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1. Introduction.

One of the simplest results in asymptotic theory of estimation is the

Hájek-Le Cam asymptotic minimax theorem. Besides being simple, it has

many applications. We review the theorem and give brief indications on some

applications.

The theorem is called Hájek-Le Cam because it was proved by Hájek

(1972) for the asymptotically normal (more precisely LAN) case. There

was a previous theorem by Le Cam (1953). Hájek’s result was substantially

extended in Le Cam (1979).

Section 2 below gives a summary of definitions and notation. Section

3 reviews the asymptotic minimax theorem. Section 4 indicates how the

theorem can be applied to problems recently studied by Donoho and Liu

(1990), by M. Low (1989) and by Golubev and Nussbaum (1990). For further
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applications of the asymptotic minimax theorem, see Millar (1983).

2. Definitions and notation.

We shall use the definitions of Le Cam (1986) with indication of conditions

under which these definitions reduce to the more usual ones.

An experiment E = {Pθ; θ ∈ Θ} will be given by a σ-field A carried by

a set X and a family {Pθ; θ ∈ Θ} of probability measures on A. The set Θ

is usually called the parameter space. The L-space L(E) of an experiment E
is the set of all finite signed measures defined on A and dominated by some

convergent sum
∑

θ cθPθ, cθ ≥ 0,
∑

θ cθ < ∞. Let E and F be two experi-

ments, with E = {Pθ; θ ∈ Θ} on a σ-field A and F = {Qθ; θ ∈ Θ} on some

other σ-field B. A transition T from L(E) to L(F) is a positive linear map

from L(E) to L(F) such that ‖Tµ‖ = ‖µ‖ if µ ≥ 0. Here ‖µ‖ is the L1-norm

‖µ‖ = supf{|
∫

fdµ|; |f | ≤ 1, f measurable}. The deficiency δ(E,F) is the

number δ(E,F) = infT supθ ‖Qθ − TPθ‖ where the inf is over all transitions.

The distance ∆(E,F) is max{δ(E,F), δ(F , E)}. Two experiments E and F
are equivalent if ∆(E,F) = 0.

The reader who would prefer working only with transitions given by

Markov kernels can satisfy himself or herself that all transitions from L(E) to

L(F) are given by Markov kernels if 1) The family {Pθ} is dominated and 2)

the Qθ are Borel measures on a Borel subset of a complete separable metric

space.

An estimation problem consists of an experiment E = {Pθ; θ ∈ Θ} to-

gether with a set Z and a loss function W defined on Θ × Z to (−∞, +∞]
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such that infz Wθ(z) > −∞. The set Z will also be assumed to carry a vec-

tor lattice Γ of bounded numerical functions, complete for the sup norm and

such that 1 ∈ Γ.

A decision procedure ρ is then a transition ρ from L(E) to the dual Γ′

of Γ (for the sup norm). Such a transition has a value γρP for γ ∈ Γ and

P ∈ L(E). (This is a contraction of
∫
[
∫

γ(z)K(dz, x)]P (dx).) The risk of ρ

at θ is R(θ, ρ) = WθρPθ = sup{γρPθ; γ ∈ Γ, γ ≤ Wθ}.
Here again the reader who prefers to work with Markov kernels (K, as

above) can assume that 1) the {Pθ} are dominated 2) Z is compact, Γ = C(Z)

and each Wθ is lower semicontinuous.

An estimation problem given by an experiment E = {Pθ; θ ∈ Θ} and

a loss function W has a set R(E, W ) of possible risk functions, the set of

functions f from Θ to (−∞, +∞] such that there is a decision procedure ρ

for which WθρPθ ≤ f(θ) for all θ ∈ Θ.

Often we shall need to work with subsets F ⊂ Θ. Then EF will be

EF = {Pθ; θ ∈ F}.

3. The asymptotic minimax theorem.

The distance defined in Section 2 gives a topology on the set of (equiv-

alence classes) of experiments indexed by a set Θ. Another topology is the

weak topology: A directed set {Eν}; Eν = {Pθ,ν : θ ∈ Θ} converges weakly

to F if for every finite set F ⊂ Θ, the distances ∆(Eν,F ,FF ) tend to zero.

This is equivalent to convergence in distribution of the vector of likelihood

ratios { dPt,ν

dPs,ν
, t ∈ F} for all s ∈ F .
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To state the theorem call a loss function V special if Vθ ∈ Γ for each

θ ∈ Θ.

Theorem 1 Let f be a function that does not belong to R(F , W ). Then

there is a special V ≤ W , a number α > 0, a finite set F and an ε > 0 such

that if ∆(EF ,FF ) < ε then f +α restricted to F does not belong to R(EF , V ).

For a proof, see Le Cam (1979) or Le Cam (1986) pages 109-110.

Remark 1. There is a weaker version of the theorem that might be easier to

visualize. Let {Eν} be a directed family of experiments Eν = {Pθ,ν ; θ ∈ Θ}.
Assume that the Eν converge weakly to F and that for each ν the function fν

belongs to R(Eν , W ). If fν converges pointwise to f then f ∈ R(F , W ). This

easy version is not sufficient for applications where one wants to truncate W .

The fact that the finite set F the special V and the ε of Theorem 1 depends

only on the triplet (F , W, f) is also lost in the weaker version.

Remark 2. Theorem 1 has been stated in the general framework of Section

2 with procedures that are “transitions”. If one wants to restrict oneself to

transitions representable by Markov kernels it is sufficient to put restrictions

on the limit F and the loss W . Call R(F , W , Markov) the set of functions

defined as in Section 2 for R(F , W ) but for transitions that are Markov

kernels. It is enough to assume that R(F , W ) = R(F , W , Markov) for the

limit experiment F . Assumptions that insure this are given in Section 2 and

in Le Cam (1986) pages 11-14. No assumptions need to be placed on the

experiments E such that ∆(E ,F) < ε.

Theorem 1 uses only weak convergence to F of the experiments E . There
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is another mode of convergence that is usually available at very little cost.

It is as follows.

Take a fixed F = {Qθ; θ ∈ Θ} and call a set S ⊂ Θ compact if the set

{Qθ; θ ∈ S} is compact in L(F) for the L1-norm. Let {Eν} be a directed

family of experiments, Eν = {Pθ,ν ; θ ∈ Θ}. It is said to converge to F
on compacts if for each compact set S the restrictions Eν,S are such that

∆(Eν,S ,FS) tends to zero.

The standard LAN conditions of Le Cam (1960) imply convergence on

compacts. (Hájek’s 1972 do not). According to Lindae (1972) convergence on

compacts follows from pointwise convergence plus some tail equicontinuity

of differences ‖Ps,ν − Pt,ν‖, s, t ∈ S compact. In many cases one would

wish to consider convergence on precompact sets instead of compacts. The

precompact convergence can be reduced to the compact one by completing

F . This can be achieved without any difficulty.

Now if Eν converges on compacts to F , Theorem 1 is certainly applicable,

but can one say more? In the direction of lower bounds for the risk, perhaps

very little can be said. However here are two results, that are of some interest.

Theorem 2 Assume that, for compacts defined as above, Eν converges to F
on compacts and that W is bounded (that is sup{|Wθ(z)|; θ ∈ Θ, z ∈ Z} <

∞.) Then if f ∈ R(F , W ) there is for each ν an fν ∈ R(Eν , W ) such that

fν → f uniformly on the compact subsets of Θ.

This is easy to see. It tends to indicate that some results that can be

achieved on the limit F can also be achieved asymptotically on the directed

set {Eν}.
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Another result extends the lower bound of Theorem 1. To state it, let

W c
θ = c ∧ Wθ for c ≥ 0. For risk functions WθσνPθ,ν that might not be mea-

surable, let
∫
∗ WθσνPθ,ν µ(dθ) be the lower integral, supremum of integrals

of measurable functions not exceeding WθσνPθ,ν . Consider an experiment

F = {Qθ; θ ∈ Θ} and loss functions satisfying the following assumption:

(A) If Θ is pseudometrized by the distance d(s, t) = ‖Qs−Qt‖ then the risk

functions W c
θ ρQθ are Borel measurable in θ for all c and all procedures

ρ available in F .

We shall state our next theorem assuming that d(s, t) = ‖Qs − Qt‖ is in

fact a metric on Θ. Modifications for a more general case are easy.

Theorem 3 Suppose that condition (A) above is satisfied for the experiment

F and that d(s, t) defined above is a metric.

Let µ be a finite Radon measure on Θ (metrized by d). Assume that

W ≥ 0, and let A = infρ

∫
WθρQθµ(dθ) be the Bayes risk for µ and F.

Then for each b < A there is a c < ∞, a compact K ⊂ Θ and an α > 0

such that if ∆(EK ,FK) < α then infσ

∫
∗ IK(θ)W c

θ σPθµ(dθ) ≥ b, the infimum

being over all procedures σ available for E = {Pθ; θ ∈ Θ}

Proof. Let ρ0 be a Bayes procedure for F , W and µ. Let V the class

of special loss functions V with V ≤ W . Then, by definition, Wθρ0Qθ =

sup
V ∈V Vθρ0Qθ = supc supV V c

θ ρ0Qθ = supc W c
θ ρ0Qθ. Thus if the W c

θ ρ0Qθ

are measurable
∫

Wθρ0Qθµ(dθ) = supc

∫
W c

θ ρ0Qθµ(dθ). Since W ≥ 0, this

implies that for any number b′, b < b′ < A there is a finite c and a compact

K ⊂ Θ such that
∫
K W c

θ ρ0Qθµ(dθ) > b′. Let α > 0 be such that b + ‖µ‖cα <
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b′. If ∆(EK ,FK) < α/2 there is a transition T from L(FK) to L(EK) such

that ‖Pθ−TQθ‖ < α for all θ ∈ K. This T extends to a transition from L(F)

to L(E). Thus, if σ is any procedure on E , the procedure ρ = σT defined for

F is such that |W c
θ (σT )Qθ − W c

θ σPθ| < cα for all θ ∈ K. This implies

∫
∗
(WθσPθ)µd(θ) ≥

∫
∗
IK(θ)WθσPθµ(dθ)

≥
∫
∗
IK(θ)W c

θ σPθµ(dθ)

≥
∫

K
W c

θ (σT )Qθµ(dθ) − ‖µ‖cα ≥ b.

Hence the result. 2

Remark 1. It should be noted that the measurability requirement (A) is

imposed only on the limit experiment F , not on the approximating experi-

ments E . In the cases considered in the literature the functions θ ;W c
θ ρQθ

are in fact continuous. Thus measurability is not a serious problem. However

it seems to be needed for the validity of Theorem 3.

Remark 2. Let M be a class of Radon probability measures on Θ. The

conclusion of the theorem can be replaced by: Let b denote any number

strictly inferior to supµ infρ

∫
WθρQθµ(dθ). Then there is a compact K ⊂ Θ

and numbers α > 0 and c < ∞ such that if ∆(EK ,FK) < α one has

sup
µ

inf
σ

∫
∗
W c

θ σPθµ(dθ) ≥ b.

This can be seen as in Theorem 3 taking a Bayes procedure ρ0 for a µ that

almost achieves the supµ for procedures on F .
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Remark 3. One might ask whether the conclusion of Theorem 3 would re-

main valid under only weak convergence of the experiments instead of com-

pact convergence. This is perhaps not so. The difficulty arises from the fact

that pointwise convergence of a bounded directed set of functions does not

imply convergence of their integrals.

4. Some applications.

A) Let us start by an example of M. Low (1989) since it is very sim-

ple. Consider, on the line RI , a fixed probability density f0 (with respect

to Lebesgue measure) such that f0(0) > 0, supx f(x) < ∞ and such that

f0 be continuous at zero. Let {αn} and {βn} be nondecreasing sequences

of positive numbers such that αn → ∞ and (α2
nβn)(f0(0)n)−1 → 1. Con-

sider the class H of functions from RI to RI such that
∫

h2 < ∞,
∫ |h| < ∞

and supx |h(x)| < ∞. Let hn be the number hn =
∫

α−1
n h(βnx)f0(x)dx.

Define fn(h, x) = [1 + α−1
n h(βnx) − hn]f0 if 1 + α−1

n h(βnx) − hn ≥ 0. Let

fn(h, x) = f0(x) otherwise. The standard Gaussian shift experiment G of

H is one where one takes under θ = 0 the distribution G0 of a Gaussian

linear process Z indexed by H and such that E〈Z, h〉 = 0 and E|〈Z, h〉|2 =

‖h‖2 =
∫

h2(x)dx. For another value h ∈ H one takes for Gh the measure

dGh = exp{〈Z, h〉 − 1
2
‖h‖2}dG0.

Now let En = {P n
h ; h ∈ H} be defined by taking for P n

h the joint distri-

bution of n independent observations from the density fn(h, x). Low shows

that En converges weakly to the Gaussian G as n → ∞.

By restricting oneself to subsets of H one can obtain a variety of results
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from Theorem 1 (or 2). For instance Low considers a set of densities subject

to a condition supx |fk(x)| ≤ M and estimates of f(0). By selecting αn =

c1n
k(2k+1)−1

he shows that the appropriate rate of convergence of the estimate

is in nk(2k+1)−1
. This was known otherwise but Low obtains the exact limit

of the risk for several loss functions.

The technique of rescaling through coefficients αn and βn had been previ-

ously used by Has’minskii (1979) to study estimation of a mode. For βn ≡ 1,

it has been used extensively.

B) A more complicated example appears in a paper by Golubev and

Nussbaum (1990). They consider the problem of estimating a signal t ;

f(t), t ∈ [0, 1] when the observations are of the form Yi = f(xi,n) + ξi,

i = 1, . . . , n with, for instance xi,n = i/n and with noise ξ where the ξi are

independent, mean zero, fixed variance σ2 and fourth moment Eξ4
i less than

a fixed constant c. The problem has been studied by many authors. A major

breakthrough is due to Pinsker (1980) who considered the case where the

ξi are Gaussian. Pinsker and subsequent authors consider the Sobolev class

W m
2 = {f ∈ L2; D

mf ∈ L2} where L2 is the Hilbert space of the Lebesgue

measure on [0, 1]. For the subset W m
2 (B) = {f ∈ W m

2 ; ‖Dmf‖2 ≤ B} let

∆ = limn inf f̂ supf n(2m)(2m+1)−1
Ef,n‖f̂−f‖2 where the sup is on f ∈ W m

2 (B)

and the inf is over all estimators depending on n observations. The papers

of Pinsker (1980) and Nussbaum (1985) give the result

∆ = γ(m)Brσ4mr for r = (2m + 1)−1

and γ(m) = (2m + 1)r [m/π(m + 1)]2mr. The fact that the ξi were Gaussian

was essential in the proofs. Golubev and Nussbaum use only the restrictions
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Eξi = 0, Eξi = σ2, Eξ4
i ≤ c and obtain a similar result.

The proof is full of ingenious devices. The relation with Theorem 1, 2

and 3 is obtainable through a series of arguments that go about as follows.

Consider a particular f0, for instance f0 ≡ 0 and deviations from it. Let W m,0
2

on [0, 1] be that part of W m
2 formed by functions whose derivatives of order

0, 1, . . . , m vanish at 0 and 1. For f ∈ W m,0
2 one can obtain an orthogonal

expansion f =
∑

j cjϕj with ‖ϕj‖ = 1 and ‖Dmϕj‖2 = λj increasing in j.

Now take an integer q and for k = 1, 2, . . . , n let Ik,q = ((k − 1)/q, k/q].

Transport W m,0
2 to Ik,q, by proper scaling. Look at deviations of the type

∑
k

∑s
j=1 ϕj,k,q(x)fj,k where ϕj,k,q is ϕj transported to Ik,q and put equal to

zero outside Ik,q. Take only deviations that remain in W m
2 (B). This allows

to separate the observations by classes, the k-th class yielding a model yi =
∑s

j=1 ϕj,k,q(xi,n)fj,k + ξi for those xi,n that fall in Ik,q.

Golubev and Nussbaum let q depend on n, so it becomes q(n) of the

order of nr. They then proceed to show that the part of the regression model

restricted to one of the intervals Ik,q converges to a Gaussian shift one.

Selecting the parameters fj,k independently according to some measure ν

one can try to find a lower bound on the Bayes risk.

The bound in the limit is given by Theorem 1 or 3 for each of the subin-

tervls Ik,q; k = 1, 2, . . . , q. Since the Bayes risk for the entire problem is

q(n) times the risk on each Ik,q the global lower bound can be computed for

each fixed s. Then one will let s tend to infinity. Of course this is only a

brief sketch of the method of proof. There are many other difficult steps on

the way. One of them is to make sure that the product measure νsq on RI sq

concentrates on the Sobolev ball W m
2 (B). This was also crucial in Pinsker
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(1980).

In Low (1989) or Golubev and Nussbaum (1990) Theorems such as The-

orems 1, 2 and 3 are used to reduce a complex problem to one in which

the distributions are Gaussian and where one can often get more precise

information.

C) The estimation problem treated by Donoho and Liu (1990) differs

considerably from the one described in (B) above. Yet the two are closely

connected. Let F be a class of probability densities with respect to Lebesgue

measure λ on an interval [−a, +a] of the line. Assume that F is convex,

closed and bounded for the L2-norm, ‖f‖2 =
∫

f2dλ. Donoho and Liu study

the problem of estimating the value T (f) of a real valued linear function T

defined on F when one takes n independent observations X1, . . . , Xn from

some f ∈ F . For example one may want to estimate the value at zero of the

k-th derivative of f subject to a local constraint on the m-th derivative, with

k ≤ m.

Let νn be the empirical measure of the first n observations. One can

either limit oneself to estimates T̂ that are linear affine in νn (with risk RA

indicated by a suffix A) or use any arbitrary measurable function T̂ of νn

(with risk RM , indicated by a suffix M). A first remark is that, for affine

estimates and square loss the problem of estimation of T is not more difficult

than the estimation problem for a certain Gaussian shift experiment where

one observes Y = f + σnW , f ∈ F , W a white noise or a Gaussian process

defined on subsets of [−α, +α], with expectations zero and a given covariance

function. This is quite analogous to (B) above, but now we need to estimate

only the value of T (f) instead of the whole f as in (B).
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Let Gn be the Gaussian experiment with observations Y = f + σnW ,

f ∈ F . Donoho and Liu proceed as follows

1) F being as described, there is a worst pair (f0,n, f1,n) of elements of F
such that the minimax risk for affine estimates and for the one dimensional

system Sn = {fθ,n = (1−θ)f0,n+θf1,n; θ ∈ [0, 1]} is the same as the minimax

risk for affine estimates for the entire Gn. Furthermore the estimate for the

worst pair is minimax for Gn among affine estimates. It is given by an explicit

formula.

2) Consider the problem of estimating θ for the segment Sn described above

and observations

∫
u(t)Y (dt) where u = (f1,n − fo,n)‖f1,n − fo,n‖−1.

By sufficiency, this is equivalent to the problem where all of Y would be

observed.

For the problem the risk RA for affine estimates is certain function σ ;

RA(σ) of the standard deviation σ of
∫

u(t)Y (dt). Similarly for the mini-

max risk RM(σ) for all measurable estimates. From Ibragimov-Has’minskii

(1984) one knows that supσ RA(σ)/RM (σ) is bounded by a constant µ∗. From

Donoho, Liu and McGibbon (1989) one knows that µ∗ ≤ 5/4. This essen-

tially solves the problem for the Gaussian case, at least if one considers a

25% margin acceptable.

The method “almost” solves the initial problem of estimation of T defined

on F for the independent observations X1, . . . , Xn at least if one selects σn

and the white noise W properly, since for affine estimates the two problems

are essentially asymptotically equivalent. (Asymptotically only because to
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get exact equivalence one has to select the Gaussian set function W with a

covariance that depends on the true f0). However that is for affine estimates.

Would there be a possibility of doing much better for estimation of T (f) by

general measurable functions of the X1, . . . , Xn?

Donoho and Liu resolve the difficulty, at least for usual cases, by an appeal

to a theorem similar to Theorem 2, Section 3 above.

Let Pθ,n be the joint distribution of X1, . . . , Xn for the densities fθ,n =

(1−θ)f0,n+θf1,n, θ ∈ [0, 1]. Consider the experiments En = {Pθ,n; θ ∈ [0, 1]}.
Consider also a Gaussian experiment

Fn = {Qθ,n; θ ∈ [0, 1]}

where Qθ,n is N (θ, σ2
n) on the line. One can prove the following

Proposition 1 Assume that the Lévy distance between the distribution un-

der P0,n of
∑n

j=1

[
f1,n(Xj)

f0,n(Xj)
− 1

]
and a normal distribution N (0, τ 2

n) tends to

zero as n → ∞. Assume that τn stays bounded. Then if τ 2
nσ2

n → 1 the

distance ∆(En,Fn) between the experiments En = {Pθ,n; θ ∈ [0, 1]} and the

Gaussian Fn tends to zero.

This is easy to see. It follows then that the difference between the mini-

max risk RM(En) for En and RM(Fn) for Fn tends to zero.

Of course, the bulk of the argumentation of Donoho and Liu takes place on

the Gaussian experiment. Donoho and Nussbaum have now extended these

arguments to the estimation of certain quadratic functionals of the density f

instead of linear ones. That the problem can be very different can be seen

from an article of Bickel and Ritov (1990). The subject is still progressing.
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