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1. Introduction. In his famous paper of 1943 Wald proved asymptotic

optimality properties for a variety of tests of simple or composite hypotheses.

Wald considers families {Pθ, n ; θ ∈ Θ} of probability measures indexed by a

subset Θ of a Euclidean space. The tests are derived from a recipe that involves

estimates Tn of the parameter θ and estimates Γn of the inverse covariance

matrix of Tn. One forms a chi-square type statistic (Tn − θ)′ Γn (Tn − θ) and

reject those θ’s for which the statistic is too large. For Tn Wald uses the max-

imum likelihood estimate θ̂n. For Γn he uses the Fisher information matrix Jθ

evaluated at the estimate θ̂n of θ.

This gives a readily applicable way of constructing tests and confidence

ellipsoids.

It has been noted by several authors that Wald’s procedure can suffer from

some unsatisfactory features. One defect, noted by Hauck and Donner (1977) is

that, for fixed θ, a criterion of the type (θ − t)′ Jt (θ − t) can decrease as | θ − t |

becomes large. This is also noted by Vaeth (1985) who points out in addition

that the results of the procedure are not invariant under smooth one to one

transformations of the parameter space. Vaeth gives examples of one-

dimensional exponential families where, θ̂n being the maximum likelihood esti-

mate, (θ − θ̂n)′ Jθ̂n
(θ − θ̂n) tends to zero for all fixed θ as θ̂n approaches the
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boundary of its possible range. An example of this, imitated from Vaeth, will

be described in Section 4.

Wald was dealing with a situation where the measures Pθ,n were product

measures, distributions of n independent identically distributed observations. He

made on these distributions a number of relatively severe assumptions. The

consequences of Wald’s assumptions will be reviewed below in Section 3.

They suggest that instead of Wald’s quadratic expressions one could use tests

based on the expression qn
2 (s, t) = −8 log ∫ {dPs,n dPt,n}1⁄2. One would use

confidence sets of the type {θ : qn
2 (Tn, θ) ≤ cn (θ)} for suitably selected estimates

Tn.

A proposal to use such sets was made by K. Matusita in 1955. This was

mostly for multinomial situations. The proposal was later extended to some

problems involving heteroschedastic Gaussian families of measures. See

Matusita (1967).

We show that the use of the function qn
2 does indeed mitigate some of the

difficulties encountered by Wald’s procedure. Unfortunately the procedure has

also defects of its own. Briefly, qn
2 is a monotone function of the Hellinger dis-

tance h defined by hn
2 (s, t) =

2
1_ _ ∫ [ (dPs,n)1⁄2 − (dPt,n)1⁄2 ]2. As such it remains

invariant under all one-to-one transformations of the parameter space. It is, of

course, somewhat more difficult to compute than Wald’s criterion. However,

leaving this aside, its main inconveniences are as follows:

1) To compute qn
2 (Tn, θ) the value of Tn must lie in the parameter space, or the

parameter space must be extended to cover the possible range of Tn.

2) qn
2 is a monotone function of a distance. As such qn

2 (s, t) is a symmetric

function of s and t. There are many situations, for example the standard bino-

mial, where the use of sets of the type {θ : qn
2 (Tn, θ) ≤ cn} with cn independent
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of θ cannot capture all the relevant features of the problem.

One could wonder why bother with such a proposal? Why not just use the

likelihood ratio method of Neyman and Pearson (1928)? The reason is that, as

far as we know, the local asymptotic justification for the likelihood ratio are all

based on the article of Wilks (1938) or on the 1943 paper of Wald. They

proceed by showing that, under severe conditions, the likelihood ratio method is

asymptotically equivalent to Wald’s procedure. For a proof of asymptotic

optimality for separated hypotheses see Bahadur (1967). Besides, there is no

lack of examples where the likelihood ratio method suffers from major

difficulties. See for instance Lehmann (1986) page 342 or Le Cam (1979).

Otherwise, the paper is organized as follows. Section 2 reviews definitions

and notation. Section 3 gives an account of consequences that can be derived

from Wald’s assumptions. It does not review the assumptions themselves, only

consequences.

Section 4 gives details of an example analogous to one considered by Vaeth

(1985). The behavior of a criterion based on our qn
2 appears satisfactory.

Section 5 is suggested by the heteroschedastic Gaussian approximations that

occur naturally in the framework used by Wald. It shows that variations on the

definitions of chi-square type criteria can lead to very different answers.

Section 6 touches upon a number of different matters: The effect of the lack

of uniformity in the local convergence to Gaussian shift experiments, the need to

use estimates that take values outside the parameter sets Θn and some possibili-

ties for the extension of the domain of definition of qn to cover such eventuali-

ties.

Section 7 is an aside on covariance stabilizing transformations. An appendix

gives a derivation of the formula for q2 (s, t) in the heteroschedastic Gaussian

case.
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2. Gaussian experiments and distances.

In this section we recall a few facts about Gaussian experiments and approxi-

mations by them. The facts are well known but presented here in manner that

emphasizes the role of chi-square type expressions and of the function q2

defined in the Introduction.

Let Θ be an arbitrary set. An experiment G = {Gθ : θ ∈ Θ} is called Gaus-

sian shift, or simply Gaussian if no confusion ensues, if it satisfies the following

two conditions:

1) The measures Gθ ; θ ∈ Θ are mutually absolutely continuous,

2) Let Λ (t, s) = log dGt ⁄ dGs. Then the stochastic process t ∼> Λ (t, s), t ∈ Θ

is a Gaussian process for the distribution induced by the measure Gs. (The

choice of point s does not matter).

Note that the definition does not refer to any algebraic or vector property of

Θ. The set Θ was not assumed to have any such structure. However, if one is

given a Gaussian shift experiment G indexed by Θ one is automatically given a

map of Θ into a Hilbert space. To see this, consider the process

X (t) = Λ (t, s) − Es Λ (t, s) under Gs. Let M0 (Θ) be the space of all finite signed

measures µ with finite support on Θ that are such that µ (Θ) = 0. Let || µ ||2 be

the variance of the random variable ∫ X (t) µ (dt). The norm or pseudo-norm so

defined on M0 (Θ) is Hilbertian or pre-Hilbertian. One can identify to zero

those µ such that || µ || = 0 and then complete to get a Hilbert space. One maps

Θ into it by associating to θ the difference δθ − δs of the Dirac masses carried

by θ and s. The Gaussian shift experiment {Gθ : θ ∈ Θ} can be extended to all

of M0 (Θ) by taking

dGµ = exp{∫ X (t) µ (dt) −
2
1_ _ || µ ||2} dGs .
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From there it extends to the Hilbert space by continuity.

The square distance between θ on t becomes

|| δθ − δt ||2 = Es | X (θ) − X (t) |2

= −8 log ∫ [ dGs dGt ]1⁄2 .

If the measures Gθ had been given by a standard normal density with respect

to Lebesgue measure having the form

(2π)k⁄2
| det Γ |1⁄2
_ _______ exp {−

2
1_ _ (x − θ)′ Γ (x − θ)}

with Γ fixed, independent of θ, one would have || δθ − δt ||2 = (θ − t)′ Γ (θ − t).

Note that the formulas written previously did not use any link between the

linear structure of Θ, if any, and the distances or log likelihood ratios. The

above formula, with (x − θ) in the exponent or (θ − t)′Γ (θ − t) in the square

distance assumes such a link. For asymptotic problems where one may want to

transform the parameter space a choice of appropriate linkage, or of transforma-

tion, may be important.

There are also heteroschedastic Gaussian experiments. In the standard

Euclidean case they are given by densities.

(2π)k⁄2
| det Γ (θ) |1⁄2
_ __________ exp {−

2
1_ _ (x − θ)′ Γ (θ) (x − θ)}

where now Γ is a function of the parameter θ.

For such heteroschedastic Gaussian experiments our function q2 takes a dif-

ferent form. Let P be a Gaussian distribution with center θ and covariance

matrix Γ−1 on I Rk. Let Q be another Gaussian measure with center t and covari-

ance matrix K−1 on the same I Rk. The value of q2 = −8 log ∫ [ dPdQ ]1⁄2 is easily

seen to be
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−2 log det [ I − (M−1 ∆)2 ] + (t − θ)′ [ M − ∆ M−1 ∆ ] (t − θ)

where I is the identity matrix and M =
2
1_ _ (Γ + K) while ∆ =

2
1_ _ (Γ − K). See

Kraft (1955) or Matusita (1967). Note that the above formula consist of a sum

of two terms, one that involves the difference between the inverse of the covari-

ance matrices and one that has a structure of the same type as for Gaussian shift

experiments, involving the differences between expectations in a quadratic form.

As we shall see below, the theory originated by Wald in 1943 relies on local

approximations by Gaussian shift experiments but global approximation by

heteroschedastic Gaussian experiments. To define such approximations properly

one can use a distance defined by Le Cam (1964).

Let E = {Pθ : θ ∈ Θ} and F = {Qθ : θ ∈ Θ} be two experiments indexed by

the same set Θ. The distance ∆ (E, F) introduced by Le Cam (1964) is essen-

tially as follows: Except for technicalities, to say that ∆ (E, F) ≤ ε is to say that,

as long as one uses only loss functions W bounded by zero and unity, any risk

function available on one of the experiments can be matched within ε by a risk

function available on the other experiment.

Thus to say that a sequence {En} of experiments En = {Pθ,n : θ ∈ Vn} is

asymptotically Gaussian shift is to say that there are Gaussian shift experiments

Gn = {Gθ,n : θ ∈ Vn} such that ∆ (En, Gn) tends to zero as n tends to infinity.

Note that we have called the index set Vn instead of Θ. This is because this

kind of approximation is usually possible only in small neighborhoods Vn that

shrink as n → ∞.

For a theory of such approximations, see Strasser (1985), Le Cam (1985) and

(1986). The next section will elaborate on such approximations in a context

derived from Wald’s assumptions.
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3. Some consequences of Wald’s assumptions.

Wald’s paper of 1943 refers to a situation where the parameter space Θ is a

fixed subset of a Euclidean space I Rk and where the measures Pθ,n are the joint

distributions of n independent identically distributed observations. We shall not

recall these assumptions here but will look at some of the conclusions derived

from them.

Some of Wald’s conclusions are global, valid uniformly on Θ. Some are

‘‘local’’, valid only in sets that are small enough and that shrink as n → ∞. In

the sequel, we shall use the word ‘‘local’’ in the following manner. Let qn
2 be

the function defined by qn
2 (s, t) = −8 log ∫ [ dPs,n dPt,n ]1⁄2 for s and t in Θ. A

‘‘local’’ property is one that is valid on certain specified sets of the form

Vn (τn, b) = {θ : qn
2 (θ, τn) ≤ b}

for specified sequences {τn} and for arbitrarily fixed values of b.

Although Wald’s assertions are for maximum likelihood estimates in the

i.i.d. case, it is better to forget about such restrictions and use only conclusions

that may hold more generally.

Wald considers estimates Tn with values in I Rk and nonrandom matrices

Mτ,n ; τ ∈ Θ with the following properties.

(A) Let {τn} be an arbitrary sequence with τn ∈ Θ. If qn (θn, τn) stays

bounded then the distributions L {Mτn,n (Tn − θn) | θn} tend to the standard k-

dimensional normal N (0, I)

(B) The Tn are asymptotically sufficient in the following sense: There are

other families of probability measures {Qθ,n : θ ∈ Θ} defined on the same σ-

fields as the Pθ,n and such that:



- 8 -

(i) For {Qθ,n : θ ∈ Θ} the statistics Tn are sufficient (exactly).

(ii) sup{|| Pθ,n − Qθ,n ||; θ ∈ Θ} tends to zero as n tends to infinity, the norm

being the total variation norm.

(C) Let Fθ,n be the distribution of Tn under Pθ,n. There are Gaussian distri-

butions Gθ,n centered at θ and Markov kernels Kn′ and Kn′′ such that

θ
sup {|| Fθ,n − Kn′ Gθ,n ||; θ ∈ Θ} and

θ
sup {|| Gθ,n − Kn′′ Fθ,n ||; θ ∈ Θ} tend to zero

as n → ∞. Here again || . . || is the total variation norm.

Another assertion is that the Markov kernels Kn′ and Kn′′ represent small

distributions in the following sense: Take an arbitrary sequence {τn}, τn ∈ Θ

and a fixed b < ∞. Let Γθ,n be the inverse covariance matrix of Gθ,n, assumed

to exist. Let Bn (t, a) be the ball Bn (t,a) = {x : (x − t)′ Γτn,n (x − t) < a}.

(D) For every sequence {τn} b < ∞ and every ε > 0

t
sup {Kn′ [ Bn

c (t, ε) | t ] : t ∈ Bn (τn, b)}

tends to zero as n → ∞. The same condition holds for Kn′′. Another condition

is as follows

(E) The Tn take their values in Θ

Finally, for ease of reference, we shall also use a condition (F) as follows

(F) For any given ε > 0 there are finite numbers b = b (ε) and N = N (ε)

such that n ≥ N implies

θ∈Θ
sup Pθ,n {qn

2 (Tn, θ) > b} < ε .

It will be seen below that (F) is already a consequence of (A) to (E).

It should be mentioned that the above (A) to (E) are not exactly Wald’s

statements. The wording is closer to that of Le Cam (1956). The reasons for

this will appear below. The roles of (B) and (C) are simple. The condition (C)
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says that the distance between the experiments Fn = {Fθ,n : θ ∈ Θ} and

Gn = {Gθ,n : θ ∈ Θ} tends to zero. The sufficiency relation (B) implies in addi-

tion that the distance between Fn and En = {Pθ,n : θ ∈ Θ} tends to zero.

The condition (A) is an asymptotic normality condition of the usual type for

convergence of distributions. Condition (D) is meant to allow a link between

the inverse covariance matrices Γθ,n of the Gθ,n and the matrices Mθ,n′ Mθ,n of

(A). Then (A) will imply that, locally, the heteroschedastic Gaussian Gn can be

approximated by Gaussian shift experiments.

Wald does not use the function qn at all. Instead, he assumes the existence

of an underlying Euclidean norm that has special properties and can be used to

define what is ‘‘local’’. He uses arguments that are very close to the assertions

(C) and (D) about Markov kernels. Instead of our sufficiency condition (B)

Wald uses the existence of set transformations. He assigns to each measurable

set in the observation space a set in the range of Tn that has, uniformly in θ,

almost the same probability. This seems asking for too much. One can readily

have a sufficient sub-field B of a σ-field A where the conditional expectation of

an indicator IA, A ∈ G is some fairly arbitrary B-measurable function φ bounded

by zero and unity. The possibility of replacing such a function by the indicator

IB of a set B ∈ B so that ∫ | IB − φ | dPθ,n < ε uniformly in θ depends on pro-

perties of the sufficient statistic that are not readily visible.

Consider for instance i.i.d. observations X1, X2 , . . . , Xn from a univariate

estimate is Tn = X   n =
n
1_ _

j=1
Σ
n

Xj. Consider also the sum Sn =
j=1
Σ
n

(Xj − X   )2. It is

independent of X   n with a chi-square distribution. Take a set An of the form

An = {X1, X2 , . . . , Xn ; Sn ≤ cn} where cn is selected so that

Pr [ Sn ≤ cn ] = 1⁄2. Its conditional expectation φ is identically 1⁄2. One can find

sets Bn ⊂ I R such that | Pθ,n [ X   n ∈ Bn ] − 1⁄2 | < ε for all θ and n but they do not
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have a very appealing appearance and to construct them one needs to use fairly

fine knowledge of the distributions of X   n.

Our condition (B) is simpler. It seems preferable. Similar considerations

apply to our conditions (C) and (D) and the set transformations of Wald’s

Lemma 2.

The reader should note that the conjunction of the properties (A) to (E) is

very restrictive indeed. This is partly due to the insistence that all convergences

occurs uniformly on the entire set Θ. This is reflected directly in conditions (B)

and (C). It is implied, for instance in condition (A), by the use of sequences

{τn} that are entirely arbitrary.

Another aspect of the restrictive nature of the conditions arises from the

innocuous looking condition (E). It is not stated as such in Wald’s paper but is

implied by the fact that Wald takes for Tn the maximum likelihood estimate for

the family {Pθ,n : θ ∈ Θ}. It is very natural in the context of the present paper if

we want to replace Wald’s quadratic expressions by qn
2 (Tn, θ). That means in

particular that qn
2 (s, θ) must be defined for θ ∈ Θ and s in the range of Tn. (In

a first draft of the present paper, we had not paid enough attention to that

requirement. It was pointed out by Yu Lin Chang who deserves my thanks).

Now call boundary point t of Θ an ‘‘ordinary boundary point’’ if the con-

tingent of Θ at t is not the entire space I Rk. This means simply that there is a

unit vector u such that u is not the limit of any sequence (sn − t) ⁄ | s − t | with

sn ∈ Θ tending to t.

The combination of (A) and (E) implies that Θ cannot have any ordinary

boundary points. There are such sets Θ different from I Rk. An example would

be the set of all points with rational coordinates. Another example can be con-

structed as follows. Let W (x), x ∈ (−∞, +∞) be a standard Wiener process with

W (0) = 0. Let Θ be the set {θ = (x,y); y ≤ W (x)}. Then Θ has almost surely
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no ordinary boundary points. However usually occuring parameter sets, if they

are not all of I Rk, often have many ordinary boundary points.

On this particular point Wald’s paper seems to contain a gap. He fails to

specify what kind of a set Θ might be. He proceeds as if the maximum likeli-

hood estimates were roots of the maximum likelihood equations except for pro-

babilities that tend to zero uniformly in θ as n → ∞. This cannot be at ordinary

boundary points.

Some of these problems are avoided in Le Cam (1956) by two devices. The

first is to allow ‘‘estimates’’ Tn that can take values out of Θ. The other is to

relax the uniformity requirements for the convergence properties. Both devices

create other problems as we shall see. If one takes Θ = I Rk the conditions (A)

to (E) can be satisfied in some cases. For instance take joint distributions Pθ,n

of n i.i.d. observations from a density f (x, θ) with respect to some dominating

measure µ. If µ is Lebesgue measure on I Rk and f (x, θ) = f (x − θ) and if the

Fisher information matrix exists, then Pθ,n will satisfy (A) to (E).

For more general families, with densities f (x, θ), one could assume differen-

tiability in quadratic mean of [ f (x, θ) ]1⁄2 uniformly for θ ∈ Θ. This and condi-

tions of boundedness and non degenaracy of the covariance matrix of the deriva-

tive in quadratic mean will ensure the validity of (A) to (E) for suitable esti-

mates Tn, though not necessarily for the maximum likelihood.

Even though examples do exist, uniform convergence on all of I Rk is a large

order. Some palliatives for cases where the convergences are not uniform or Θ

is not all of I Rk will be discussed in Section 6.

For the time being let us return to conditions (A) to (E) and their implica-

tions for the relations between qn
2 and Wald’s quadratics. A first easy result is

as follows.
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Proposition 1. Let conditions (B) and (C) be satisfied. For the heteroschedas-

tic experiment Gn of condition (C), let gn
2 (s, t) = −8log ∫ [ dGs,n dGt,n ]1⁄2. Then

for every ε > 0 there is an N (ε) < ∞ such that n ≥ N (ε) implies either

| qn
2 (s, t) − gn

2 (s, t) | < ε

or

min [ qn
2 (s, t), gn

2 (s, t) ] > 1 ⁄ ε

for all pairs (s, t) of elements of Θ.

Proof. This is an immediate consequence of the fact that the distance between

En = {Pθ,n ; θ ∈ Θ} and Gn = {Gθ,n ; θ ∈ Θ} tends to zero. It implies that the

difference

∫ [ dPs,n dPt,n ]1⁄2 − ∫ [ dGs,n dGt,n ]1⁄2

tends to zero uniformly in (s, t). The rest follows by passage to logarithms.

Proposition 2. Let the conditions (A) to (D) be satisfied and let

Kτ,n = Mτ,n′ Mτ,n. For arbitrary {τn}, τn ∈ Θ take sequences {sn} and {tn} such

that qn
2 (sn, τn) and qn

2 (tn, τn) stay bounded. Then the differences

qn
2 (sn, tn) − (sn − tn)′ Kτn,n (sn − tn)

tend to zero as n → ∞.

Proof. Let the triplets (sn, tn, τn) be as stated. Consider the binary experiments

Bn = {Psn,n, Ptn,n} , Bn′ = {Fsn,n, Ftn, n} and Bn′′ = {Gsn,n, Gtn,n} .

We claim that the distances between these three experiments tend to zero. For

the pair (Bn, Bn′) this follows from condition (B). For the pair (Bn′, Bn′′) this is

exactly the statement of condition (C) restricted to the pairs (sn, tn).
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Now introduce the half-space distance | F − F′ |h between two measures on

I Rk by

| F − F′ |h =
H

sup | F (H) − F′ (H) |

where the supremum is taken over all the half spaces H of I Rk. This distance is

invariant under all affine transformations of I Rk.

One can readily check that the convergence in (A) if taken according to any

of the usual definitions for weak convergence of measures, such as Lévy dis-

tance, Prokhorov distance, or pointwise convergence of cumulatives, will imply

that the convergence to N (0, I) takes place in the half-space distance. Indeed,

let Z be a N (0, I) vector. Convergence of Mτn,n (Tn − sn) to N (0, I) in the half-

space distance is equivalent to the statement that for any arbitrary sequence of

vectors vn ∈ I Rk the Kolmogorov-Smirnov distance between

L [ vn′ Mτn,n (Tn − sn) ] and L [ vn′ Z ] tends to zero. Since the Kolmogorov-

Smirnov distance is scale invariant, it is enough to check this for sequences {vn}

such that || vn || = 1. For these one may suppose that the vn have a limit v and

the result is clear.

On the other hand condition (D) also implies that | Fsn,n − Gsn,n |h tends to

zero. Indeed, since the distance is an affine invariant, one could change coordi-

nates to replace Γsn,n by the identity matrix I. The balls Bn (t, a) of condition

(D) become then ordinary balls in I Rk and the result follows by Slutzky’s

theorem.

Let then Gsn,n
* be Gsn,n recentered at zero. The preceding argument shows

that the half-space distance between L [ Tn − sn | sn ] and Gsn,n
* tends to zero.

Also, by (A), the half-space distance between L [ Tn − sn | sn ] and a Gaussian

distribution with expectation zero and inverse covariance matrix Kτn,n will tend
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to zero. This means that expressions such as Γsn,n
−1 Kτn,n or Kτn,n

−1 Γsn,n will tend

to the identity I.

Now, let Gsn,n′ be a normal distribution centered at sn with inverse covari-

ance matrix Kτn,n. According to the above | Gsn,n − Gsn,n′ |h → 0. This implies

also that the total variation norm || Gsn,n − Gsn,n′ || tends to zero, since we are

dealing with Gaussian measures.

The same applies to the pairs (τn, tn). Thus the experiments

Bn′′ = {Gsn,n, Gtn,n} are asymptotically equivalent to the experiments

Bn
′′′ = {Gsn,n′, Gtn,n′}. It follows that the differences between affinities such as

ρn = ∫ [ dPsn,n dPtn,n ]1⁄2, ρn′ = ∫ [ dFsn,n dFtn,n ]1⁄2 and so forth up to ρn
′′′ all tend

to zero. In a triplet of homoschedastic normal distributions (Gsn,n′, Gtn,n′, Gτn,n′)

the function qn is a distance. Thus since, by assumption, qn (τn, sn) and qn (τn, tn)

remain bounded, so will qn (sn, tn). If so the differences between log ρn, log ρn′

and so forth up to logρn
′′′ must also tend to zero. Hence the result.

Corollary. Let the conditions (A) to (E) be satisfied and let qn (θn, τn) and

qn (sn, τn) stay bounded. Then:

i) The differences

qn
2 (Tn, sn) − (Tn − sn)′ Kτn,n (Tn − sn)

tend to zero in Pθn,n probability.

ii) Condition (F) is satisfied.

This is clear.

Although the proof of Proposition 2 may appear devious, the result is hardly

surprising. Note however that one can give examples where statistics Tn would

satisfy (A) and (B) and where the experiments {Fθ,n ; θ ∈ Θ} are approximable
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by Gaussian shift experiments {Gθ,n ; θ ∈ Θ} but where the conclusion of Pro-

position 2 does not hold. Such an example occurs in Le Cam and Yang (1988)

as part of the discussion of the method of moments, page 515. Here we did

make use of condition (D). Considering this, it is perhaps surprising that Propo-

sition 2 admits a partial converse as follows.

Proposition 3. Assume that conditions (A), (E) and (F) hold. Assume also, that

with the notation of Proposition 1

qn
2 (sn, τn) − (sn − τn)′ Kτn,n (sn − τn)

tends to zero whenever qn
2 (sn, τn) stays bounded. Then conditions (B) (C) and

(D) also hold.

Proof. We shall only give a brief sketch. For sets of the form

Vn (τn, b) = {θ : qn
2 (θ, τn) ≤ b} an argument of Le Cam (1977), repeated in Le

Cam (1986) page 183, will show that conditions analogous to (B) and (C) will

hold but with the entire set Θ replaced by the subsets Vn (τn, b). The argument

cited uses an affinity number that is different from the Hellinger affinities used

here, but the result is valid either way.

This does not use at all the conditions (E) and (F), but the result is only

local. Using (E) and (F) one can carry out a patchwork argument as in Le Cam

(1986) Chapter 11, Theorem 3. This will yield (B). To obtain (C) one can

carry out a similar patchwork argument, as explained in Le Cam (1986), Chapter

5, Proposition 8, page 78. Another procedure is to prove both (C) and (D) at

the same time using a method analogous to the one discussed in Le Cam (1986),

Chapter 11, Section 8. Details will be left to the reader. 
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It follows from the above propositions that, under the conditions (A) to (F),

one can asymptotically treat qn
2 (Tn, θn) as if it was, under Pθn,n, a central chi-

square, just as would be the case for (Tn − θn)′ Kθn,n (Tn − θn).

If the distributions are induced by Pτn,n instead and if qn
2 (θn, τn) remains

bounded then qn
2 (Tn, θn) will behave as a non-central chi-square, as would

(Tn − θn)′ Kτn,n (Tn − θn).

If on the contrary qn (θn, τn) tends to infinity, condition (F) implies that

qn
2 (Tn, θn) tends to infinity in Pτn,n probability. Since, under such conditions, it

would still be possible for (Tn − θn)′ Kθn,n (Tn − θn) to tend to zero, this seems

to imply that, under (A) to (F), confidence sets based on qn
2 (Tn, θ) may be

somewhat better than the confidence ellipsoids of Wald. The function qn is

invariant under any and all one-to-one transformations of the parameter space.

It takes into account differences in expectations and differences in covariances

for the estimates Tn. Thus one would hope that tests or confidence sets based

on them would avoid the difficulties pointed out by Hauck and Donner (1977)

and by Vaeth (1985).

There are however some difficulties, one of which is that qn
2 is more difficult

to compute than Wald’s quadratics. This suggests using instead of qn
2 its analo-

gue gn
2 computed on an approximating heteroschedastic Gaussian experiment.

According to Lemma 1, this may be possible. However gn
2 is not invariant by

reparametrization. Thus, care should be exerted.

There is another feature that deserves attention. The chi-square formulas

suggest the use of confidence sets {θ : qn
2 (Tn, θ) ≤ cn} where cn is some con-

stant, independent of θ. This is not in agreement with Neyman’s classical

derivation of confidence sets. One should take a cn (θ) such that

Pθ,n {qn
2 (Tn, θ) ≤ cn (θ)} ≥ 1 − α
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for the selected significance level α. That such a selection of cn (θ) may make a

noticeable difference can be seen on the ordinary binomial distribution with pro-

babilities (x
n) px (1 − p)n−x, p ∈ [ 0, 1 ]. Take for instance n = 200. If p = 1⁄200

the probability that Tn =
n
x_ _ be equal to zero is roughly .36. Thus in a formula

of the type {p : qn
2 (Tn, p) ≤ cn} the coefficient cn should be such that

cn ≥ qn
2 (0,

200
1_ ___). But then if Tn would take value Tn = 1⁄200 the value p = 0

would be deemed acceptable. This is absurd. Sets of the form

{p : qn
2 (Tn, p) ≤ cn (p)} can avoid such difficulties. Unfortunately, except under

conditions such as (A) to (F), nothing much is known about the distribution of

qn
2 (Tn, θ). Note that in the present binomial example an observed value

Tn = 1⁄200 is hardly compatible with large p, say p ≥ .05. The Gaussian

approximations are of doubtful value.

The same recourse to the original theory of confidence sets shows that,

instead of Wald’s ellipsoids, one should have used sets such as

{θ : (Tn − θ)′ Γθ,n (Tn − θ) ≤ cn}. Except under conditions where the Γθ,n vary

little, there is no reason to hope that such sets would behave any better than

Wald’s ellipsoids.

We have said several times that our conditions (A) to (F) are too severe. It

is often possible to get away with much less, according to the following simple

observation: Suppose that you have evidence that the model {Pθ,n ; θ ∈ Θ} can

fit adequately. Suppose also that you have some auxiliary estimate θn
* with

known variability that says that a certain subset An ⊂ Θ has a very high proba-

bility of covering the true θ. Then the validity of (A) to (F) on the entire Θ is

of little relevance. What may matter is that the conditions be satisfied for

θ ∈ An, with the added possibility that condition (E) be modified to allow Tn to

take values in Θ and not merely in An itself.
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Further elaboration on such matters will be found in Section 6.

4. An example of M. Vaeth.

This section refers to the paper by M. Vaeth (1985) and in particular to the

example discussed pages 205-206. Actually we shall not use the exact formula-

tion of Vaeth but a simpler one that exhibits the same phenomenon but in terms

of ‘‘exponential integrals’’ instead of Bessel functions.

For a fixed k let fk (x, θ) be the density

fk (x, θ) =
Fk (θ)
e−θx

_ _____
xk
1_ __ ; x ≥ 1, θ > 0,

with respect to the Lebesgue measure on [ 1, ∞). Here Fk (θ) =
1
∫
∞

e−θx

xk
1_ __ dx is

the ‘‘exponential integral of order k’’ usually denoted Ek (θ). We shall use Fk

instead of Ek to avoid possible confusion with expectations.

For such a family the following relations hold:

1) Fk+1 (θ) =
k
1_ _ [ e−θ − θ Fk (θ) ]

2) Eθ X =
Fk (θ)

Fk−1 (θ)_ ______

3) Eθ X2 =
Fk (θ)

Fk−2 (θ)_ ______

The maximum likelihood estimate θ̂ is the solution of the equation

X =
Fk (θ̂)

Fk−1 (θ̂)_ ______ = Eθ̂ X,

at least for k ≤ 3. For k > 3 the range of Eθ X is limited. One has

Eθ X ≤ (k−1)⁄(k−2). Hence, for X > (k−1)⁄(k−2) the m.l.e. θ̂ is equal to zero.

Otherwise, if k < 3, the m.l.e. coincides with the estimate obtained by the
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method of moments.

The phenomenon discussed by Vaeth is as follows. Consider the parametri-

zation by β (θ) = Eθ X so that X is the m.l.e. of β (θ).

To test the hypothesis that θ = θ1 or to build confidence intervals, Wald sug-

gests the use of the expression [ X − β (θ1) ]⁄saˆ where σ̂ is the m.l.e. of the stan-

dard deviation of X. For values of k such that 1 ≤ k ≤ 2 this expression tends

to zero as X tends to infinity. Thus large values of X, which tend to indicate

values of θ close to zero, are held compatible with any value of θ. For k > 1,

1 < k ≤ 2 this is not too disturbing since the sequences {fk ( . . , θ)} and

{fk ( . . , θ1)} are contiguous as θ → 0. In fact fk (x, θ) tends to

fk (x, 0) = (k−1) x−k, x ≥ 1. For k < 1 the phenomenon in question does not

occur: the coefficient of variation of X stays finite as θ → 0.

This can be easily checked by using the classical expansions of Fk (θ) for θ

near zero. They can be found, for instance, in Abramowitz and Stegun (1964)

or can be derived directly.

For k = 1 the m.l.e. of β (θ) is X itself. It has a variance

Var X =
F1 (θ)

F−1 (θ)_ ______ −


 F1 (θ)

F0 (θ)_ _____




2

.

Now F0 (θ) = e−θ ⁄ θ and for θ tending to zero F1 (θ) behaves like — log θ − γ

where γ is Euler’s constant γ = −
0
∫
∞

e−y log y dy ∼ .57. Thus for small θ the vari-

ance of X will behave like

F1 (θ)

F−1 (θ)_ ______ =


 θ2

1_ __ e−θ +
θ
1_ _ e−θ



 F1 (θ)

1_ _____

∼
θ2 | log θ |

1_ ________.
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The maximum likelihood equation shows that, for large X, the m.l.e.
θ̂
1_ _

behaves like X log X so that the estimated standard deviation of X is of the

order

θ̂
1_ _

√| log θ̂ |

1_ _______ ∼ X √  log X,

hence the behavior of the criterion [ X − β (θ1) ] ⁄ σ̂.

There is nothing particularly surprising about this fact. As θ → 0 the distri-

bution of X is far from normal. Its expectation and standard deviation are poor

indications of location and spread. For instance the median of X behaves like

1 ⁄ √  θ while Eθ X behaves like [ θ | log θ | ]−1. The αth quantiles behave like θ−α.

The distribution of X cannot be ‘‘stabilized’’ by a change of location and scale.

The observed misbehavior of Wald’s criterion extends to some other expres-

sions. For instance if one uses an estimate θ obtained by putting X equal to its

median and then estimate the spread of the distribution by an interquartile range

computed at θ the resulting ratio will also tend to zero as X → ∞.

All the arguments used above in this section use only one observation. If

one has n independent identically distributed observations X1, X2, . . . , Xn their

average X   n will still be the maximum likelihood estimate of Eθ X. As explained

by Vaeth (1985) the misbehavior noted for one observation persists for every

value of n. Now let us see how the functions qn
2 (Tn, θ) of Section 3 can

behave. Here qn
2 (s, t) = nq2 (s, t) where q is the function computed for one

observation only.

The argument of Section 3 depend on finding estimates Tn that are well

behaved and in particular satisfy the condition (F) of Section 3. One can easily

show that, here, the m.l.e. θ̂n satisfies condition (F) even though, as we shall

see, it does not satisfy the other conditions of Section 3 uniformly on
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Θ = (0, ∞).

Proposition 4. Let {pθ ; θ ∈ (0, ∞)} be an exponential family of rank one in an

arbitrary parametrization. Then for n independent identically distributed obser-

vations and for the m.l.e. θ̂n one has

Pθ, n {qn
2 (θ̂n, θ) ≥ 8z} ≤ 2 e−z

for all z > 0.

Proof. An exponential family in its natural parametrization has the form

pθ (dx) = exp {θ x − A (θ)} µ (dx)

for some measure µ. Thus

q2 (θ, t) = 8 {
2
1_ _ [ A (θ) + A (t) ] − A [

2
θ + t_ ____ ] }.

Since A is a convex function, for θ fixed, q2 (θ, t) increases as | θ − t | increases.

Consider any particular t > θ and the test based on n observations that minim-

izes the sum of probabilities of error for θ and t. This sum of probabilities of

error is || Pθ, n ⁄ ⁄\ \ Pt,n || ≤ exp {−
8
1_ _ qn

2 (θ, t)}. However, by concavity of the loga-

rithm of likelihood ratios, if the test in question rejects t, the test of θ against

t′ > t will also reject t′. Thus, except for probability at most exp {−
8
1_ _ qn

2 (θ, t)}

for Pθ, n, one will reject all t′ ≥ t. The same argument applies to values s < θ.

Hence the result, since the inequality qn
2 (θ̂n, θ) ≥ 8z is invariant under all one to

one reparametrizations. 

Note the 8z in the expression in curly brackets of Proposition 4. If qn
2 (θ̂n, θ)

was actually chi-square one could replace it by 2 z for the same bound on the

probabilities. Part of the loss can be attributed to the passage from

|| Pθ, n ⁄ ⁄\ \ Pt,n || to Hellinger affinities but part may just be due to the fact that,
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here, nothing much is known about the distribution of θ̂n or qn
2 (θ̂n, θ).

In the present specific example one can obtain a variety of results about the

asymptotic behavior of qn
2. Of course, if θ is kept fixed, independent of n, the

variables √  n [ X   n − Eθ (X) ] will be asymptotically normal and, θ̂n being the

m.l.e., qn
2 (θ̂n, θ) will be asymptotically χ1

2. If, on the contrary, the true θ is a θn

that depends on n and tends to zero, the behavior of qn
2 (θ̂n, θ) can be very dif-

ferent from chi-square. To investigate what can happen consider two sequences

{sn} and {tn} both tending to zero and such that sn > tn. For n observations the

Hellinger transform of the pair {Psn, n, Ptn, n} has a logarithm of the form

φn (α) = n log ∫ [ f (x, sn) ]1−α [ f (x, tn) ]α dx

= n {log F [ (1 − α) sn + α tn ] − (1 − α) log F (sn) − α log F (tn)}

where F (v) is the exponential integral F (v) = F1 (v) =
1
∫
∞

e−vx x−1 dx.

For small z it has the expansion

F (z) = | log z | − γ +
j=1
Σ
∞

aj zj,

and its logarithm has the expansion

log F (z) = log | log z | + log [1 −
| log z |

γ_ _____ +
| log z |

1_ _____ Σ aj zj ].

Let us first look at the log | log | term in the expansion. For φn (α) they give

a first term

ωn (α) = n {log | log [ (1 − α) sn + α tn ] | − (1 − α) log | log sn | − α log | log tn |}.

To investigate the behavior of this we shall assume tn < sn and let

tn = (1 − ξn) sn, 0 < ξn < 1. Then (1 − α) sn + α tn = sn [ 1 − α ξn ] and

| log [ (1 − α) sn + α tn ] | = | log sn | − log (1 − α ξn).
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Similarly | log tn | = | log sn | − log (1 − ξn) = | log sn |



1 −

| log sn |

log (1 − ξn)__________



.

This yields

ωn (α) = n



log [ 1 −

| log sn |
1_ ______ log (1 − α ξn) ] − α log [ 1 −

| log sn |

log (1 − ξn)__________ ]



.

To study this it is convenient to introduce the notation

δn =
| log sn |

1_ ______

so that

ωn (α) = n {log [ 1 − δn log (1 − α ξn) ] − α log [ 1 − δn log (1 − ξn) ]}.

We shall distinguish three cases:

Case A, n δn → ∞. Then, for ωn (α) to stay bounded, ξn must tend to zero. In

such a case one has −log (1 − α ξn) ∼ α ξn +
2
1_ _ α2 ξn

2 and

−log (1 − ξn) ∼ ξn +
2
1_ _ ξn

2 and ωn (α) behaves like

n



log [ 1 + δn (α ξn +

2
1_ _ α2 ξn

2) ] − α log [ 1 + δn (ξn +
2
1_ _ ξn

2) ]



.

Expanding the logarithms once more, one sees that the terms in δn ξn cancel.

The expression remains bounded if n δn ξn
2 remains bounded. If n δn ξn

2 → σ2

the term ωn (α) tends to
2
1_ _ σ2 [ α2 − α ]. This is the logarithm of the Hellinger

transform for a Gaussian experiment.

This suggests looking at a family Fn = {Qλ, n} where Qλ, n is Pθ, n with a θ

taken equal to sn + λ sn [ log sn ⁄ n ]1⁄2 with λ restricted so that θ > 0. It can be

shown that the experiments Fn converge to a Gaussian shift experiment linearly

indexed by λ. Thus, the corresponding qn
2 (θ̂n, θ) will still behave asymptotically
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as chi-square, with one degree of freedom.

Case B, n δn → b, finite, positive. Then ωn (α) can stay bounded for values ξn

that stay away from zero and unity. If ξn → ξ, 0 < ξ < 1 then ωn (α) tends to

−b [ log (1 − α ξ) − α log (1 − ξ) ]. This shows that, under Psn,n, the distribution

of log dPtn,n ⁄ dPsn,n tends to a shifted gamma distribution. The sequences are

contiguous.

Case C, nδn → 0. In this case it is possible to let ξn tend to unity in such a

way that n δn log (1 − ξn) stays bounded. If −n δn log (1 − ξn) tends to a limit b

then ωn (α) → −bα. This is the log Hellinger transform for a pair (Q0, Q1)

where the part of Q1 that is dominated by Q0 has a constant density equal to

e−b. The part of Q1 that is Q0 singular has mass 1 − e−b. This implies that the

sequence {Psn, n} is contiguous to {Ptn, n} but the reverse is not true. Here

qn
2 (sn, tn) tends to 4 b and || Psn, n ⁄ ⁄\ \ Ptn, n || tends to e−b.

In the above derivations we have used only the log log term in the expansion

of log F. However, it is easy to check that the other terms tend to zero.

In all cases, the logarithm of likelihood ratio Λn = log
dPsn, n

dPtn, n_ _____ has the form

Λn = an X   n + bn where an and bn are constants and where X   n =
n
1_ _

j=1
Σ
n

Xj. Since

X   n is the maximum likelihood estimate of its expectation β (θ) = Eθ X   n the

expression qn
2 (θ̂n, θ) can also be written in terms of X   n and β as, say q n

2 (X   n, β).

Since, by Proposition 4, q n
2 (X   n, βn) remain bounded in Pθ, n probability no

matter what βn = β (θn) does, one can approximate q n
2 (X   n, βn) by the expres-

sions used above for −8 ωn (1⁄2). In case B this leads to an approximation of the

type

−8 b log 2 + 8 b log









 βn

X   n_ __




1⁄2

+


 X   n

βn_ __




1⁄2






.
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Since (X   n − cn) ⁄ βn is approximately distributed as a gamma variable with

exponent b, this does not seem to behave like a chi-square. For case C the vari-

ables q n
2 (X   n, βn) seem to behave in the same manner as (n ⁄ logβn) logX   n ⁄ βn. By

Proposition 4 this must stay bounded in Pθn, n probability for βn = Eθn
X. If θn

is replaced by a tn = (1 − ξn) θn such that (n ⁄ log βn) log (1 − ξn) → b, then

(n ⁄ log βn) log (X   n) ⁄ βn will have for Ptn, n a distribution with a mass 1 − e−b tend-

ing to infinity. This should be taken into account in the construction of

confidence intervals.

5. Some heteroschedastic gaussian cases.

As seen in Section 3 heteroschedastic gaussian experiments occur routinely

in asymptotic theory. In fact the conditions (A) to (E) of Section 3 provide for

a situation where the experiments En = {Pθ, n ; θ ∈ Θn} are such that

∆ (En, Gn) → 0 for the heteroschedastic experiment Gn of condition (D). For

this reason we shall study here the behavior of some heteroschedastic gaussian

experiments. However, for simplicity we shall only use parameters θ that run

through an interval of the real line, say Θ = [ a, ∞) where a is a large positive

number.

Let X be a normal variable whose distribution depends on a parameter

θ ∈ [ a, ∞). Assume that, given θ, the variable X has expectation θ and a vari-

ance σ2 (θ) =
γ (θ)

1_ ____.

The family so obtained defines an affinity

ρ (s, t) =


 [ γ (s) + γ (t) ]2

4 γ (s) γ (t)_ ____________




1⁄4

exp {−
4
1_ _

γ (s) + γ (t)
γ (s) γ (t)_ _________ | t − s |2}

yielding
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q2 (s, t) = −8 log ρ (s, t)

= 2 log


 4 γ (s) γ (t)

[ γ (s) + γ (t) ]2
_ ____________





+ 2
γ (s) + γ (t)

γ (s) γ (t)_ _________ | t − s |2.

We shall be interested in situations where γ is a smooth decreasing function

that tends to zero rapidly as θ → ∞. For a first example let us take γ (θ) = e−2θ.

Then

q2 (s, t) = 4 log cosh (t − s) +
cosh (t − s)

e−(s+t)
_ _________ (t − s)2,

indicating that, for s and t large, the main contribution to q2 (s, t) will arise from

the first term. This is the term that takes into account the difference between

the variances at s and t.

The negative of the logarithm of the likelihood function is

2
1_ _ (X − θ)2 e−2θ + θ =

2
1_ _ [ X − 1⁄2 log v ]2 v−1 +

2
1_ _ log v,

where v is the variance v = e2θ. The maximum likelihood equation is

exp {2θ̂} = (X − θ̂) + (X − θ̂)2.

In terms of the variance v this becomes

v̂ = (X −
2
1_ _ log v̂) + (X −

2
1_ _ log v̂)2,

showing that, for | X | large, v̂ will behave approximately like X2 + X. Approxi-

mate solution of the likelihood equation shows that, for | X | large, θ̂ (restricted

to (a, ∞), a large) behaves approximately like log | X |. Some standard methods

of constructing confidence intervals can lead to very different results. The stan-

dard ‘‘equal tails’’ intervals with probability of coverage near .955 would be

given by inverting the inequalities θ − 2eθ ≤ X ≤ θ + 2eθ. However, for

X ≥ −(1 + log 2) the lower barrier is ineffective. The resulting intervals would
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be half infinite, of the form [ c (X), ∞). A similar phenomenon occurs for X

negative but | X | large.

If, on the contrary, one uses intervals of the type X − 2σ̂ ≤ θ ≤ X + 2σ̂

where σ̂ is estimated, then the intervals would take the form [ a, c1 (X) ] with an

ineffective bounding for small values. For instance if one estimate θ by log | X |

for | X | ≥ 1 one would estimate σ̂ by | X | and get intervals of the type

X − 2 | X | ≤ θ ≤ X + 2 | X |. The lower bound is always negative and therefore

ineffective since we assume θ ≥ a with a > 0, large. As | X | → ∞ these inter-

vals produce an instance of the Hauck-Donner-Vaeth phenomenon. They accept

any finite value of θ.

For confidence intervals based on the function q the situation is different.

Let us take some estimate θ̃. If ṽ = σ2 (θ̃) is large, the main contribution to

q (t, θ̃) will be 4 log cosh (t − θ̃). Thus the intervals will be given approximately

by an inequality of the type {θ : cosh (θ − θ̃) ≤ eb⁄4}, that is

| θ − θ̃| ≤ cosh−1 (eb⁄4) = c.

For simplicity, let us use the crude estimate ṽ = X2 so that

θ̃ =
2
1_ _ log X2 = log | X | with | X | assumed ≥ 1. Then we have intervals

equivalent to | θ − log | X | | ≤ c. For θ very large these intervals have a proba-

bility of coverage about equal to P {log | ξ | ≤ c} for a ξ with a N (0,1) distribu-

tion. Thus one can consider intervals obtained from a value c of the order of

log 2. Note that these have a fixed length as | X | → ∞. This is in sharp contrast

with the intervals obtained from chi-square type formula.

One could object that, for the normal family N (θ, e2θ) used above, there is

nothing ‘‘asymptotic’’. However, the same kind of analysis will apply for each

fixed n to a family of the type {N (θ,
n
1_ _ e2θ) ; θ ≥ 1}. This shows that for many

densities f (x, θ) that are sufficiently smooth functions of θ, the analysis will
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apply for n i.i.d. observations X1, . . . , Xn provided that the Fisher information

decreases exponentially fast as θ → ∞.

The situation described here may seem extreme in that one would not expect

to encounter very often observations X whose standard deviation is an exponen-

tial function of their expectation. However, the same kind of analysis can be

carried out for a variety of other cases. In fact the exponential increase was

suggested by the standard binomial if put in its logit form. Let Z be a binomial

B (n, p) variable. Take as new variable X = log
n−Z

Z_ ___ and as new parameter

θ = log
1−p

p_ ___. For fixed θ as n → ∞ √  n (X − θ) is asymptotically normal with

mean zero and variance [ 1 + eθ ]2 e−θ. Thus, if we pretend that X is actually

normal, we are in the situation just described with variances equivalent to e| θ |

for | θ | large. This means that an analysis similar to the above could be applied

to this case. However, as we have already seen in Section 3, one need to take

further precautions because the asymptotic normality is far from been uniform in

θ.

6. The choice of estimates, the domain of qn and other remarks.

The use of confidence sets of the type {θ : qn
2 (Tn, θ) ≤ cn (θ)} require the use

of appropriate estimates Tn, especially if one takes function cn (θ) that are

independent of θ.

In this restricted case the least one can require is that qn
2 (Tn, θ) be bounded

in probability independently of θ.

For independent observations, with individual distributions pθ,j,n, existence of

such estimates has been proved by Le Cam (1975), (1986) and Birgé (1983)

under a metric dimension restriction on the set Θ. Instead of the function qn
2,

Le Cam used a square metric Hn
2 (s, t) =

j
Σ hn,j

2 (s, t) where
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hn,j
2 (s, t) =

2
1_ _ ∫ [ ((dps,j,n)1⁄2 − (dpt,j,n)1⁄2 ]2 .

The arguments of Le Cam or Birgé even provide bounds for
θ

sup Eθ Hn
2 (Tn, θ)

that depend on the behavior of the dimension function of Θ for the metric Hn.

Such bounds can be translated into probabilistic bounds for qn
2 (Tn, θ) whenever

the individual hn,j (s, t) are small. In fact they give bounds for Eθ qn
2 (Tn, θ) for a

Poissonized version of the system {pθ,j,n ; θ ∈ Θ, j = 1,2,...}. However the argu-

ments used in the constructions of Le Cam or Birgé are too crude to provide

approximations to the distributions of qn
2 (Tn, θ).

The cases covered by the arguments of Le Cam (1975) (1986) or Birgé

(1983) are much less restricted than those where our Assumptions (A) to (E) of

Section 3 can be satisfied. However, even (A) to (E) can be satisfied in cases

where the maximum likelihood estimates behave in a disastrous fashion. There

exist many examples. To cite only one, consider densities of the form f (x − θ)

with f (x) = c | x |−1 exp{−| x |2 ⁄ 2} where x ∈ I R4 and | x | is the length of x. In

this example, and many others, the LAN based theory of Le Cam (1974), (1986)

will provide suitable estimates. Note however that the LAN theory and the con-

ditions (A) to (E) rely on the virtues of special parametrizations. This is clear

for (A) to (E). The conditions (B) (C) and (E) or (F) are parametrization free.

However Condition (A) is not.

If the smallest eigenvalues of the matrices Mτn,n′ Mτn,n of condition (A) tend

to infinity as n → ∞, one can claim a form of local invariance under smooth

transformations of the parameter space. If φ is such a smooth transformation,

replacing Tn by φ (Tn) and θ by φ (θ) will not matter much locally since for Tn

close to θ one has approximately φ (Tn) − φ (θ) ∼ φ
.

(θ) (Tn − θ) for a derivative

φ
.
. However for large | Tn − θ | the difference φ (Tn) − φ (θ) may bear no relation

to φ
.

(θ) (Tn − θ). The difficulties pointed out by Hauck and Donner and by
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Vaeth stem at least in part from the fact that | Tn − θ | may be large but

| [ φ
.

(θ) ]−1 [ φ (Tn) − φ (θ) ] | may be small. If so, that can mean that confidence

sets from quadratics based on Tn may be all right while those based on φ (Tn)

may be poor. The choice of parametrization leads to complex problems. For

instance one can try to make the distribution under Pθ,n of the quadratic

(Tn − θ)′ Kθ,n (Tn − θ) close to that of a chi-square. An alternative endeavor is

to try to make the experiments {Fθ,n ; θ ∈ Θ} as close to Gaussian shift ones as

possible. For this latter aim, see Mammen (1987) and Section 7 below.

Still another method is to avoid reparametrizations of Θ altogether. Le Cam

(1986), Chapter 11, proposes to ignore the vector structure of Θ and work

instead in a space M0 (Θ) of finite signed measures on Θ. The estimates Tn are

then replaced by ‘‘centering variables’’ Zn with values in M0 (Θ) and the prob-

lem becomes one of choosing appropriate quadratic forms Γn on M0 (Θ). It is

shown in Le Cam (1986) that, for the asymptotically Gaussian shift case, one

can construct quadratic forms with suitable properties. They are chosen locally

around auxiliary estimates ω̂n of θ with values in Θ and in such a way that

Γn (Zn − δτ) becomes large if Pθ,n is the true distribution but qn (τ, θ) becomes

large. (Here δτ is the Dirac measure that gives mass unity to τ).

This technique also gives a partial answer to possible extensions of the

definition of qn
2 (Tn, θ) if Tn takes values outside of Θ. However the technique

is entirely dependent on local approximability of the {Pθ,n ; θ ∈ Θ} by Gaussian

shift experiments and its application may be complex.

This brings us back to the conditions (A) to (E) and the fact that they are

unlikely to hold for a parameter set Θ that is not the entire I Rk. In very many

cases one does have to deal with proper subsets Θ of I Rk on which one could

prove that conditions (A) to (D) hold for suitably constructed statistics Tn.

However these statistics do not always take their values in I Rk.
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It is their tempting to enlarge the domain of the function qn to pairs (s, t)

where either s or t is in I Rk, but not in Θ. For some cases, such as the binomial

B (n, p), 0 < a ≤ p ≤ b < 1, an extension is immediate and then (A) to (D) will

be satisfied. More generally, since qn
2 is a monotone increasing function of a

Hilbertian distance, the problem is analogous to the following problem: One is

given a set Θ ⊂ I Rk with a Hilbertian distance H. Here H2 would be

H2 (s, t) =
2
1_ _ ∫ [ (dPs,n)1⁄2 − (dPt,n)1⁄2 ]2. Can one extend the defunction of H to

all of I Rk and what would be a reasonable extension?

We do not know what the situation is. Fortunately one can often get around

the problem by a simple procedure that also allows dispensing with the severe

restriction that conditions (A) to (D) be valid uniformly on all of Θ.

The procedure is simply to first use some trustworthy confidence region An

with good coverage probability and then verify (A) to (D) on An only. One lets

the estimate Tn take values arbitrarily in Θ or in any set for which qn can be

defined. this can lead to statements lacking in mathematical aesthetics but not in

practical value, since, in practice, n does not tend to infinity.

To give an example, let us consider Vaeth’s situation as described in Section

4. That is let us assume that we observe variables X1, X2 , . . . , Xn that are all

independent and distributed according to the density

f (x, θ) =
F1 (θ) x

e−θx
_ ______ , x ≥ 1 , θ > 0 .

Let us assume that n is very substantial, say n = 106. Then one can construct an

empirical cumulative distribution function Hn (x) =
n
1_ _

j=1
Σ
n

I (Xj ≤ x). Let H (x, θ)

be the cumulative corresponding to f ( . . , θ). Define a restricted range Rn for θ

by
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Rn = {θ : √  n
x

sup | Hn (x) − H (x, θ) | ≤ 4} .

For any θ0, the probability under Pθ0,n that Rn does not contain θ0 is of the

order of 10−13. This does not tend to zero as or tends to infinity but it is close

enough to zero for many and perhaps most practical purposes.

For n = 106 this would limit us to a range

Rn = {θ ;
x

sup | Hn (x) − H (x, θ) | ≤ 4.10−3}.

The first thing to do is to check that Rn is not empty. If Rn is empty, as will

happen often, the modelling by the densities f (x, θ) is not credible and one

should rethink the problem anew. If Rn is not empty and if one is sufficiently

convinced of the validity of the model, one can argue as follows.

For the densities f (x, θ) the vertical distance between cumulatives or just 1/2

of the L1-distance between densities. Since this is larger than the square Hel-

linger distance, one sees that two values (s, t) that belong to Rn must be such

that

h2 (s, t) =
2
1_ _ ∫ {[ f (x, s) ]1⁄2 − [ f (x, t) ]1⁄2}2 dx ≤

1000
8_ ____

giving for q2 (s, t) = −8log [ 1 − h2 (s, t) ] an upper bound approximately equal to

.065.

Assuming again that the model is correct one can try using the inequality of

Proposition 4, Section 4 that says that for the maximum likelihood estimate θ̂n

one has

Pθ,n {nq2 (θ̂n, θ) ≥ 222} ≤ 10−12 .

Applying this to pairs (s, t) as above, this would yield a bound of the order of

q2 (s, t) ≤ (.045) 10−2, a sizeable improvement on the preceding bound, leading to

a more restricted range Rn
*.
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The next step would be to check whether on Rn, or on the more restricted

range suggested by θ̂n, a Gaussian shift approximation seems appropriate. Now

one can try Gaussian shift approximations whose random term is linear in θ

itself, or in β (θ) = Eθ X or in any other parametrization that seems suitable.

According to Mammen (1987) the parametrization that yields the best fitting

local Gaussian shift experiment is one where one uses a function θ ∼> ξ (θ)

such that | ξ (t) − ξ (θ) |2 = nh2 (θ, t), or, approximately, | ξ (t) − ξ (θ) |2 = qn
2 (t, θ).

As explained before, the choice of parametrization will not affect at all the

distribution of terms such as qn
2 (θ̂n, θ) = nq2 (θ̂n, θ). It will however affect the

quadratic expressions used to approximate qn
2 (θ̂n, θ) and the quality of the chi-

square approximation to the distribution of the quadratic. For instance, if we

use the parametrization by β (θ), one would use a quadratic of the type

[ X   n − β (θ) ]2 [ Varθ̂ X ]−1. This seems safe as long as Varθ X does not change

much in the range Rn
* to which we have limited θ, and as long as the left most

point of Rn
* stays sufficiently far from zero. In fact, let l n be the left most point

of the range Rn
*. According to Section 4, one will still be able to use normal

approximations even if l n is small provided that n | log l n |−1 be large.

In any event this shows that the technique can be used in spite of the fact

that the assumptions (A) to (E) do not hold uniformly on Θ.

7. Reduction to the homoschedastic case.

As mentioned previously, the difficulties pointed out by Hauck and Donner

(1977) and Vaeth (1985) arise in part from the fact that the estimates Tn may

have covariances that vary rapidly with θ. If Θ is a subset of the real line, one

can use variance stabilizing transformations. Vaeth (1985) shows that such

transformations will prevent gross misbehavior of Wald’s criterion, at least for

the case of exponential families.
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When Θ ⊂ I Rk, k > 1, the situation is more complex. Under the conditions

(B) (C) (D) of Section 3 one can approximate the experiments

En = {Pθ,n ; θ ∈ Θ} by heteroschedastic Gaussian ones, say Gn = {Gθ,n ; θ ∈ Θ}.

Such an approximation yields for each θ a quadratic form on I Rk, using as a

matrix the inverse covariance matrix of the Gaussian Gθ,n. Thus we obtain on

Θ a structure of a Riemannian manifold. Transformations of Θ that would

replace these variable inverse covariance matrices Γθ,n by a fixed matrix amount

to an isometric imbedding of the Riemannian manifold into a Euclidean space.

There are theorems that indicate the possibility of such embeddings: E. Cartan

says that, locally, a manifold of dimension k can be imbedded in Rm for

m =
2
1_ _ k (k + 1). This is only a local result. There is a global embedding result

of Nash that says that the entire manifold, if it is of class C3 can be isometri-

cally embedded in I Rm for a value of m greatly in excess of
2
1_ _ k (k + 1). See

for instance J.T. Schwartz (1969), page 43 and J. Dieudonné (1971), volume 4,

page 341. A survey of the situation by M.L. Gromov and V.A. Rokhlin (1970)

gives a value m =
2
1_ _ k (k + 1) + 3k + 5.

Unfortunately the dimension m of the embedding space is very much larger

than that of the original Θ ⊂ I Rk. Thus Θ becomes a very thin subset of I Rm.

Of course, to prevent misbehavior of Wald’s criteria it is not necessary to make

the inverse covariance matrices Γθ,n of Gθ,n exactly constant. Taking a particu-

lar θ0 as a reference point, let Γn = Γθ0,n and take positive definite square roots.

If the eigenvalues of Γn
−1⁄2 Γθ,n Γn

−1⁄2 do stay close to unity as θ varies then

Wald’s criteria will at least not be subject to gross misbehavior. This suggest

the possibility of embedding that are not exactly isometric but only close to

isometric. For these we do not know what the situation is.
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The problem of selection of a parametrization is also related to the problem

of selection of best fitting local Gaussian shift experiments studied by E. Mam-

men (1987). He shows that for one dimensional exponential families around a

point θ0, the optimal choice is a parametrization in which a the expectation ξ (t)

of the normal approximation satisfies the relation

Hn
2 (t, θ0) = | ξ (t) − ξ (θ0) |2

for Hn
2 (s, t) = nh2 (s, t) as in the beginning of Section 6. According to Mammen

(1988), personal communication, the result extends to k-dimensional situations

for k > 1. The possibility of embedding Θ in a Hilbert space and using global

Gaussian shift approximations is also discussed in Le Cam (1986) page 266.

Note however that a reparametrization cannot change the distributions of

likelihood ratios. Thus, for any such embedding to lead to good Gaussian shift

approximations one needs at least that, locally the experiments {Pθ,n ; θ ∈ An}

An = {θ : qn
2 (θ, θ0) ≤ c} admit good Gaussian shift approximations.

Appendix

The affinity for two Gaussian measures

In Section 3 and Section 5 we have used a formula for the Hellinger affinity

∫ [ dG1 dG2 ]1⁄2 between two Gaussian measures that may have different means

and covariance matrices. The formula goes back at least to C.H. Kraft (1955).

However, in the published version of Kraft’s thesis it was misprinted and is

barely recognizable. Matusita (1967) also gives an expression, but it is different

from the form used here. The derivation of the formula is not difficult but its

implications are many. Thus we shall present here two derivations. One is

intended for finite dimensional situations. The other is meant for arbitrary

dimensions.



- 36 -

Let P and Q be two gaussian measures on a finite dimensional vector space

I Rk. Assume that P has expectation θ and that the inverse of its covariance

matrix is Γ so that it has a density

(2π)k⁄2
(det Γ)1⁄2
_ _______ exp {−

2
1_ _ (x − θ)′ Γ (x − θ)}

with respect to the Lebesgue measure of I Rk. Similarly, let Q have expectation t

and inverse covariance matrix K.

Multiplying the square root of the densities will yield, in the exponent, a

quadratic form that, except for the coefficient (−
4
1_ _), is equal to

(x − θ)′ Γ (x − θ) + (x − t)′ K (x − t).

To reduce this to a tractable form assume that Γ and K are both invertible and

introduce a centering v by

(Γ + K)v = Γ θ + K t.

Then the above quadratic becomes

(x − v)′ (Γ + K) (x − v) + (v − θ)′ Γ (v − θ) + (v − t)′ K (v − t).

The term (v − θ) can be expressed as (v − θ) = (Γ + K)−1 K (t − θ). Similarly

(v − t) = (Γ + K)−1 Γ (θ − t).

Let M be the matrix M =
2
1_ _ (Γ + K) and let ∆ =

2
1_ _ (Γ − K) so that

Γ = M + ∆ and K = M − ∆. Then (v − θ) takes the form

(v − θ) =
2
1_ _ (t − θ) −

2
1_ _ M−1 ∆ (t − θ) and v − t is obtained by changing ∆ to

−∆. Then the sum of the two terms of the quadratic that do not involve (x − v)

will yield a quadratic in (θ − t) with a matrix

4
1_ _ {(I − M−1 ∆)′ Γ (I − M−1 ∆) + (I + M−1 ∆) K (I + M−1 ∆)}. Direct computation

shows this to be equal to
2
1_ _ [ M − ∆′ M−1 ∆ ]. Thus the term in the exponent of
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the square root of the product of the densities is

−
4
1_ _ (x − v)′ (Γ + K) (x − v) −

8
1_ _ (t − θ)′ [ M − ∆′ M−1 ∆ ] (t − θ).

Now integrate out the variable x. One will get a term equal to

[ det
2

(Γ + K)_______ ]−1⁄2 multiplied by exp {−
8
1_ _ (t − θ)′ [ M − ∆′ M−1 ∆ ] (t − θ) }.

Combining this with the determinantal coefficients of the densities yields an

affinity equal to

[ det M ]1⁄2
[ (det Γ) (det K) ]1⁄4
_ _______________ exp {−

8
1_ _ (t − θ)′ [ M − ∆′ M−1 ∆ ] (t − θ)}

and the result quoted in Section 2 follows by using the fact that the determinant

of a product of two matrices (square of same order) is the product of the deter-

minants. This shows that ∫ √  dP dQ is a product of two terms. One of them

involves differences between expectations in the form

exp {−
8
1_ _ (t − θ)′ [ M − ∆′ M−1 ∆ ] (t − θ)}.

The other involves only the inverse of the covariance matrices in the form

{det [ I − M−1 ∆)2 ]}1⁄4.

For many uses this determinantal form is not convenient. A form using the

covariances themselves can also be used. Let A = Γ−1 be the covariance matrix

of P and let B = K−1 be the corresponding matrix for Q. The determinantal

term in ∫ √  dP dQ can also be written

[ det A ]−1⁄4 [ det B ]−1⁄4 {det [
2

A−1 + B−1
_ _________ ]}−1⁄2.

Its fourth power is

{[ det A ] [ det B ] det{[
2

A−1 + B−1
_ _________ ]2} }−1 =

det (
2

A+B_ ____)2

det AB_ __________.
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Write S =
2
1_ _ (A + B), D =

2
1_ _ (A − B). Then A = S + D, B = S − D and

AB = S2 − D2. Thus the determinantal term can also be written as fourth root

of

det [ I − (S−1 D)2 ].

This form is particularly convenient for passage to infinite dimensions. To look

at such a case, take a vector space V over the real numbers. Let X and Y be

two processes v ∼> X (v) and v ∼> Y (v) indexed by V and linear in v. Assume

that X (v) is Gaussian with expectation zero and variance E | X (v) |2 = Ã(v).

Similarly let E Y(v) = 0 and E | Y(v) |2 = B̃(v). These are squares of Hilbertian

seminorms on V. The processes X and Y yield distributions that can be

represented by measures P and Q on the algebraic dual of V.

If V contains sequences {vn} such that Ã(vn) + B̃(vn) stays bounded away

from zero but min [ Ã(vn), B̃(vn) ] → 0 then P and Q are obviously disjoint.

Thus if ∫ [ dP dQ ]1⁄2 = ρ (P, Q) > 0 the two seminorms Ã1⁄2 and B̃1⁄2 must be

equivalent in the sense that there exists numbers a, b, 0 < a ≤ b < ∞ such that

a Ã(v) ≤ B̃(v) ≤ b Ã(v) for all v. This shows that there will be no loss of gen-

erality in assuming that if S̃ =
2
1_ _ (Ã + B̃) then S̃(v) = 0 only at v = 0. Also one

can assume V complete for the norm S̃1⁄2 so that (V, S̃1⁄2) is a Hilbert space. Let

X be the dual of V for the norm S̃1⁄2. It is clear that the inner product [ . . | . . ]A

defined by Ã on V can be represented as [ u | v ]A = < u, Av > where the bracket

< u, x > is the evaluation of the linear function x ∈ X at u ∈ V and A is a linear

map of V onto X such that < u, Av > = < v, Au >. Similarly, the inner product

corresponding to B can be written < u, Bv > and the inner product defined by S

is < u, Sv > where S is the canonical identification of the Hilbert space (V, S̃1⁄2)

with its dual. The inverse S−1 of that identification map sends X onto V. We
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shall also denote the norms of (V, S̃1⁄2) and of its dual by the symbols || v ||, so

that || v ||2 = S̃(v).

Consider then a finite dimensional subspace H of V. For the processes X

and Y restricted to H we have distributions PH and QH. It is clear that

∫ [ dPH dQH ]1⁄2 ≥ ∫ [ dP dQ ]1⁄2.

Let Π be the orthogonal projection of V onto H in the Hilbert space (V, S̃1⁄2).

Let Πt be the transpose of Π on the dual space X of V. One can show that

Πt SΠ = SΠ. Indeed, let H0 = {x : < v, x > = 0, all v ∈ H} be the polar of H in

X. For any y ∈ X one has < (1 − Π)v, y > = < v, (1 − Π)t y >. Thus if one has

v ∈ H < v, (I − Π)t y > = 0 and therefore (I − Π)t y ∈ H0. The defining relation

for H0 can also be written < Πv, x > = 0 = < v, Πt x > for all v ∈ V. This

means that if x ∈ H0 then Πt x = 0. Therefore H0 = (I − Π)t X.

Now take any v ∈ V and consider

< w, SΠ v > = < w, Πt S Π v > + < W, (1 − Π)t S Π v >. The second term on

the right is equal to < (I − Π)w, S Π v > = [ (I − Π)w | Π v ] where [ . . | . . ] is the

inner product corresponding to S̃ on V. Thus < w, S Π v > = < w, Πt S Π v >

for all v, implying S Π = Πt S Π and SH = Πt X. Let [ . . | . . ]A be the inner pro-

duct defined on V by Ã. The map A from V to X is such that

< u, Av > = [ u | v ]A for all pairs (u, v) of elements of V. By the same argument

there is also a map AH from H to the space H′ = SH = Πt X such that

< u, AH v > = [ u | v ]A for all pairs (u,v) of elements of H. This gives

< u, AH v > = < u, Av > for all such pairs. Equivalently

< Πu, AH v > = < Πu, Av > for all u ∈ V and v ∈ H. Therefore AH v = Πt Av.

Defining BH in a similar manner, we get a difference DH =
2
1_ _ (AH − BH).
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(Note that AH need not be in SH = H′. An example is given by the matrices

A =


ρ
1

1
ρ 



, B =



−ρ

1
1

−ρ 



on the plane). Considering PH and QH as meas-

ures on H′ = SH the formula derived above shows that

[ ρ (PH, QH) ]4 = det [ I − (S−1 DH)2 ] ≥ ρ4 (P, Q) = β, say. Let m be the dimen-

sion of H and let λ1, λ2, . . . , λm be the eigenvalues of S−1 DH. Since

j=1
Π
m

(1 − λj
2) ≥ β and since | λj | ≤ 1 one must have 0 ≤ λj

2 ≤ 1 − β and

j=1
Σ
m

λj
2 ≤ −log β. However

j=1
Σ
m

λj
2 =

j=1
Σ
m

|| S−1 DH uj ||2 for any orthogonal base

{uj ; j = 1, . . . , m} of H. since S−1 preserves the norms, this also means that

j=1
Σ
m

|| DH uj ||2 ≤ −log β.

This is true for any H and any orthogonal sequence {u1, u2, . . . , um,...} in V

yielding
j=1
Σ
∞

|| D uj ||2 ≤ −log β. Thus, if P and Q are not disjoint, D and S−1 D are

Hilbert-Schmidt operators and (S−1 D)2 is an operator with finite trace.

A consequence of this is that one can find in V a basis {uj ; j ∈ J} that is

orthogonal for the norm S̃1⁄2 and also for the norms Ã1⁄2 and B̃1⁄2. To obtain it,

let u1 be such that Ã(u1) is maximized subject to || u1 || ≤ 1. This is the same

problem as maximizing
2
1_ _ [ Ã(u) − B̃(u) ] subject to

2
1_ _ [ Ã(u) + B̃(u) ] ≤ 1.

Equivalently again, subject to the same condition, we are to maximize

< u, Du >. Since D is a compact operator, there does exist a u1 that achieves

the maximum. If u1, . . . , un have been determined, one selects un+1 to maxim-

ize Ã(u) subject to || u || ≤ 1 among those u’s that are orthogonal to u1, . . . , un.

For this basis S−1D is represented by a diagonal matrix and there is no difficulty

in writing the determinant of I − (S−1 D)2 as a product

j
Π {(1 − λj

2) ; j ∈ J} = ρ4 (P, Q).
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A corollary of the above is that if ρ (P, Q) > 0 then P and Q are mutually

absolutely continuous. From this it is easy to derive the Hájek-Feldman

theorem: Two Gaussian measures are either mutually absolutely continuous or

disjoint.
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