 1is positively homogeneous in the
sense that for @ real and positive one has h(a w) = ah(w).

From this it follows readily that the above integral o(h)
remains unchanged if one replaces A by any other measure '
which dominates all the Qg; @ € A. Replacing the set A by a
larger set A' does not modify the result. Thus, in this manner,
we have assigned a number ¢(h) to each h ¢ H.

Definition. The function ¢ defined on H by the procedure

just described is called the conical measure induced by the family
[QE; 8 e al.

We have shown that ¢ is well defined. It is very easily
verified that it is indeed a conical measure and that its resultant

is given by the formula
9(2g) = NIQyll.
For conical measures defined by such families we shall also
need the following easy result.
Lovma 1. 18k 9, 3 "9 3 +Qy o Where the Q, , axe

positive finite measures on (¥,5). For each i=1,2,3, let g,

be the corresponding conical measure. Assume that for each t € 8

the measure Q

is disjoint from all the measures QB 1 6 € a,
»

t,2
Then ¢3 is the sum mg = ¥ + ¢E.




Proof. Since each h € M depends only on a finite set of
coordinates g3 © € A it is enough to prove this for & finite,

Let then 3, = EE QE i and let V be the wvector of densities
>

i
V= dq fdl ; 8 € Al. Note that the space T s8plits into two
disjnint parts, say El and BE such that on Ei’ the density
d.-:za’_ﬂ,fr.-m3 is equal to “Qa,if""“"'i' The result follows,

Finally, note that since each h € H depends only on a finite
set AC 8 one can construct the conical measure ¢ knowing only
relations in finite sets {qe; 8 € Al. This leads to the following
remarks.

Suppose given for each finite A C ® an experiment type
#(A) € E(A).

Definition. The family {g(A); Ac 8) is called coherent if
— - ——_ - ] N

the inclusion A) C A, implies that aﬁlfﬁg} of 3{&2} to A,.
If h € H depends only on the coordinates 6 ¢ A, the above
described construction assigns to h well-defined number g(h)
which depends only on the experiment type #(4).
Summarizing the relations, one obtains the following lemma.

Lemma 2. The construction described induces a one-to-one

correspondence between the set of conical measures of resultant one
a

on 0 = [0, =) and the set of coherent families [g(A); A C e,

A finite] of experiment types.

4. Constructing an experiment from a conical measure., In

this section we assume given a particular set 6. In order to carry
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out some of the arguments it will be convenient to assume that &
is well ordered and is in fact an initial segment @ = la; a < k]
of the ordinal numbers. The possibility of such a well ordering
depends, of course, on the axiom of choice.
We begin with some lemmas on the structure of the elements
h of the space H and on the structure of the conical measures.
Consider a partition @ = EliJ EE of the set & and let
Gfel} be the cone formed by elements « € 0 = [0, m}H such that
w(8) = 0 for all 6 € By
Lemma 3. Let h be an element of H. Then h can be

written, in a unique way, a8 a sum h = l'|1 + hu_E such that

(1) h; vanishes on C(8,),

(11) h, 1is independent of the coordinates Boi 8 € 85y

(i11) |by| 1is bounded by a finite sum 2 colyi 8 € A, with

o A C El.

Proof. By independence of the Lo, 0 € 8y is meant, as
usual, that if o,, i=1,2 are elements of O such that bg(wy) =
Bg(wy) for all @ e 8,; then hgfmi] = b (w,).

Let us first show that the decomposition, if it exists, is
necessarily unique. For the purpose, if u € i let ' be the
element of [ such that ' (8) = 0 for all @ ¢ 8, and
w (0) = w(8) for all @ € EE'

If h = h, + h, 1is a decomposition satisfying the required
conditions, then hlfmj =0 for w e C(8) and hE[m} = hE{m'}.

Therefore hﬂ{m} is simply equal to the value h(w').
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To prove the existence of the decomposition it is enough to

consider elements h ¢ H which are in Hﬁ. Then h has the form

h = sup = £
3 oea 1,970

for some finite set A, some finite set of values j=1,2,---,k

and for numbers ¢

5,0 = 0. Partition A in the form A.-Al U AE

with Ai = AN 8,
Define hj,i by the formula hj,i = EE‘EA_L ':j,EEE'{m] and let

h, be defined by

hE{m} = 51ij hLE{m]I.

Then h(w) = hE{m} for all o € G{Elj. Also, for arbitrary uw,

one can write

h(w) = E?P[hj,lmj + hj,E{mH

< m;p{hj'l{m]] + Btij[hLE{m}l-

1 is certainly

bounded above by a sum Eﬂﬁcaja; g e Al} with cg = Ej Ej,E"

Thus h,(w) = h(w) - h,(e) = Eupjihj,l{m}]’ and h

On the other hand, since all the coefficients c used

j,@
here are nonnegative, one certainly can write h(w) > ;E{mj for
all w. This gives h; > O and the result follows.
Note. The fact that we use only positive linear functionals
in the definition of H, is used here. One should note however
that the space H itself is still a vector lattice for the
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pointwise operations. Indeed, if h € H is written h=h, -h,

+ = -
with h; € H) then h; Vh,eH, and h¥=h Vo0 = (h Vh,) -h,

i 0
belongs to H.
Going back to the partition € = 8y U BE’ consider a conical
measure u on Q. Following Choquet [4] (Vol. II, page 194) we
shall split _ into two parts My i=1l,2 with bo "carried” by

the cone C(®© and p, situated "outside" of that conme.

1)
Lemma 4. Let . be a conical measure on 3. Then pu can be
== — S —

written (in a unique way) as a sum p = by + Ky of two disjoint

conical measures Wy, i=1,2 such that . _(h) = 0 for every heH

which vanishes on c(e,).

Proof. One defines ul{hj for heH, h>=0 by the formila

up(h) = suplu(g); 0 < g < h, g(u) =0 for weC(9))).
B

The remainder of the proof consists in verifying that Hy and by
have the required properties. This follows from the lattice
structure of H.

As explained at the beginning of this section we can assume
that & is a segment 6 = {a; @ < k] of the ordinals. Then, for

an ordinal B <« k we can define cones Eﬁ and Cé as follows:

CE = {w; 2g(w) = 0 for all 6 < g},

Cg = (w; fg(w) = 0 for all & < B).

If p is a conical measure on 7, the preceding Lemma 4

1

allows us to split | into two disjoint parts, say uﬁ and Hgs

with Mg gituated out of GE and u; carried by GB.
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Lemma 5. Assume that B is a limit ordinal. Then the

component g of u situated out of q is the supremum

=
g = suplu,; a < Bl

Proof. The inequality a < 7y implies Cu D ET and therefore
Hy = Mo Thus it is clear that ¢ = Eup[uu; a = B] satisfies the
inequality 0 < ¢ < g

Take an @ < B and a 6 <a. Then u_(f,) 1s equal to u{EEL
since g vanishes on c,. It follows that, for all & < B the
value of the resultant ¢(£,) is precisely equal to u(2Z;). Now
consider ¢ = ”ﬂ = . This is a conical measure whose resultant

w{EEj vanishes for & < f. However, according to Lemma 3 if an

element h € H, h > 0 vanishes on C_, then h:cEE{E.H; 6 € A}

=

for some real ¢ and some finite set A contained in the set

(w; a X p}]. It follows that ¥ (h) = 0. The desired result is then

a consequence of the definition of Mg
To prove the next lemma, we shall need the fact that a conical

measure p on (3 1is always o-smooth. Specifically, if

Ehn}’ n=l,2 +++ 1is a sequence of elements of H which decreases

pointwise to zero on {, then H{hn} decreases to zero. This is

proved in Choquet [4] (Vol. III, page 19) and results from the fact

that the sequence hn depends only on a countable set of coordi-

nates J Thus, one can reduce the problem to the case where 6

g
is countable. In thid case p.* is localizable [4] (Vol. II, page

207) by a Radon measure.
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Prggnsitinn l., Let p be a conical measure on O and let

B be a particular ordinal £ € 8. Assume that

(1) p is equal to its component carried by

EB = (w5 fg(w) =0, & < p}, and

(1i) the component of . carried by i.".‘.;!- [w; ‘EE}E“’} =0; & < B}

vanishes.

Then there is a finite c-additive measure m carried by the set

Kg = (w: 25(w) =0 for & < g and bg(w) = 1} such that
p({h) = fh(w)m({dw) for all h € H.

Note. The set = [0, w}E carries its ordinary product

o-field, say &. The set EE defined above is not an element of
@@. The measure m will be defined on the o-field trace of &

on K or equivalently, on the o-field defined on @ by & and

ﬁ.i
the set KE itself, with the added requirement that the complement
of Kﬂ has measure zero.

Proof. Since p 18 carried by C_, two elements hi’ i=1,2

P

of H which agree on C_ vyield the same value p(hl} = p(hE}.

B
Thus it is sufficient to consider . on the vector lattice HE

generated by finite sums z{cﬁge, 8 € A} with g >0 and A

contained in the subset (&; 6 > gl of 8. This space HE contains

a subspace, say FB which consists of those h ¢ Hﬁ such that

Ea{m) = 0 implies h(w) = 0. In other words, the elements of FB

are the elements of H which vanish on EI.

B B
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Any £ ¢ F, is determined by its restriction f' to K

B
according to the relation

p

f[m} L] Eﬁ{m}fr -E_;?;T

The space Fﬁ of restrictions of elements of FB to Kﬁ is a

vector lattice which contains the constant function ﬂé(m] = 1,

Consider a sequence ’[hn}j hn € ‘i"'3 which decreases pointwise

to zero on K_. Then hn decreases to zero pointwise on the entire

B
set 0.

1
Define a linear functional m on Fﬁ by the prescription

m(£') = p(f). According to the above, this is a well-defined,
positive o-smooth functional. Thus it can be written in the form

m(f') = [f(u)m(dw) for some c-additive measure m on KE' The

measure m is well defined on the o-field of KE generated by

the elements of Fé. It is easily seen that the o-field in

question is simply the trace on KE of the product o-field .

Now consider an arbitrary element h of H,. If h(w) = 0

for w € Kg, then h{w) > 0 for all w € 0. Indced h(w) > O

for all w which are multiples u = 8., S > o, wy € KE of

elements of Kﬁ’ that is, for all w ¢ 00 such that Eﬂ{m} > 0.

The positivity of h on 1 1itself follows then by continuity.

For the same reason, h is well determined by its values on KE.

Since we have assumed that p has no component carried by C

ﬂ!

for every h =0, he Hﬁ’ one can write



u(h) = sup{u(f); 0 < £ < h; fe FE}'
f

In this expression the inequalities 0 =< f < h are supposed to
hold on the entire set [, but we have just seen that they do so
hold already if they are satisfied on K_ itself. Since each

B
h € H, involves only a finite number of coordinates, the supremum

g

used can be made coutable in each case. It follows that for every

h Hﬁ the value p(h) is also equal to the Daniell integral

p(h) = [h(w)m(dw).

This completes the proof of the proposition.

We are now in a position to complete the proof of the bijective
correspondence between the set of conical measures and coherent
families of experiment types.

For this purpose, let & denote the o-field generated on 0

by the product o-field # and the sets K_,£ B £ 8,

ﬂ?
Theorem 1. Let ¢ be a conical measure on . Assume that

¢ has resultant m{ja} identically equal to unity. Then ¢ is

induced by an experiment & = [PE; @ € 8] formed by probability

measures on the o-field p&.

Proof. For each ordinal £ € 8 decompose ¢ in a sum of
disjoint terms =
k| P = 9 + wﬁ,l + ¢E,9 where % is the component

8 8,2 is the component of ¢ in E;* Then

mﬁ 1 which has no component out of EE or in Eé is a candidate
k]

for application of Proposition 1. It can be represented through

of 9 out of C. and g
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a measure m, on Ke. = (w; ,EE{U:.} =1, f4{w) = 0 for all & < B}.

by an integral Vg lfh} = jh{m]mﬁfdm}.
Writing ﬂﬂrmﬂ for the measure which has density Ly with

respect to ms, consider the sum

QB,B = ufﬂ Eﬂlmu-

We claim that for every ordinal g, the component g is induced

by the family {QEI 83 8 € 8], To show this consider first the case
2

where £ is finite, pf > 1 and let S be the sum S = Euxﬂ m, .

On the o-field #2 this is a sum of disjoint terms. On a set K.,

a = B one may write

dqﬂiﬁ = d'qa‘ﬁ 5 ‘E
ds dm e "’
s )
If he H has the form h = Hupj Zq ﬂleEB its restriction to

U(R,; @ < B] is equivalent, for S, to the expression
dQ

h =s8up £ c ———*E.
j 8 j,e ds
It follows that [hdS§ = %1*ﬂ /hdm  is precisely equal to

Froceeding inductively, let <y be a limit ordinal and assume

that, for all B < y, the component of ¢ 1is induced by the

sums QE,E .
Under this assumption, the resultant q:uﬁ{ﬁe} is equal to the

norm ||Q, ﬂll for all & and all B < y. It follows that
>

Iy I = sup, MQy gl = supg . 95(2).



17
According to Lemma 5, this last term is also equal to mT(EE}.
Let vT be the conical measure generated by the system
£QE 5 6 € 8). The construction implies that if B < y then

QE,E

Section 3, one has qh =< vT for all B < 7.

Applying Lemma 5 we obtain that

and Q -Q are disjoint. Thus, according to Lemma 1
8,y e,p

¢, = 8BuUp 9, < V_ »
Y p<y P Y

However, since mT and vT have the same resultant mT(EE]

v_(8 = || | the inequalit < ¥ implies that =y ,
y(fe) =112, JI, q y @,<v, imp %

v Y

Passage from an ordinal £ to the next ordinal v =8 +1

consists in adding to the term ¢ which is represented by

s 8,1

the measure mﬁ. Here again Qe,ﬁ and Ee‘mﬂ are disjoint and

the argument given for finite ordinals can be repeated without

difficulty.
Thus if mﬁ is induced by [QE,E] for B < y, then mT
is induced by {QE 1.

v
3
In particular ¢ 1itself is induced by the family of

probability measures (P.; 8 € 8] with

63

PE = X £E-m .
aed

This concludes the proof of the theorem.

Corollary. The set of experiment types E(®) 1is compact

for its weak topology.




Proof. Topologize the space of conical measures on by
the topology of pointwise convergence on H. For this topology,
the space of conical measures of resultant identically unity is
obviously compact. The result follows since the topology in
question is very exactly identical to the weak topology of E(8).

(One could also argue that coherent families ([8(A); AC 8,

A finite]l form a compact space and use the identification between
these end the space E{B}* This is essentially the same argument.)

Remark 1. It is clear from the proof of the theorem that the
terms EE-mB vanish for all p > 8. The term £E-m itself

B

represents the part of P_ which is disjoint from all the ﬁl,

B

a < . Each P, 1is, of course, the sum of an at most countable

e
set of terms of the type Ee-ﬁz.

Remark 2. The above theorem and its corollary refer to the
compactness of E(8) for the weak topology. If © is finite
this is the same thing as compactness for the experiment distance -
A. However, for infinite 6 the set E(8) 1is not compact for A.
We do not have, at present, very usable criteria for the strong
compactness of subsets of E(8).

Note that a subset S of E(8) is relatively compact for A
if and only if its restriction to countable subsets of © has the
same property. Thus the study of strong compactness could as well
be carried out assuming that € is countable.

The difference between the weak and strong (that is, A)

topology can be described on the Choquet measures as follows.
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Consider a particular finite sum I:'li:| =2 {:D,EEE with CD,E >0
and ECU,E = 1. Let H(h,) be the subset of H, (see Section 2)
formed by functions h € Hy such that h < ho. The weak
convergence is the topology of uniform convergence on each H(hﬂ}
so constructed. The strong topology is the topology of uniform
convergence on the union Hy of thé H{ho) ‘
Remark 3. The measures Py obtained in Theorem 1 are only

o-additive measures. One can easily pass to Radon measures as

follows., Let 0 be the compact space ( = [O, m]g and let K

B
be the set EE = (w; w €Q, w(B) =1, w() =0 for 6 < B)}. Each
Mg constructed above has a unique extension E,B which is a Radon

measure on K The introduction of possibly infinite values is

&I
largely inessential since for each @ the set (w; w(6) = =} has

measure zero. Thus one could define the sums EB = E::: B e'mﬂ as

Radon measures on Q.

Remark 4. The construction carried out in Remark 3 can also
be modified to yield a version of the experiment ¢=(Py; € ¢ 8]
which is Z-finite. Explicitly if & is represented by measures

P, and a set T with o-field &, the system is called Z-finite

-]
if there is a partition [Aj; j € J}, Aj € @ of arbitrary

cardinality such that (i) when restricted to an Aj the family

P, 1is dominated, (ii) any bounded function f whose restriction

g
to each Aj is measurable is already &-measurable and [ fdp, =

2 jﬁjfdPE.
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Here this Z-finiteness can be obtained by taking the compacts

EE of Remark 3 and letting T be the topological direct sum of
the K_,. The space T so obtained is locally compact and the P

B 2}
are still Radon measures. One can take for o-field & the o-field
of the universally measurable sets.

This Z-finiteness is involved in the proof of various
representation theorems. One can always obtain it by passing to

the Kakutani representation space. However, the space T

constructed above may be more directly accessible.
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