Some Special Results of Measure Theory

By L. Le Cam!
U.C. Berkeley

1. Introduction

The purpose of the present report is to record in writing some results of
measure theory that are known to many people but do not seem to be in
print, or at least seem to be difficult to find in the printed literature.

The first result, originally proved by a consortium including R.M. Dudley,
J. Feldman, D. Fremlin, C.C. Moore and R. Solovay in 1970 says something
like this: Let X be compact with a Radon measure pu. Let f be a map
from X to a metric space Y such that for every open set S C Y the inverse
image, f~!(S) is Radon measurable. Then, if the cardinality of f(X) is not
outlandishly large, there is a subset Xy C X such that u(X\Xo) = 0 and
f(Xo) is separable. Precise definition of what outlandishly large means will
be given below.

The theorem may not appear very useful. However, after seeing it, one
usually looks at empirical measures and processes in a different light. The
theorem could be stated briefly as follows: A measurable image of a Radon
measure in a complete metric space is Radon. Section 6 Theorem 7 gives
an extension of the result where maps are replaced by Markov kernels. Sec-
tion 8, Theorem 9, gives an extension to the case where the range space is
paracompact instead of metric.

The second part of the paper is an elaboration on certain classes of mea-
sures that are limits in a suitable sense of “molecular” ones, that is measures
carried by finite sets. It ties together several possible formulations of rela-
tions of measures and integrals of uniformly continuous functions. It also
puts Prohorov’s theorem: relative compactness is equivalent to tightness, in
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a very different light. Typically, the conditions it gives for relative compact-
ness are enormously weaker (in appearance at least) than tightness. It would
be good to see whether they can be used instead of tightness to prove relative
compactness.

Using some of the results of that second part, it is easy to see that several
properties of measures on paracompact spaces can be checked on their con-
tinuous images in metric spaces. This allows us to replace the term “metric”
by “paracompact” in the first part and gives many other results.

The results of the second and third part were established in 1968-69 by
L. Le Cam. There were also related results of Berezanskii, [1968] of Granirer
[1967] and several other authors. The results were further refined by Z.
Frolik. In the intervening years they may have became obsolete. We have not
checked. They are reproduced here because the proofs are reasonably simple
and because they might prod other investigations. For other applications of
similar results see the thesis of Errol Caby [1976].

2. Measurable images of Radon measures

Let X be a compact set. A positive Radon measure on X is a curious
object, constructed from positive linear functionals on the space C(X) of
continuous functions on X. One considers a positive linear functional, de-
noted (i, f) = [ fdu for f € C'(X). Then one extends the definition to lower
semicontinuous functions by [ fdu = sup{[~du; v < f, v € C(X)} and
finally to all functions f that for, each € > 0, can be squeezed between an
upper semicontinuous ¢g. and a lower semicontinuous h, so that ¢ < f < h
and | [ hedp — [ gedp| < €, with [ge = — [(—g.). This gives a functional
defined on a large space of functions on X. The sets called “measurable” for
1 are those whose indicator has an integral defined by that process.

Note that part of the definition of u is its domain. One might be able to
extend p even further, but such extensions would not be called “Radon”. An
illustration is given by a famous theorem of Kakutani and Oxtoby [1950]: Let
A be the (usual) Lebesgue measure on [0, 1]. It is a Radon measure. There
is an extension v of it that has the following properties: a) It is invariant by
all one to one pointwise transformations of [0, 1] that left A\ invariant and b)
its domain is such that the Hilbert space of v-square integrable functions it
generates has a basis of cardinality 2€.



Here c is the cardinality of the continuum. The Lebesgue measure itself
give a Hilbert space with a countable basis. The measure v extends A to a
much larger class of sets, though not to all subsets of [0, 1]. However it is not
a Radon measure.

A characteristic of positive Radon measures is that the measure of a set is
the supremum of the measures of the compact sets contained in it. That is,
if o is Radon and A is p-measurable then for each € > 0 there is a compact
K. C A with pu(A\K.) < e. Besides Radon measures, we shall need some
information on “measurable cardinals”. A measurable cardinal is a set S
that admits a nontrivial probability measure p defined for all subsets of S
and taking only two values, so that u(A) = [u(A)]%. By “nontrivial” is meant
that each point has measure zero.

To see how large a measurable cardinal must be, let us first look at the
first infinite cardinal N, cardinal of an infinite countable set. It has two
remarkable properties as follows:

A) If n < Ny then 2" < N,

B) A set S of cardinality Ny cannot be written as a union U,c; A; where
card A; < Ny and card J < N,.

A cardinal N is said to be (strongly) inaccessible if it is uncountable
and has property (A). It is weakly inaccessible if it is uncountable and has
property (B).

Now property (A) is very strong. A (strongly) inaccessible cardinal X >
Ny must also be larger than ¢ = 2% and 2€ and so forth for any infinite
cardinal n < N. That means that if one restricts oneself to accessible cardinals
one can carry out all the usual set operations such as unions, products, powers
(because 2 < m < n implies m™ = 2" for infinite n). One will never get any
inaccessible cardinal by such operations. In other words, one can ignore
inaccessible cardinals for all usual and statistical purposes.

As to measurability, it has been proved by Ulam and Tarski that a measur-
able cardinal must be inaccessible. Thus if one lives in the land or universe of
accessible cardinals one can say that measurable cardinals are “outlandishly
large”, giving a precise meaning to the sentence used in the Introduction.

Property (B) is not as strong as (A). Its implications may be weaker,
depending on what axioms one adds to the usual set theory ones. Here the



usual axioms will mean the axioms of Zermelo-Fraenkel with the axiom of
choice, refered to as ZFC.

In a system such as ZFC, or the Bernays-Godel system, one can list the
infinite cardinals in increasing order using the ordinals as indices for the list.
It would look like Ng < Ny < ... < N, < Nyiqg < ...

In such a list it is always true that card o < X,. However equality is
not ruled out. One can readily obtain ordinals such that card a = N,. For
instance define a sequence of pairs (w(n), Z,) as follows. Let Z; = 8y and
let w(1) be the first ordinal that has cardinality No. If (w(n), Z,) has been
constructed, let w(n + 1) be the first ordinal that has cardinality Z,, and let
Znt1 = Nynt1)- The limit a = sup,, w(n) is such that R, = sup,, Z, is card a.
However that N, is clearly the sum of a countable set of cardinals Z,, < N,.
(One could continue further, say up to the first uncountable ordinal (2 if each
time one gets a limit such as a and X, with card o = X, one replaces (o, X,)
by (a,N,41) in the list). Now if « is a limit ordinal and if N, is weakly
inaccessible then X, must equal the cofinality of o. The cofinality of « is the
smallest cardinality of a set of ordinals we < a such that sup, we = a.

Such a set cannot be obtained by the recursive process described above.
It is a fact of life that the existence of such alephs cannot be proved in ZFC.

Now what has that to do with measurability? Define a weakly measurable
cardinal as one of a set S that admits a probability measure u defined on all
its subsets giving mass zero to all points. This is the same as before except
that u(A), A C S is allowed to be any value in [0, 1] instead of being just zero
or one as in our previous definition. In a world where there are no strongly
inaccessible cardinals a weakly measurable cardinal would be one that admits
an atomless probability measure defined on all its subsets.

Now Ulam (1930) has proved that if X, is not weakly measurable R, is
not weakly measurable either. So Ny, No ... N, ... . Rg... are not weakly
measurable. In fact Ulam’s result imply that either a weakly measurable
set is already (two-valued) measurable, or there is some weakly measurable
cardinal n < ¢ = 2%. That second option is ruled out by the ordinary
continuum hypothesis ¢ = N;. Thus the first option is consistent with ZFC.
However one could also assume that on the contrary ¢ admits an atomless
probability measure defined for all its subsets. This will be responsible for
some of the precautions in the statements given below

Now here is the promised theorem.



Theorem 1 (Consortium) Let X be a compact space. Let p be a positive
Radon measure on X. Let f be a map from X to a metric space Y. Assume
that for every open set G C Y the inverse image f~(G) is u-measurable
(that is, in the domain of the Radon measure p).

Assume also that the cardinal of f(X) does not admit any nontrivial two
valued probability measure defined for all subsets. Then there is a subset X
of X such that (X\Xo) = 0 and such that f(Xy) is separable.

Remark. As we shall see in the proof, the result becomes much easier if one
assumes that the cardinal of f(X) is not even weakly measurable. Then the
Radon structure of p is not essential. We shall elaborate later on what this
means for possible definitions of “distributions” for such items as ordinary
empirical cumulatives. Because of this the preceding Theorem 1, although
peculiar, is not entirely uninformative.

Proof. One can without loss of generality assume f(X) =Y. Let {G;;j €
J} be a covering of Y by open sets G;. Assume that the index set J is well
ordered. For any j € J let U; = U;{Gi;i < j} and A; = G;\U;. This is an
intersection of an open with a closed set. Deleting the empty A;, one can
assume that each A; is nonempty. Let B;; j € J be other subsets of Y. Form
the set (J;(A4; N B;). This is called the result of operation (M) on the B;. It
is a theorem of D. Montgomery (see for instance Kuratowski-Topologie, vol I
pge 267) that if the B; are Borel subsets of Y of one of the transfinite classes
called F,, or G, so is U;(A; N B;). In particular any union U(4;;j € 5)
where S is an arbitrary subset of J is a Borel set. Now the measure p has an
image f(u) on Y, but by writing v(S) = u{f~*[U(A;; j € S)]} one obtains a
measure defined on all the subsets of the index set J. This is the image of
by the map g o f where g maps Y into J by g(y) = j if y € A,.

Let us look at the measure v on J. It may have atoms. That is there
may be sets S C J such that v(S) > 0 but such that for any subset S” of S
one has either v(S") = 0 or v(S") = v(S). Take such an atom Sy and delete
the rest of J. This gives a measure 1 carried by Sy taking only two values
and defined for all subsets of Sy. Since we have assumed that the cardinality
of f(X) =Y is not measurable, the same applies to J (since we have deleted
the empty A,’s), hence also to Sy. Thus the measure v carried by Sy must be
carried by a particular point sq € Sp. Doing this for each atom of v obtains
a countable set C' C J that carries the atomic part of v. Map back C into



X taking (g o f)71(C) = D, say. This is a u-measurable set.

Now replace p by uy defined by u1 (V') = u(V N D). This is still a Radon
measure on X and its image by g o f has no atoms. Let us first deal with
this particular p;. If it is not zero one can assume for simplicity that it is a
probability measure so that its image 14 by go f is also a probability measure.
Since v is atomless, one can divide J into two sets, say D; o and D;; so that
v (Dyy;) = % Dividing each set in equal parts one gets sets Dy ;; ¢ =0,1,2,3
such that v1(Dy;) = 2% Proceed on dividing each set into equal parts each
time. It is clear that this gives a map, say ¢, of J into the interval [0, 1].
For the Borel subsets of [0, 1] the image A; of 14 coincides with the Lebesgue
measure \. However )\, is defined on all the subsets of [0, 1].

Now consider the composition of map w = pogo f. It is a map from
X to [0,1). By construction it is “measurable” at least in the sense that the
inverse image of any Borel subset of [0, 1] is a p;-measurable set in X.

This implies in particular that w is also “measurable” in the sense of
Bourbaki’s definition of that term. Specifically, for every € > 0 there exists
a compact subset K, of X such that u;(X\K.) < € and such that when
restricted to K. the map w is continuous. Now consider an arbitrary subset
T C [0,1]. Tts inverse image w™*(T') is yi-measurable. Thus, as above, for
every € > 0 there is a compact K. C w™(T'), such that p[w™(T)\K,] < €
and such that when restricted to K, the map w is continuous. If so the image
w(K,) is also a compact. It is such that w(K.) C T and that \[T\w(K,)] <
€. This is true for every € > 0. Thus T" must be Lebesgue measurable. Since
there do exist non Lebesgue measurable sets, we have reached a contradiction.

This leads to the conclusion that the measure p; must in fact be equal
to zero. Equivalently one can say that for every arbitrary covering {G;;j €
J} and partition A; = G;\[U(Gi;i < j)] the image of u by f is carried
by a countable subfamily of the A;, or equivalently again, by a countable
subfamily of the GG;. In particular one can take a cover by open balls Bj,,
of center y;,, and radius % Here j is in a certain set .J,, which may be
highly infinite. However the set J,,,1 of these j’s such that u[f~'(Bjm)] > 0
is countable. Consider the subset of Y formed by the centers y; ,, for which
J € Jm1. Taking all these sets for all m one obtains a countable subset of Y.
Let W be the closure of that set. It has the property that for each integer
m the union W, of the open balls of radius 1/m centered at elements of W
contains all the measure for the image f(u). Thus W, intersection of the
W,, must also have full measure for f(u). The inverse image Xy = f~1(W)
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satisfies the conditions of the theorem. Hence the result. O

Remark 1. If instead of assuming that the cardinal of f(X) is non measur-
able (for two-valued measures) one had instead assumed that it cannot carry
arbitrary atomless probability measures, the proof could have been simpli-
fied. One could remove the part of it that disposed of the purely non atomic
p1 and avoid the reference to Lebesgue measure and p-measurability in the
Bourbaki sense.

Remark 2. One could also state the conclusion of the theorem by saying
that if Y is complete the image fu extends to a Radon measure.

Remark 3. The theorem could have been stated in a different form: If f
satisfies the conditions of Theorem 1, it is already p-measurable in the sense
of Bourbaki. That is, for each € > 0 there is a compact K, with u(X\K,) < €
and with f continuous when restricted to K..

Remark 4. Theorem 1 says something applicable to empirical measures or
cumulatives. To see this, let A be the Lebesgue measure on X = [0, 1]. Define
a map f from [0, 1] to the space B of bounded functions on [0, 1] as follows.
If z € [0,1] then f(z) is the function ¢t ~ F,(t) such that F,(t) =0 for t < x
and F,(t) =1 for t > x. Metrize the space B by it sup norm

lull = sup Ju(£)].

In this case the image f(X) is a discrete subset of B. If x; # x5 then
| f(z1) — f(z2)|| = 1. Any Lebesgue set of positive measure must have
the cardinality ¢ of the continuum. Since c, 2€, ... are all non measurable,
Theorem 1 implies that there must be closed subsets S of f(X) such that
f71(S) is not A-measurable. This is not too surprising. Every subset of
f(X) is closed. The map f from X to f(X) =Y C B is one to one and
the sets that map back to Lebesgue measurable sets are the images of these
Lebesgue sets. If instead of taking just one observation on [0, 1] for A one
would take many, say n, from some joint distribution p on [0, 1]" and form
the corresponding cumulative distribution in B the conclusion would be the
same. Assuming that p is not purely atomic, there will be closed subsets of
B whose inverse image is not pu-measurable. This statement assumes that p
on [0,1]™ is a Radon measure so that its measurable sets differ from Borel
sets by negligible sets.



Now take [0, 1]™ for our set X and take for f(z) the corresponding cumu-
lative as element of the space B of bounded functions on [0, 1]". In this way
the “distribution” of the cumulative may be thought of as the image f(u) of
pon B. It is defined on some o-field F of subsets of B (or of Y = f(X)).
By Theorem 1 this o-field cannot contain the Borel field of f(X). However
Theorem 1 does not say anything about the possibility of extending the defi-
nition of f(u) to the Borel field. This is a different question. Here the image
Y = f(X) is again a discrete space with the cardinality ¢ of the continuum.
all its subsets are closed.

The question of possible extension of f(u) then boils down to the follow-
ing: Does the continuum c¢ admit an atomless probability measure defined
for all subsets.

If there was such a measure say P it would not be hard to match it with
f (1) where this is defined. This is easier to see if n = 1 and p is Lebesgue on
[0, 1]. Using the partitioning by half already used in the proof of Theorem 1
to construct our map ¢, one can readily match the o-field F on which f(u)
is defined with a corresponding o-field of subsets of ¢, matching at the same
time the respective measures. This is clear for Lebesgue on [0, 1] and works
in the same manner for any non atomic p on [0,1]" and any non atomic P
on c.

Any extension of the non atomic f(u) to all subsets of Y = f(X) would
necessarily be non atomic. Indeed c is nonmeasurable. Thus atoms would
be points and these are already in the domain of f(u).

Thus the question becomes: Does there exist a purely non atomic prob-
ability measure P defined on all the subsets of c. In other words is ¢ weakly
measurable?

We have already pointed out that this depends on where c is located in
the string of alephs. The answer is negative if c is strictly inferior to the first
aleph, N, , such that oy has for cofinality N,, itself. In such a case “weak
measurability” and “measurability” would be equivalent (Ulam 1930).

Thus, for instance, if ¢ < Ng where 2 is the first uncountable ordinal,
then our f(u) on f(X) does not admit extensions to all the Borel subsets of
F(X).

However, the location of ¢ in the alephs depends on what axioms of set
theory one is willing to assume, while Theorem 1 does not depend on such
assumptions. (It depends, however on the existence of sets that are not
Lebesgue measurable. These sets do not exist in some systems where the
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axiom of choice is suitably restricted). We presume that most statisticians
would cheerfully accept the hypothesis that c is not weakly measurable, or
even the hypothesis ¢ < X,,, even though this puts a crimp in what one can
do with the distribution of empirical cumulatives.

Another implication of Theorem 1 can be described as follows. Take a
stochastic process Z : t ~ Z(t) defined on some non degenerate interval T’
of the line. Assume that the trajectories of the process are bounded, by, say,
0 and 1. The “distribution” of the process Z is then some measure m on
some o-field of subsets of [0, 1]7. According to Kakutani [1943] there exist a
Radon measure p on the compact set [0,1]7 (for the topology of pointwise
convergence) such that p and m have the same values on sets defined by
finitely or countably many Borel restrictions on the coordinates. Here the
cardinality of [0, 1]7 is clearly not a measurable one.

Thus, according to Theorem 1, if we map X = [0, 1] into a metric space
Y by a function f there will necessarily exist closed subsets of Y whose
inverse images are not p-measurable unless f has almost separable range.
(This means that there is a subset Xy of X with pu(X\Xo) = 0 and f(Xo)
separable, as in Theorem 1). Thus, for instance, take for Y the set [0, 1]
itself but with the supremum norm. Take for f the identity map. These
will be closed subsets of Y that are not py-measurable unless the measure
is concentrated on a separable subset of Y. Thus, although the Kakutani
extension is much richer than the usual product o-field of Kolmogorov, it
leaves out many sets. For examples of interesting sets that are not in the
domain of the Kakutani extension see R.M. Dudley [1972] and [1989].

3. Molecular measures and their limits

Often probability spaces come with more structure than the standard
triplet (2, F, P). For instance they may be metric or topological. It is
then pleasant if the properties of the measure and the metric or topology
are somewhat related. Here we study a class of measures that are nicely
related to the uniform structure of the space on which they live. We have
taken uniform spaces instead of topological spaces because they afford more
flexibility. A uniform space is given by a set X and a filter V of “vicinities”
of the diagonal A of X x X. This filter is assumed to be such that the
diagonal A is included in every V € V. Also, if a V € V. its symmetric



{(z,y) : (y,z) € V} is also in V. Finally for each V € V there isa W € V
such that W? C V. Here W? is defined as the set of pairs (z, z) for which
there is a y such that (z,y) € W and (y,z) € W.

A pseudo metric p on X defines a uniform structure, by taking for basis of
the vicinities the sets of the form {(z,y); p(x,y) < €} for € > 0. Conversely it
can be shown that every uniform structure can be generated in this manner
by some family {p,; @ € A} of pseudo metrics.

A function f from a uniform space (X7, V1) to another (Xs,Vs) is called
uniformly continuous if for every V5 € Vy there is a V4 € V; such that
(f(x), f(y)) € V2 for all (z,y) € V1.

A family {f.; o € A} of such functions is called uniformly equicontinuous
if for Vo € Vs, there is a Vi € V; such that (f,(z), fa(y)) € Va2 for all pairs
(x,y) € Vi and all @ € A. The real line IR is a uniform space if one takes for
base of the vicinities the sets {(z,y) : |z — y| < €} for € > 0.

A separated uniform space is one in which if z # y then thereisa VeV
such that (z,y) ¢ V. Separated uniform spaces admit uniformly continuous
real valued functions in large quantities. Let us denote by D the space of
all bounded real valued uniformly continuous functions on (X, V). It is a
Banach space with dual D* if one gives it the sup norm || f|| = sup, |f(z)].
We shall be interested in various subspaces of D* that are naturally linked
to the uniform structure of (X,V). To describe them, let us introduce some
particular subsets of D. A set B C D will be called a UEB set if it is bounded
and uniformly equicontinuous. “Bounded” means that there is some number
a € (0,00) such that |f(z)| <« for all x € X and all f € B.

A set S C X is called precompact if for every V' € V the set S can be
covered by a finite family of sets A;, j = 1,...,n that are small of order V,
that is such that (x,y) € V for every pair (z,y) of elements of A;.

The set D can be given the uniform structure ¢ of uniform convergence
on the precompact subsets of X. This is usually weaker than the structure
generated by the sup norm.

The subspaces of D* that will be of interest below are as follows

1) The space M, of linear functionals with finite support on X. Specifi-
cally a linear functional ¢ on D belongs to M if there is a finite set
{zj;5 =1,...,n} and coeflicients ¢; € IR such that (p,v) = >; ¢;v(z;)
for all v € D. Because a mass ¢; at x; looks like an atom and because
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@ is a finite sum of such atoms, the elements of M, have also been
called molecular measures. See Berezanskii (1968).

2) The space M, of linear functionals whose restrictions to the unit ball
By ={v:v € D,|v]| <1} are continuous for the precompact conver-
gence U.

3) The space M, closure of M, in D* for the structure of uniform con-
vergence on the UEB subsets of D.

This uniform structure will be called [V] to recall that it came from V.

4) The space M, of elements of D* whose restrictions to UEB subsets of
D are continuous for U.

Note that we stay in D*. Thus each p in any of these spaces has a finite

norm |[pf| = sup{[{x, ") v € D, |y| < 1}.
The spaces defined above clearly satisfy the relations

M;,Cc M, c M, C M, C D"
Another important property is given by the following result

Proposition 1 Fach one of the spaces listed above is a band in D*. The
spaces M, and M, always coincide. Balls of the type {u : ||u — ¢l < a}
and the positive cone M} of M., are complete for the structure [V]. If V is
metrizable, then M,, is also equal to M,,.

This will be proved below in several steps.

One of the reasons for the importance of Proposition 1 is the completeness
statement. It will allow us to use the compactness criteria of Grothendieck
[1952]. See Section 9. The identity M, = M, when (X, V) is metrizable also
allows another characterization of M,,: Let (Y, V1) be another uniform space
whose uniform structure is metrizable. Let f be a uniformly continuous map
from (X,V) to (Y, Vq). If p € M, for (X,V) then its image f(p) by f is in
M, for (Y, V1). It turns out that if 4 € D* maps this way into M, for every
metrizable (Y,V;) and every uniformly continuous map f then u € M,.
Now an element of M,, on (Y, V;) is just something that extends to a Radon
measure on the completion of (Y;V;). This will also allow us to extend the
result of Theorem 1 Section 2 to images of Radon measures into uniform
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spaces: Suppose that K is compact and that p is a Radon measure on K.
Let f be a map from K to a uniform space (X,)). Assume that for every
v € D the function o f is u-integrable (in the Radon sense). Then, in a
world that does not possess any measurable cardinals, the image of p is in
M,,.

Note that we have not mentioned countable additivity of the measures.
A simple example will show why. Let X; be the interval [0, 1] of the line with
its standard uniformity. Let X C X; be the set of rational numbers, with its
standard uniformity ) inherited from X;. The set D of uniformly continuous
functions on (X, V) is the set of restrictions to X of continuous functions on
X;. Every positive linear functional on the set C'(X7) of continuous functions
on X; can also be identified as a positive linear functional on D. Since in
this example X is precompact, our space M, coincides with the set of linear
functionals that can be obtained that way. However if our arbitrary uniform
space (X, V) is complete the elements of M, are o-smooth on D in the sense
that if up € M, and if u, € D decreases pointwise to zero on X, then
(i, upn) — 0. This will be a consequence of the results proved below.

Note however that M, does depend on the uniform structure V on X,
not only of the topology it generates. There are usually many uniform struc-
tures yielding the same topology. Two of them are particularly interesting.
Assuming (X, V) separated, for simplicity, one can define on X the smallest
structure Y that make the elements of D uniformly continuous. Then the
completion X of X for V is a compact set. The set D becomes the set of
restrictions to X of the continuous functions C'(X) on X. The corresponding
M, (X, V) can be canonically identified to the Radon measures on X.

Another interesting structure is V, the “universal structure” attached to
(X,V). It is the one defined by all the pseudo-metrics p defined on X and
such that p(x, %) is (jointly) continuous. The corresponding set D(X, V) is the
set C°(X) of bounded continuous functions on (X,V). The corresponding
M, (X, V) is typically much smaller than M, (X,V) and therefore smaller
than M, (X,V).

If X is separated and complete for V, its V precompact sets have compact
closure. Hence the structure U becomes the structure of uniform convergence
on compacts. Since compactness is a topological property a set that is com-
pact for V is also compact for V. By the Stone Weierstrass theorem D(X,))
is dense for U in the set C*(X) of bounded continuous functions on X. The
elements of M, (X, V) are also in M,(X, V). They extend to Radon measures
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on X. However the conclusion does not extend to M, (X, V).

Before leaving these generalities and studying more closely the structure
of M, let us note the following. Start with an (X,)) and define the corre-
sponding M, with its uniformly [V] of uniform convergence on the UEB sets
of D. The set X itself can be identified to a subset X’ of M, by associating
to each x the Dirac measure 9., probability measure concentrated at x. The
structure induced by [V] on X' is the initial structure V since V can be de-
fined by the family of pseudo-metric pg(z,y) = sup, {|v(z) —v(y)| : v € B}
as B ranges through UEB sets. Indeed if V' € V is such that v € B implies
[v(z)—~(y)| < efor (z,y) € V then pg(x,y) < eon V. Conversely if p is one
of the pseudo-metrics used to define V and p < 1, take the set B of functions
v € D such that |y(x) — v(y)| < p(z,y) and |y| < 1. Then B is UEB and
p(x,y) = sup{|v(x) —y(y)|: v € B}. (Take 7.(x) = p(z,2); 2 € X).

This shows that the notation V and [V] will not lead to confusion.

4. The structure of M,.

In this section we consider a fixed separated uniform space (X, V) with its
space D of bounded uniformly continuous functions and the attached spaces
of linear functionals My, C M, C M, C M.,.

Consider first the UEB subsets of D. If B; and By are two such sets, so
is their union B; and By. The convex hull of a UEB set B is also UEB, so is
the convex symmetrized hull

{(v:v=>¢v D lgl <1, vie B}

In addition the pointwise closure of a UEB set is UEB. A pointwise closed
UEB is compact for pointwise convergence and on it the topology of point-
wise convergence coincides with the topology induced by the structure U of
uniform convergence on precompact sets. We shall also need the following
simple observation

Lemma 1 Let S be a UEB set that is compact for pointwise convergence on
X. Then S is also compact for the weak topology W (D, M.,,).

Proof. Take a compact (Hausdorff) space B and let C(B) be the space of
continuous real functions on B. Then B is also compact for the weakest
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topology that makes all v € C'(B) continuous because that topology is Haus-
dorff and certainly weaker than the initial one on B and therefore identical
to it. On our compact UEB set the elements of M, are continuous for the
pointwise topology since it coincides with to U-topology. O

A consequence of this state of affairs is as follows.

Corollary 1 The dual of M, for [V] is D. That is every linear functional
defined on M, and [V] continuous is given by the evaluations (p,~) for
0 € M, and some v € D.

Proof. This is well-known fact in the duality theory for locally convex spaces.
Briefly if B is a convex symmetric compact UEB then its second polar B%
in the dual of (M., [V]) is the closure of B. However B being compact is
already closed.

It is clear from the definition that both M,, and M, are closed subsets of
D* for the structure V. Thus they are also closed for the stronger topology
defined by the norm of D*. The space M,, is also closed for the norm topology.
Note also the following property.

Lemma 2 Let M be any one of the spaces My, M,, M, or M. If ji is
an element of M then its positive part u* also belongs to M.

Proof. One can define p by the relation (u*,~) = sup,{{(y, u); 0 < u <,
uw € D} for any v € D that is in the positive cone DT of D. Let v € D be
such that 0 < v <1 and such that (u*,1) < (u,v) + €. Now (u,v) + € may
be written (u,v) — (u=,v) + €, giving (u™,1 — v) + (u~,v) < e. For any
element v of D one can write

(W) = (wh o) — (o) + (T uy) + (e (1 —oy))
= (w,v7) + (w07 + (', (1 =v)y)
< (uvy) + el

Define a new functional v x p by (vx p, ) = (u, v7y). The foregoing inequality
says that |[ox u—pu™|| < 2e. Now if Bis an UEB set, so is the set {vy;y € B}.
Thus v x p belongs to M,, (resp M,, M,) whenever u does. It follows that
T, limit of the v x u for the norm topology, is also in the same space. The
case of M is clear, hence the result. O

14



Lemma 3 The spaces M,,, M, and M, are bands in D*.

Proof. Since all these spaces are closed in D* for its norm topology and since
Lemma 2 applies to them, it is sufficient to show that if 0 <v < p € M,
then v € M, and similarly for M,, and M,,.

In all cases, if 0 < v < p and if € > 0, there is some v € D such
that [[¥ —~ x u|| < e. This can be shown directly, see F. Riesz (1940)
and Bochner and Phillips (1941) or L. Dubins (1969). Another procedure
would be to complete X for the smallest uniform structure V that makes
the elements of D uniformly continuous. On the completion v and p become
Radon measures such that v < u. Therefore there is a measurable f such
that 0 < f <1 and v = f x p. Then, for every ¢ > 0 thee is a v € D such
that its extension to the completion satisfies [ |y — f|du < €.

Thus since v can be approximated as closely as one wishes in the norm
by v x p one concludes as in Lemma 2 that if 4 € M,, and 0 < v < p then
v € M,. Similarly for M, or M,. Hence the result. O

Theorem 2 The positive cone M, of M, is the [V] closure in D* of the
positive cone MF of M. The space M, and M, are the same. The balls
{w; ||l < b} of M., are complete for [V] and so is M.

Proof. Let C' = M be the positive cone of M, and let C be its closure for
[V] in M,,. Let u be a positive element of /\/l;L Suppose that u # C. Then
there is a [V] continuous linear functional v and numbers a < a + € such that

() =a<a+e<{(p,7)

for all p € C.

According to the corollary of Lemma 1, this linear functional v is in fact
an element of D. The inequality a + € < (p,7) for all ¢ € C implies that
v > 0, fairly obviously. Thus we have a + € < inf, {(p,7); ¢ € C'} =0. This
implies (u,v) = a < 0. This contradict the positivity of u and ~.

Thus M, D /\_/l;L hence also M, = /\_/l;L — M,. Since M, C M,, it
follows that M, = M, as claimed.

For the completeness statement let S be the ball S = {pu: [|u]| < b,u €
M,}. If p € S then pt and g~ are also in S. By the first part of the
argument p* is a [V] limit of elements ¢ € M such that ||| < ut. A similar
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statement applies to p~. Hence S is the [V] closure of the ball {¢ : ||¢]| < b;
¢ € M.} in D*. Now the corresponding ball of D* is w(D* D) compact,
hence w(D*, D) complete, hence also [V] complete. Thus S being closed in
that ball is also [V] complete. The argument for the completeness of M is
the same. O

Actually one can prove a better completeness result.

Theorem 3 The space M, is complete for the structure of uniform conver-
gence on the UEB subsets of D.

Proof. Note that we have worked from the start with subsets of D*, the space
of bounded linear functionals on D. However according to an observation of
E. Caby [1973] a linear functional whose restriction to UEB’s is continuous
for precompact convergence (or uniform convergence) is already bounded.
Indeed any sequence {7,}, 7, € D such that ||v,| — 0 is UEB.

Thus the set M, is exactly the space of (arbitrary) linear functionals
whose restriction to UEB sets are continuous for ¢4. Such a space is complete
for [V] according to a theorem of Grothendieck. (See Bourbaki, Espaces
vectoriels topologiques Chp IV, section 3, exercise #3) O

Note. The completeness statement in Theorem 3 may seem inconsequen-
tial. Nevertheless it will allow us to use the compactness criteria given by
Grothendieck (1952). See Section 9.

Another property of M, can be stated as follows.

Proposition 2 Let p be a positive element of D*. The condition u € M,
is equivalent to the statement that every filter on (D*)* that converges for
w(D*, D) already converges for [V]. On M the weak topology w(M,, D)
and the topology induced by [V] are the same.

Proof. Let 1 € D* be positive. It is the w(D*, D) limit of some filter F
on MF. If F converges also for [V] then u € M,, by definition of M,. To
prove the converse let S be a UEB subset of D. Let p(z,y) = sup{|y(z) —
Y(y)|: v € S} and let S, be the set of functions v such that |y| < m and
|v(z) —v(y)| < mp(x,y). Note that S C Sy and that each S, is also UEB.

Let p be an element of M such that ||u|| = 1. Then for a given € > 0
and a given integer m there is some v € M such that ||v|| = 1 and such
that [{u,7) — (v,7)| < g for every v € S,,. By definition of M, this v has
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a finite support, say F. Let G be the set G = {z : p(z, F) > %} Define
a function f by f(z) = p(z,G) [p(z, F) + p(z,G)]~'. This f is such that
0 < f < 1. It is unity on F and zero on G. Also p(z, F) + p(z,G) > = and
a simple computation shows that f € S,,. Since by construction f(z) =1
for x € F one has (v, f) = 1, hence (u, f) > 1—¢€/8.

Now take a filter F on [D*]" and assume that F converges to p for
w(D*, D). There is then a set A € F such that |(¢, f) — (i, )| < ¢/8 for all
p € A. Thus (p, f) > 1 —¢€/4 for all p € A.

Returning to the finite set F' and the set S; one can find a finite family
{vj : 7 =1,...,n} of functions v; € S; such that inf;sup,{|v(x) — v;(2z)|:
x € F'} < e/4 for every v € S;. Now by definition of S; and p, the inequality
sup,{|7(z) —v;(z)|; x € F} < ¢/4 implies sup,{|y(z) — v;(x)|: z € G} <
¢/4+ 2. From this it follows that for each € Si one has inf; || fy — fv;]| <
5+ % By assumption lim (g, f7;) = (i, f7;) for each j. This implies

. € 2
lim sup sup [{, fv) — (i, f7)] < 1t
f YEST m
and finally
. 2
limsup sup |(¢,7) — (1, 7)[ < e+ —.
f YEST m

Since € and m are arbitrary this implies

lim F sSup ’(gp"‘y> o <IU/7 ’7>’ =0,

YEST
hence the result. O

The construction of a pseudo metric p from a UEB set and of functions
such as f above will occur again in Section 5 below.

5. Functionals defined on a sublattice.

The main result of the present section is Theorem 1 stated below after
a few preparatory lemmas. What it says in effect is that, if the structure
V of the set (X,V) is metrizable, a bounded linear functional continuous
for the structure U of precompact convergence on UEB sets of D is already
U-continuous on the ball of D.
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To prove it we start by examining properties of certain lattices of nu-
merical functions on X. Here the algebraic and lattice operations refer to
operations carried out pointwise on the functions. The basic object will be a
set S of numerical functions defined on a set X and subject to the following
assumptions

(A1) The constant functions v = a belong to S for every a € [0,1] and v € S
implies 0 <~ < 1.

(A2) The set S is a lattice for the operations v; A y2 and 1 V 72 carried out
pointwise.

(A3) The set S is convex.
(A4) If a isanumber a € [—1,+1] and v € S thena+~v € Sif 0 <a+vy <1

Similarlya —y € Sif0<a—~v < 1.

(It should be noted that the validity of Theorem 4 does not depend on
assumption (A4). It has been included to simplify life and to produce the
result called Lemma 5 below).

To such a lattice S we shall attach on X a pseudo metric pg or simply p
by the prescription.

p(r,y) = Sgp{lv(x) —vW)l; v €St

The norm ||y|| of a function will be the sup norm ||| = sup, |y(z)|.

Lemma 4 Let S satisfy conditions (A1) to (A4) and let p be the pseudo
metric S defined by S. Let A and B be two subsets of X such that for some
m>1

1
inf{p(x,y);z € A,y € B} > —.
Let S be the closure of S in the space F(X,IR) of numerical functions on X
for the topology of uniform convergence on the p-precompact subsets of X.

Then there is an element f € mS such that 0 < f < 1, f(x) = 0 for
xeAand fly) =1 fory € B.

Proof. Let {z1,x9,...,2,} be a finite subset of A and let y be a specified
element of B. Consider a pair (z;,y). By definition of p there is some v € S
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such that |y(z;) —v(y)] > . One can assume 0 < y(z;) < v(y) < 1. If the
reverse inequality held on would replace v by 1—7. Let ¢; = [y(y) —~(z;)] "
Define v; by ¢;{[(yV a) A b] — a} where a = y(x;) and b = y(y). This v, is
an element of mS. Now let u = min;v;. Then u € mS, 0 <u < 1. Also
u(z;) = 0 for each z; and u(y) = 1.

Fix the value of y and take the pointwise infimum of all such functions
for all finite subsets {x1,...,x,} of A. Let it be g. Then g vanishes on A
and g(y) = 1. Thus g also belongs to m.S since in m.S pointwise convergence
implies precompact convergence. This procedure can be repeated for all
y € B. The pointwise supremum of all functions obtained in this way still
belongs to mS. It gives the desired function f. O

The reader may have noticed the similarity of this proof with the usual
proof of the Stone - Weierstrass theorem. The similarity will become even
more apparent in our next result (which however will not be needed for our
main arguments!)

Lemma 5 Let S satisfy (A1) to (A4) and let p be the pseudo-metric it de-
fines. Then S consists exactly of those functions v defined on X that satisfy
0<~v<1and |y(x)—v(y)| < plx,y) for all pairs (x,y) of elements of X.

Proof. Taking equivalence classes, if necessary, one may assume that p is
a metric. One can also complete X for this metric getting a completion
X where each precompact subset of X has a compact closure in X. The
function v € S extend by continuity to all of X. They still satisfy the
Lipschitz condition |y(z) — v(y)| < p(z,y) for all pairs (z,y) of elements of
X.

Now the standard argument in the proof of the Stone - Weirstrass theorem
says that if K is a compact subset of X in order that a function f defined
on K be approximable uniformly on K by elements of S it is necessary
and sufficient that for every pair (x,y) of elements of K and every ¢ > 0
there exist some element v,, . of S such that |f(x) — Vay(z)] < € and
() = Yowelw)] < e

The argument showing this is the same as the argument carried above for
Lemma 1.

Now suppose that f satisfies | f(z) — f(y)| < p(z,y) for all pairs (x,y) of
elements of X and that 0 < p < 1. In order to prove that for each triplet
(z,y,€) with  and y in K C X one can obtain the two-point approximation
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described above, it is sufficient to show that it can be obtained for pairs
(z,y) of elements of X. This is true of course only if one extends f to X by
continuity.

Now if x and y belong to X there is some v, € S such that |y (x) —

7(y)| = p(x,y) — §. Since f satisfies the desired Lipschitz condition and

since S is convex, there is some 7, € S such that ||y (z) — 2 (y)| — | f(x) —

f()|| < 5. Suppose for instance f(r) = a < b = f(y), and replacing 7,

by 1 — 7 if necessary suppose 72(z) < 72(y). One can also suppose that
0 < [f(y) = f(2)] =[(y) —=v(x)] < . Now let @ = y2(x) < 72(y) = § and let
73 = (72 Va) A B —a. This is still in S. It is zero at x and equal to § — « at
y. Also 0 <3 < —a< f(y) — f(x). Let 4 = a+ 3. Then y(z) = f(x)
and 4(y) =a+ (f—a) < f(y) <a+ (f—a)+e Also0 < 4 <1 hence
v4 € S completing the proof of the result O

As already said above this lemma is not essential to the rest of our proof.
It was included to give a clearer picture of what is happening. By contrast
the following result will be very useful.

Lemma 6 Let S satisfy (A1) to (A4). Let f be a real valued function defined
on X and such that 0 < f < 1. Assume also that for a particular pair (k, m)
of integers the inequality p(z,y) < % implies |f(z) — f(y)] < % Then there
isagEmS'suchthatogggfgg—i-%.

Proof. Let B; = {z : f(z) < j/k} for j = 1,2,... k. For each j < k
consider the pair (Bj, Bf_,). If x € Bj and y € B, then p(z,y) > - since
fly) — f(x) > % Thus, by Lemma 1 there is a u; € S such that 0 <u; <1
and such that u;(z) = 0 for € B; and u;(y) = 1 fory € B, ;. Let up =0
and let g = %Zf;é uj. Weclaimthat 0 < g < f < g+ % To see this consider
a particular point x element of a set Bf N B, 4. For every 7 > ¢ 4 1 one has
uj(x) =0. For 0 < j <i—1 one has u;(z) = 1. Therefore if i < k —1

i;)um) _ i:oum — (i~ 1)+ w(a),

so that % <yg(x) < % < flx) < % This gives the desired result. O
Consider now a real valued function ¢ defined on the set S. We shall

call such a function linear if plau 4+ fv) = ap(u) + Be(v) for all systems

(e, B, u,v) such that v and v and cu + v are in S. It will be called positive
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if ue S, vesSand u < vimplies p(u) < p(v). Let L be the linear space
spanned by S. One can write L as H — H where H = U{mS;m > 1} is the
convex cone generated by S.

Lemma 7 Assume that S satisfies (A1) to (A4). Let ¢ be a linear functional
that is defined and positive on S. Then it possesses a unique positive linear
extension to the space D, of all bounded uniformly continuous functions for
the pseudo-metric p attached to S.

Proof. The functional ¢ extends to H = ([J{mS;m > 1} by writing ¢(f) =
mcp(%f) if f € S. Because of the linearity assumption if f € nS for n > m
then me (= f) = np(Lf) since +f = 2(Lf) are all in S. Thus the definition
is consistent. Now suppose that f € D, is such that 0 < f < 1. According
to Lemma 6 for any € > 0 thereis a g € H such that 0 < g < f < g+e¢. This
implics that @(f) = inf{e(h); h € H, h > f} and o(f) = sup{p(g); g € H,
g < f} are equal. One can easily check that the extension of ¢ to H satisfies
our “linearity” requirement. So does the extension ¢ to positive elements of
D,. The extension to L = H — H is immediate. Hence the result. O

Lemma 7 does not say anything about the continuity of the extension of
¢ to D,. This will be the subject of Theorem 4 below. Before we state the
theorem, let us note the following.

Lemma 8 Let S satisfy (A1) to (A4). Then a positive linear functional ¢
1s U-uniformly continuous on S if and only if it is U-continuous at zero. The
same applies to H, D} or D,.

Proof. The result would be an immediate consequence of known results in
functional analysis if we had assumed that S was symmetric. We have not
assumed that, but (A4) is strong enough to imply a sort of “symmetry”.
Take a positive ¢ and two elements f and g of S. Then £[f + (1 —g)] € S
and so does [L(f —g)+3]V(3) and [3(f —g)+3]A5. Subtracting 1/2 one sees
that 3(f —¢)* and 1(f — g)~ both belong to S. Therefore if 0 < < a on a
precompact set K implies (p,y) < €/2 for v € S, the inequality |f —g| < «/2
on K will imply |(¢, f — g)| < € for all pairs (f,g) of elements of S. The
same applies to the other spaces listed: H, D;L etc. Hence the statement O
Note also the following
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Lemma 9 Let ¢ be positive on D, in order that ¢ be U-continuous it is
sufficient that for each € > 0 there be a precompact set K such that v € D,
0<~v<1,79(z) =0 forx € K implies (p,7) < €.

Proof. Suppose f € D, is such that |f| < e on K. Then (f V€) — € vanishes
on K. However (¢, f) < (¢, (fVe)) = (o, (fVe) —e) +e(p,1). Hence the
conclusion. O

Theorem 4 Let S be a set that satisfies (A1) to (A4) on a set X. Let p
be the pseudo-metric attached to S and let D, be the corresponding set of
bounded uniformly continuous functions on X. On D,, or subsets of it, let
U be the structure of uniform convergence on the p-precompact subsets of X.

Every positive linear functional defined on S and U-continuous there ad-

mits a (unique) positive linear extension that is U-continuous on the balls of
D

-
Furthermore, let ® be a bounded set of positive linear functionals defined

on D,. The following conditions are all equivalent:
a) The restriction of ® to S is U-equicontinuous at zero.
b) The restriction of ® to each UEB subset of D, is U-equicontinuous

¢) The restriction of ® to a ball {y : v € D,;||v|| < 1} of D, is U-
equicontinuous.

Remark. For statements (b) and (c) one should really say U-uniformly
equicontinuity. However, by Lemma 8, this is equivalent to equicontinuity at
Zero.

Proof. A ¢ that is U-continuous at zero is already uniformly continuous on
S. Thus it has an extension by continuity to S. Lemma 7 says that this
extension has a unique positive linear extension to D,. Thus, below, we shall
make no notational difference between ¢ defined on S or on the whole of D,.

It is obvious that (¢) = (b) = (a) and that this implies the continuity
statement for an individual ¢. Thus, it will sufficient to show that (a) = (¢).
To do this we shall use the following notation. For v € D, the symbol ¢ - u
will denote the functional defined by (¢ - u, f) = (p,uf) for all uf in the
domain of .
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If (a) holds on S then it also hold on S for the continuous extensions of the
elements of ®. Thus we can assume ® defined on S and U-equicontinuous.

Now choose an € > 0 such that € € (0,1/2) and an integer m; such that
mye > 1. Then there is a precompact set Fy such that f € m1 S, 0< f <1
and f = 0 on Fy implies (¢, f) < § for all ¢ € ®. Continuing sequentially,
if (my, F1), (ma, F3) ... (my—1, F,_1) have been selected, take m,, > m,_; so
that m,,e” > 1 and select a precompact set F}, so that F,,_; C F;, and so that
f€8S,0<f<1, f=0on F, implies {p, f) < €*/2 for all ¢ € ®.

For any set F' let Fi(e) = {x : p(z,F) < €}. Let us consider the set,
By = Fy, By = {F>N[Bi(€)]} U By, ... and so forth so that

Bji1 = Bj U[B;(¢') N Fjl.

These are precompact sets and their union K = U; B} is also precompact since
every element of K is within (1 — €)7*¢’ of the precompact set B;. For each
integer j let u; be a function u; € ij' such that 0 < u; <1 and such that
u;j(z) = 1for z € B; but uj(x) =0 for x € [B;(€/)]°. Let v; = us AuaA. . . Au;.
Then v; € m;S. Consider the difference v; — v;11 = v; — (v; Aujy1). Since
uj1(x) = 1 for x € Bjyy the difference v; — vj4q vanishes on Bjiq. Also
v; < u; vanishes on [B;(e?)]°. Thus v; — v vanishes on Bjy1 U [B;(€)]°.
Since Bjy; contains B;(e?) N Fji1, this implies that v; — v;4; vanishes on
Fj+1. Both v; and v;11 belong to m;,1S. Thus arguing as in Lemma 8, one
sees that
(0,07 = vj) < €T

Now consider the decreasing sequence ¢ > @ -vy > @ -vy > ... > @ -
v; > ¢ - vj41 > .... It has a limit in norm, say 1, and this ¢ is such that
o=l <¥e< (1= )

Let f, 0 < f <1 be an element of H = U,,(mS) such that f(z) = 0 for
x € K. However f vanishes on B,, C K. Thus, for ¢ € ® one has (¢, f) < €".
Since n is arbitrary this implies (¢, f) = 0. This entails that (¢, f) = (¥, f)
+Ho—U)f <0+l —9| < (1—¢)"te. The desired result follows then from
Lemma 8 and 9 at least for the balls of D;L. However that is enough to imply
U-equicontinuity on the unit ball of D,. This completes the proof. O

Corollary 2 If the structure V of (X, V) is metrisable then the spaces M,
and M, of Section 3 are the same.
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Indeed, let p, p < 1 be a metric compatible with V. The set S of positive
functions f such that 0 < f <1 and |f(z) — f(y)| < p(x,y) satisfies all the
properties (Al) to (A4).

Corollary 3 Let (X,V) be a uniform space. The space M., is identical with
the space of bounded functionals p such that for every metric space Y and
every uniformly continuous map f of X into Y the image fu of u belongs to

M, of Y.

Proof. One can decompose pu into its positive and negative parts. Thus it
is enough to prove the result assuming that g > 0. By Theorem 4, fu that
belongs to M, of ¥ must also be in M, of Y. Conversely if S is a UEB
of X, it defines a pseudo metric p. By passage to a quotient one obtains a
metric space Y whose Lipschitz functions of coefficient unity reproduce on
X a set that contains S. Thus the condition is certainly sufficient.

6. Relations with Radon measures.

We have already mentioned Radon measures on a compact set in Section 2.
There are various extensions of the definition. For completely regular spaces
and bounded measures, see Le Cam [1957]. For more general topological
spaces and unbounded measures see Schwartz [1973]. The natural definition
in the context of the present paper is that of a tight linear functional. A
linear functional ¢ defined on a convex symmetric set of bounded numerical
functions I' on a topological space X is called tight on I" if for every ¢ > 0
there is a compact K C X and a 6 > 0 such that f € I', |f| < 1 and
|f(z)| < 0 for z € K implies |(p, f)| < e.

Note that this definition refers only to the set I' and the compact subsets
of X. It does not say anything about the domain on which ¢ might be
defined or extended.

Now take a set X with a separated uniform structure V and with set
of bounded uniformly continuous functions D. A positive linear functional
@ is tight on D for V if it is continuous at zero on {y : v € D, |y| < 1}
for the structure of uniform convergence on compact subsets of X. If (X, V)
is complete this is the same as continuity for the structure U of uniform
convergence on the precompact subsets of (X, V).
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If ¢ is positive tight on D for V it admits an extension by the Bourbaki
- MacShane procedure. One takes functions u that are pointwise supremum
of subsets S C D and write

(@, u) = sup{(p,7);7v € D,y <u}.

This gives an extension to lower semicontinuous functions that are bounded
from below. Similarly if v is upper semicontinuous bounded above, one writes
(p,v) = inf{{p,7); v € D, v > v}. Finally if f is such that for every
€ > 0 there is a lower semicontinuous u (bounded from below) and an upper
semicontinuous v (bounded from above) such that v < f < u and ¢(u) —
p(v) < € one lets (p, f) be the intersection of all the brackets [¢(v), p(u)]
obtained in the procedure just described. This extends ¢ to a positive linear
functional on a large space of numerical functions on X. We shall call it the
Radon extension (or the Bourbaki extension) of the original ¢. It is easily
seen that the bounded functions in the Bourbaki-Radon extension of a ¢ tight
on (D, V) can also be obtained as follows. One completes X for the smallest
uniform structure that makes the elements of D continuous and extend D
to the compact completion X where it becomes C(X). Then ¢ is tight on
(D, V) if and only if X is the Bourbaki-Radon domain of ¢ extended from
C(X) and if (X \X) = 0. Thus making a Radon extension from (X, D) or
from (X,C(X)) gives the same domain of extension as far as subsets of X
are concerned. This can be summarized by saying that ¢ on (X, D) admits
a Bourbaki-Radon extension if and only if it is tight on (X, D) for V.

There are other functionals that admit extension by the Bourbaki-MacShane
procedure. All the positive linear functionals that are 7-smooth on (X, D)
admit such extensions, but they are not necessarily such that p(X\X) = 0,
just such that each compact subset of X\ X has measure zero. (See Le Cam
1957).

The word “tight” as originally used in Le Cam [1957] was meant to apply
to a set of linear functionals. A set ® of bounded linear functionals on D
was called “tight” if it was uniformly bounded and uniformly continuous at
zero on the unit ball of D for the structure of uniform convergence on the
compacts of (X,V). Thus if X is complete for V a bounded set of linear
functionals is tight on D if and only if it is {/-equicontinuous on the unit ball
of D. The word tight was applied to single linear functionals by abuse of
language, regarding a single linear functional a the set that consists of that
one functional.
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Theorem 4 of Section 5 can also be stated in an equivalent form as follows.

Theorem 5 Let (X,V) be an arbitrary uniform space. Let ® be a bounded
set of positive linear functionals on D. Then ® is equicontinuous for U on
the unit ball of D if and only if for every uniformly continuous map f of
(X, V) into a complete metric space (Y, p) the image of ® by f is tight on
(Y;p,D,).

Another relation with Radon measures is an extension of Theorem 1,
Section 2 as follows.

Theorem 6 Let (X1,V1) be a separated uniform space with a positive fi-
nite Radon measure . Let (X2, V2) be another uniform space with space of
bounded uniformly continuous functions Dy. Let f be a map from X to Xs.
Assume that

1) for every v € Do the composed map v o f is in the Bourbaki-Radon
domain of .

2) The cardinal of the image f(X1) is not measurable (no two valued non-
trivial probability measure).

Then the image fu of u by f belongs to M., on (Xa, Vs).

Indeed all the uniformly continuous images of fu in metric spaces must
belong to M,, = M,, there, by Theorem 1, Section 2.

It would be nice to have an extension of such a theorem to maps between
linear functionals that are not necessarily obtained from a function f.

Suppose for instance that (X;, V;) are two uniform spaces with respective
sets of bounded uniformly continuous functions D;. Consider a map A from
Dy to bounded integrable functions for a Radon measure p on (X, Vy).
Suppose A is positive, such that A1 = 1 and such that if a sequence {v,},
Yo € Do decreases pointwise to zero on X, the images Ay, do the same on
Xl.

One might expect that such a map would be given by a Markov kernel
mapping X; into elements of M, of X5. However, even if one lives in a
universe where there are no measurable cardinals (or strongly inaccessible
ones) this might not be the case.

Suppose for instance that there is a non atomic probability measure 7
defined on all the subsets of a discrete set X5 with the cardinality of the
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continuum. Consider the map from X; to linear functional on D, that assigns
to each x € Xj the same m, = 7w on Dy. A v € D, will be transformed to the
constant [ ~ydr,, element of D;. However m = 7, is not in M, of X5, neither
is [ m.p(dx) for any non zero positive Radon measure p on Xj.

However it is possible to obtain an extension of Theorem 1, Section 2, to
certain Markov kernels. For instance one can prove the following,.

Theorem 7 Let (X,V) be a separated uniform space with a positive finite
Radon measure . Let (Y,Vs) be another uniform space and let x ~ m, be
a map from X to probability measures on Y that are elements of M., on
(Y, Vs).
Assume that for every v € D(Y,Vs) the image x ~ w7y = [(y)m(dy)
1s in the Radon-Bourbaki domain of \.
Assume also that the cardinal of Y does not admit nontrivial two valued
probability measures.
Then the image of A defined by v = [ w,A(dx) (that is (v,7y) = [[J v(y)m.(dy)| A (dx)
for v € D(Y,Vs)) is an element of M, on (Y,Vs).

Proof. According to Theorem 4, Section 5 it is enough to prove that for
any uniformly continuous map g of (Y, Vs) is a metric space the image of v
belongs to M,, (or M,).

The images of the individual 7, by ¢ are also in M, by assumption. Thus
we are reduced to prove the theorem for the case where Y is a metric space,
which can be assumed to be complete without loss of generality.

Now proceed as in Theorem 1, Section 2 using a well-ordered family of
open sets {Gj;j € J} inY, and the sets A; = G;\[U;<;G;]. We shall assume
{G;;j € J} covers Y. Each 7, yields a measure p, on J by first extending 7,
to its Radon extension on Y, say 7, and then letting 11, (S) = 7,[U;A;;7 €
S].

Let us first show that each p, is carried by a countable subset of J. Since
7, is carried by a countable union of compacts of Y it is enough to prove that
if a Radon 7 on Y is carried by a compact K then it is carried by a countable
subset of the family {A,;j € J}. Consider also the increasing family {U,}
with U, = U;{G;;j < a}. If a is a limit ordinal then 7(U;); j < « increases
to the limit 7(U,). Thus only a countable number of the Aj; j < a can be
such that m(A;) > 0. Now K is contained in some Ug where (3 is either a
limit ordinal or has the form § = a + n for some natural integer n and a
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finite or limit ordinal c. In either case only a countable family of the A; can
have positive measure.

Passing to J this means that each one of our u, has a countable support,
say S, in the set J considered as a discrete set. On the discrete J all subsets S
are such that i, (5) is in the Radon domain of A\. Consider m = [ u,A(dx) on
J. It may have atoms which must be points since J is not measurable. The
atoms form a countable set A. One can write each pu, as p, = ul, + v, where
(. is the part of p, carried by A and v, is carried by A°. Then m =m' +v
where m’ is on A and v = [, \(dx) is on A° and non atomic. It will be
sufficient to show that » = 0. To do this we shall prove that if not zero, then,
contrary to its definition, it must have some atomic part.

Removing a measurable subset of X if necessary one can assume v, (A°) >
0 for all z € X. Then take a first x; such that v,, is not zero. It has a finite
or countable support S; in J. Let B; be the set of x is such that v,(S1) > 0.
Proceeding along the ordinals, suppose that for each o < 3 one has selected
an x, with the support of v, equal to S, and the corresponding set B, of
points x such that v,(S,) > 0. Then let T'(8) = Uy (Sa; ¢ < ). Take a
further 25 such that v,,[T(3)] = 0 but such that v,, is not zero, if there is
such point. Continue as before.

The process will stop at some ordinal (not larger than J in cardinality).
Let Z be the segment of the ordinals so used. For any = € X let z(z) = «
if + € B,. This gives a map from z into Z. Indeed, suppose that z € X
does not belong to any B,. This means that v,(S,) = 0 for all a € Z.
Hence also v,(T,) = 0 for all @« € Z. This would allow the construction
to be carried out further than Z. Therefore U[[B,; o € Z] = X. Consider
any subset, say W of Z. We claim that the inverse image >~ (W) is in the
domain of \. Indeed consider any particular a € W the set B, is the set of
a’s such that v,(S,) > 0. Thus the union U[B,;a € W] is the set points x
such that v,(S,) > 0 for some o € W, that is the set of points x such that
Ve{UaSa; o € W1} > 0 since the v,’s have countable support.

Now we have a map X ~» Z by x ~» z(x) that satisfies all the conditions
of Theorem 1, Section 2 for Z considered as discrete. Therefore there exists
a subset Xy such that A(X\X() = 0 and such that z(Xj) is separable, hence
countable in the discrete Z.

Consider also sets B = U[B,;a € z(Xp)] = 271 [2(Xy)] D X and the set
T = U{Ss; a € 2(Xp)}. For each z € B, hence for each = € Xy, the measure
v, gives strictly positive mass to S,. Therefore v, (T") > 0 for all z € X,.
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Since [y vaA(dr) = [x, v2A(dz) we conclude that [ v, (T)A(dx) > 0 and that,
since T' is countable, [y v;A(dx) must give positive mass to some point of 7.
This is contrary to the assumption that it has no atoms. Hence the result.
The proof can now be completed exactly as in Theorem 1, Section 2, O

One should note that here the fact that the measure A of Theorem 7 is
a Radon measure has been used. Just as in Thoerm 1, Section 2, one could
dispense with this assumption and assume only countable additivity of A if
the continuum c does not admit a non atomic probability measure. This
is however a much stronger assumption than the non measurability of the
cardinal of Y. Under this very weak assumption, the theorem might still hold
for measures A that are not Radon measures. We do not know of necessary
and sufficient conditions on A.

7. Continuous partitions of unity.

In this section we shall assume that X is a completely regular topological
space and let C®(X) be the space of bounded continuous numerical functions
on X. To link this set-up with the previous one, with a uniform structure V
and space of bounded uniformly continuous functions D(X, V) one could use
any one of the structures V that makes all the elements of C®(X) uniformly
continuous and is compatible with the topology of X. For reasons that will
appear later we shall use the universal uniform structure V defined by all the
continuous pseudometrics on X. One concept that will play a particular role
is that of a continuous partition of unity. This is defined as follows

Definition. A continuous partition of unity (for X and C*(X)) is a family
{uq; o € A} of elements of C°(X) subject to the conditions 0 < u, < 1 and
Yata(z) =1 for all x € X. It is called locally finite if each v € X has a
neighborhood that intersects only a finite number of the supports of the u,.

Let {uq; o € A} be a partition of unity on X. Let B = B(A) be the space
of all bounded numerical functions on A. For each § = (o ~ f(«a)) in B let
T'6 be the function defined on X by

(T'8)(z) = _ Bla)ua(x).

Lemma 10 For any partition of unity the map 1" is a positive linear map
from B to C*(X). It transforms the unit ball {3 : 3 € B, ||| < 1} of B into
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an equicontinuous subset B, of C°(X). The transpose map T transforms the
space M., built on (X, X) into the space of bounded measures with countable
support in the discrete space A.

Proof. Let x be an element of X. For any € > 0 there is a finite set F' such
that Y cpta(r) > 1 —€/4. Let G = F¢ and let g(y) = > cq Ual(y). Since
g=1—>,crUa, it is continuous on X. Thus, there is a neighborhood V' of
x such that g(y) < €/2 for all € V. This implies

| > Bl@)ua(y)] < 1811 D ualy) < €/2,

aeG aeG
for all y € V. The sum over the finite set F' of the type Y er B(a)ualy),
|B]] < 1, are clearly equicontinuous. Hence the first statement.

Now, since we are using the universal structure V of X, a bounded
equicontinuous set B is also uniformly equicontinuous since sup{|y(z)—~v(v)|;
v € B} is a continuous pseudo-metric. Now note that for each fixed z the
map [~ >, B(a)u,)(x) gives a measure with countable support on A. If
p € My(X,V) then it is a limit uniformly on UEB sets of a bounded filter
{1} of measures with finite support.

Since [~ydu, — [~vdp converges to zero uniformly on the UEB set B,
their images 7'y, converge uniformly on the unit ball of B. However this is
equivalent to convergence in Li-norm. Hence Ty, limit of 7'y, has countable
support. Hence the result. O

The reader should note that this result applies to M, (X, V) for the uni-
versal structure V, not necessarily to weaker structures V on X. The struc-
ture ¥V may be remote with very few precompact sets and therefore a very
small M, space. Think for instance of the set @) of rational numbers in [0, 1].
It is complete for a certain uniform structure ¥V compatible with its topology.
Indeed any F, or intersection of F, in a complete space admits a uniform
structure for which it is complete. Hence @) is also complete for its universal
structure V. A set S C Q C [0,1] cannot be precompact if its closure in
[0, 1] contains any points not in Q. That is a } precompact set S C @ must
be in the complement of an open neighborhood of the irrationals in [0, 1].
Since each compact subset of @ is also V precompact, this is a necessary and
sufficient condition. However the elements of M, (Q,V) are precisely the
o-additive measures carried by ). This will follow from results given below
but can be seen as follows. Call a linear functional  on C*(Q) a o-smooth
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functional on Q if for every sequence {7,} of C*(Q) that decreases pointwise
to zero on ) one has (u,7,) — 0. Now let v, be such a sequence, with
v = 1. It forms an equicontinuous set. Indeed to show this one can repeat
the argument of Lemma 10: For a given z, there is a 7, such that v, (z) < €¢/4
hence 7v,(x) < €/2 in some neighborhood of z. The vy, 7, ..., 7n—1 form an
equicontinuous set. Thus for each € > 0 there is some neighborhood V' of
w such that y € V' implies |7, (y) — v (z)| < € for all ,. Any element p of
M, (Q,V) must be continuous on {y,;n = 0,1,2...} for the uniform conver-
gence on compacts. However by Dini’s theorem the ~,, tend to zero uniformly
on compacts. Thus (u,7,) — 0 as n — oco. In other words the elements of
M., (Q,V) can be written in the form (i,v) = 3 ¢,y(x,) for some sequence
Tn € Q.
An interesting corollary of Lemma 10 is as follows.

Lemma 11 Let p1 be an element of M, (X, V) and let v € C*(X). Then for
every continuous partition of unity {u.; o € A} the value of (i, ) is the sum

Sacallt; Yua) limit of the finite sums > ep{it, Yuo) along the filter of finite
subsets F' of A.

Proof. It is enough to prove this for 4 > 0 and v > 0. Define another
measure v by (v, f) = (u,vf) if f € C*(X). Construct the map T transpose
of the map 3 ~ 3, B(a)u, from B(A) to C*(X). Then let ¢ = Twv. Here
v € My, hence ¢ is carried by a countable subset of A. Thus for each € > 0
there is a finite set F' C A such that ¢(F°) < € or equivalently

S (vua) = Y (s yua) < e

acFe° acFe°

The result follows. O

To go further, recall that a linear functional y on C*(X) is 7-smooth if for
every decreasing directed family {f,} of elements of C®(X) that decreases to
zero pointwise on X the values (i f,) tend to zero. It is known (see Le Cam
1957) that 7-smooth functionals form a band. In particular p is 7-smooth if
and only if gt and p~ are 7-smooth.

Lemma 12 Assume that X is a paracompact space. A positive linear func-
tional ¢ is T-smooth on C°(X) if and only if it possesses the following prop-
erty:
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() For every € > 0 and every locally finite partition of unity {u.;a € A}
there is a finite set F' C A such that (¢, > gepe Ua) < €.

Proof. The property is clearly necessary since > ,cpe U, decreases to zero
along the filter of finite subsets ' C A.

Conversely let ¢ be a positive linear functional on C®(X). Assume
(p, 1) = ||¢|l = 1. Let A be a directed set and let {f.;a € A} be a family
such that f, € C*X), 0 < f, < 1 and such that, along A, f, decreases
pointwise to zero on X. Take an ¢ € (0,1) and let G, = {z : fo < €}.
This yields an open cover of X. Since X is paracompact there is a locally
finite refinement say {G’;7 € T'} of {G,} and a continuous partition of unity
{u.;7 € T} such that u, has its support contained in G.. It follows from
property (m) that there is a finite set F' C T such that (u, > cpeu,) < €
hence (i, fo > repe ur) < € for all @« € A. By construction each u,, 7 € F has
its support in G’. contained in some G (). Take then an ay € A larger than
all a(7), 7 € F. For this ag one has f,(z) < € for x € U{G.; T € F'} and for
all a > ag. Thus Y cp(i, faur) < € for all & > ap. This yields

(1 o) = D A, fattr) + {pty fo > ur) < 2e.

TeF Teke

Hence the result. O

Theorem 8 Let X be paracompact with universal uniform structure V. Let
M, = M, (X,V) be the M, space of bounded linear functionals on C*(X)
for the structure V. Let M, be the space of bounded linear functionals that
are T-smooth on C*(X). Then M, = M,.

Proof. The combination of Lemmas 10 and 12 shows that M, € M, . To
obtain the reverse implication use the corollary of Theorem 4, Section 5 and
map X into a metric space Y by a continuous (hence uniformly continuous)
map f. If u € M, on X then its image v = fu on Y is also 7-smooth on
Y. One can assume that Y is complete. Now on a complete metric space a
T-smooth v is already in M, because it has a support, say S, that must be
separable. O

This leads to the following characterisation of the space M, (X, V) for an
arbitrary completely regular space with universal uniform structure V.
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Proposition 3 Let X be an arbitrary completely reqular space and let V
be its universal uniform structure. Let ¢ be a bounded linear functional on
C*(X). The following conditions are all equivalent.

1) ¢ € My(X, X)

2) for every partition of unity {u, : o« € A}, every v € C*(X) such that
|7] < 1 and every € > 0, there is finite set ' C A such that if G = F°
then [(p,7 Xaca ta)| < e

3) Same as (2) but for locally finite partitions of unity.

4) If f is a continuous map of X into a paracompact space Y then the
image fo of o is T-smooth on C°(Y).

5) Same as (4) but with Y metric instead of paracompact

Proof. It follows from Lemma 10 and Theorem 8 that (1) implies all the
other conditions. Also, clearly, (2) = (3) = (4) since any locally finite
partition of unity {v,;a € A} on Y yields a corresponding locally finite
partition {v, 0 f;a € A} on X. Thus it will be sufficient to show that (5) =
(1). However this follows from Theorem 4, Section 5. O

8. A complement to Section 2.

Theorem 1 of Section 2 involves maps of Radon measures into metric
spaces. Theorem 6 of Section 6 involves Markov kernels and images of Radon
measures. We shall now show that a supplementary result can be obtained
for maps of Radon measures into paracompact spaces.

Theorem 9 Let X be a uniform space and let A be a positive finite Radon
measure on X. Let x ~ m, be a map defined on X to probability measures
on a paracompact space Y . Assume

1) the cardinal of Y is not two valued measurable

2) for each bounded continuous functiony on'Y the functions [ v(y)m.(dy)
1s in the domain of \.

33



8) each m, is T-smooth on (Y,C*(Y)).

Then there is a closed Lindeldf subset B C'Y such that [ 7,(B°)\(dx) =

Note. We have used 7, as a measure on subsets of Y. This is by usual abuse
of language. If 7 is 7-smooth on C®(Y’) then it possesses an extension by the
MacShane - Bourbaki procedure to lower semicontinuous functions that are
bounded from below and to upper semicontinuous functions bounded from
above. Note that this extension is such that if {G,; « € A} is an increasingly
directed family of open sets then w[U,G,] is the limit lim, 7(Gy).

Proof. According to Theorem 7, Section 6 the integral v = [m,\(dx) be-
longs to M, of Y for the universal structure V of Y. Hence it is in M,
of (Y,C*()) and extends as indicated. Now v has a support B C Y, the
smallest closed set such that v(B) = v(Y'). This is because of the continuity
relation just recalled for open sets. A union of open sets of measure zero for
v has measure zero for v.

The set B, closed subset of a paracompact space is also paracompact. Let
us show that it also has the Lindeldf property that every cover {G,;a € Ay}
of B by open sets has a countable subcover.

Indeed let {Gg} be such a cover of B and let {u,; o € A2} be a continuous
partition of unity such that each u, has its support contained in some Gg
and such that u, is not identically zero. Then ||v| = Y, (v, ua). However
that sum can have only a countable number of non zero terms. Since each
U, 1S non zero at some point of B it is strictly positive in some neighborhood
of that point. Thus (v, u,) is strictly positive and the partition {u,; o € A}
is a countable partition. Taking for each u, a G that contain the support
of u, gives the desired countable family.

9. Compactness criteria.

The best known compactness criteria for bounded measures on topological
spaces are those derived from Prohorov’s theorem: On a complete separable
metric space, a set of probability measures is vaguely relatively compact if
and only if it is tight.
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The aim of the present section is to give some other criteria that look
very much weaker than tightness and might conceivably be easier to verify.

We start with a uniform space (X,V) as in Section 3. The space of
bounded uniformly continuous numerical functions on (X, V) will be called
D as before and we shall describe criteria for relative compactness in the
space M, on (X, V).

Note first the following:

Lemma 13 Let S be a bounded subset of M,. It is relatively compact in
M, for the induced structure [V] if and only if its restriction to each UEB
subset of D is equicontinuous there.

Proof. It is sufficient to consider UEB sets B that are compact for the
structure U of uniform convergence on precompact sets of X.

The result is then an easy consequence of Ascoli’s theorem. O

Very often one wants criteria of compactness for the weak topology w(M.,, D)
instead of the stronger [V]. If one looks for subsets of M, then w(M,, D)
compactness and [V]-compactness mean the same thing since on M. the
weak topology coincides with the topology induced by [V]. See Proposition
2, Section 4. Thus, for the case of positive measures, the compactness re-
quirement for [V] is the same as a w(M,, D) compactness requirement. For
general bounded sets in M,, compactness for [V] appears to be stronger than
w(M,, D) compactness. Yet, the condition of Lemma 13, equicontinuity on
each UEB set is weaker than the usual “tightness” requirement of equiconti-
nuity for & on the unit ball of D.

It is a strange affair that for metrizable (X, V) and for sets in M equicon-
tinuity on a suitably rich sublattice UEB of D already implies equicontinuity
for U on the unit ball of D. See Theorem 4, Section 5.

Using a theorem of Grothendieck (1952) one can even get further criteria
that look even weaker than equicontinuity for ¢ on each UEB. Let us restate
Théoreme 7 of Grothendieck (1952) (page 183) and show that it applies here

Théoréme 7 (Grothendieck) Let £ and F be two separated (real) locally
convex topological linear spaces in duality. Let {K,} be a family of subsets
of € such that the closed convex symmetric hulls K, of each K, is w(&,F)
compact. Assume that the K, generates algebraically all of E.

Let A be a bounded subset of F. Assume that the closed convex hull of A
1s complete for the structure of uniform convergence on the K,.
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a) If the K, are w(&E,F) compact in order that A be w(F,E) relatively
compact in F it is necessary and sufficient that for each o the set of
continuous functions defined by A on K, be relatively compact in C(K,)
for pointwise convergence.

b) Whether or not the K, are closed, a necessary and sufficient condition
for the w(F,E) relative compactness of A in F is that for every se-
quence {yn}, yn € A and every sequence {xy} contained in some K,
the existence of the iterated limits

lilgnlim<xk,yn> and limli}gn(a:k,yn>

implies their equality.

Note. The word “bounded” used here means that for every neighborhood
V' of zero there is some finite number a such that A C aV. For the iterated
limits limy, lim,, (z, y,,) it is meant that for each k the limit ¢, = lim,, (zg, yy)
exists and then that limy /) exists. Similarly reversing the order of k and n.

Grothendieck’s result is obtainable as a result of a sequence of arguments
that start with the basic result that if X is countably compact and Y com-
pletely regular then in the space C'(X,Y") of continuous functions from X to
Y, with pointwise convergence, relative countable compactness and relative
compactness are equivalent and equivalent to a modified version of the iter-
ated limit condition: In the notation used here there is some point a such
that each neighborhood of a encounters an infinity of lines and an infinity of
columns of the matrix (xy, y,).

Now what does that have to say for our spaces D and M,? Let {K,}
be the family of all convex symmetric UEB subsets of D that are closed for
U-convergence. It does generate D algebraically. In fact D = U, K,,.

According to Theorem 2, Section 4 any ball {y; ||u|| < b} of M, is com-
plete for the uniform convergence on the K,. Thus we are definitely in a
situation where Théoréme 7 is applicable to bounded (in norm) subsets of
M,,.

What it gives here is the following

Theorem 10 Let D and M, be as usual on (X,V). Let S be a bounded (in
norm) subset of M,,. Then the following conditions are equivalent.

1) S is relatively compact for w(My, D) in M,,.
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2) For each V-compact UEB, K, of D the restrictions of S to K are
pointwise relatively compact in C(K).

3) For each sequence {v,} contained in a UEB and each sequence {ju}
contained in S the existence of the iterated limits

li}gnlim(luk,”yn> and limli}gn(,uk,”yn>
implies their equality.

The theorem is an immediate application of Théoreme 7, as explained
above. Note however the following facts. Lemma 13 requires the U-equicontinuity
of S on each UEB. Condition (2) of Theorem 10 just requires that, on a set
K that is a UEB, limit pointwise on K of elements of S be continuous on K.

The weakest requirement seems to be (3) of Theorem 10. It involves
only sequences {7, } contained in some UEB. There is a tremendous distance
between such a condition and the equicontinuity for &/ on the entire unit ball
{v|7 € D,||7]] £ 1} of D that was our conclusion for Theorem 4, Section
4. Note however that this was only for M on a metrisable (X, V). Still,
there should be possibilities to use the much weaker sounding criterion (3)
of Theorem 10.

Another facet of Theorem 10 is that w(M,, D) relative compactness is
equivalent to equicontinuity on each UEB. There are results of D. Preiss
[1973] that say that on the set of rationals @ of [0, 1] a set S can be relatively
compact in the set of positive Radon measures and still not equicontinuous
on the unit ball of C*(Q) for uniform convergence on compacts. At first
glance this may seem contrary to the conjonction of (1) of Theorem 10 above
and of Theorem 4 Section 4. However, this is not the case. If one gives () its
universal uniform structure V then D(Q,V) is C°(Q) and U is the structure
of uniform convergence on compact subsets of ). Thus a set S of positive
Radon measures on () (arising from a subset of M (Q,V)) that is relatively
compact for w[M,, C*(Q)] must be U-equicontinuous on each UEB subset of
C*(Q), that is, on every bounded equicontinuous subset of C*(Q). However
the universal structure V' of @ is not metrisable and Theorem 4, Section 4,
does not apply.

A theorem that may be applicable to such a case is the following

Theorem 11 Let X be paracompact and let D = C°(X) for any norm
bounded subset S C M, the following conditions are equivalent
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1) S is w(M,., D) countably relatively compact in M,
2) S is w(M;, D) relatively compact in M,

3) The sets ST = {ut;u € S} and S— = {u~";u € S} are relatively
compact in M.

4) Let{fa; € A} be a decreasingly directed family f, € D that decreases
to zero pointwise on X. Then

limsup| (1, f)] = 0.
@ ues

We shall not prove this here. It follows by a combination of the arguments
used earlier in this paper. See also Granirer [1967]. However the words
“countably relatively compact” used above should be clarified. What they
mean is this: If F'is a countable infinite subset of S, there is some p € M,
such that each neighborhood of p contains an infinite subset of F'.
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