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1. Introdugtion. The present paper originated in an attempt
to organize and simplify some of the known results relative to the
asymptotic behavior of empirical cumulative distribution functions.
Such empirical cumulative distributions can conveniently be regarded
as sums of independent random variables whose values lie in suitable
infinite dimensional spaces. It is therefore natural to attempt to
apply to this situation some of the methods which have proved so
successful in handling similar problems for finite dimensional
variables,

A particularly important result for the finite dimensional case
is Kolmogorov's inequality on dispersion of sums, Unfortunately
this inequality does not extend to the infinite dimensional case,
although we shall give here a weaker result which is still valid in
general vector spaces. |

After describing what will be meant by a linear stochastic
process in section 2, we give in section 3 a proof of the inequality
on dispersiom of sums referred to sbove. Section 4 is devoted to
possible applications.

2. Linesr processes. Let gf be a real vector space and let
(2, &, P] be a probability space. Let 2" be the space of all
real-valued measurable functions on (R, &, P]. We shall be
concerned here with entities which can conveniently be described as

linear maps from the space ?} to a space such as 7. Another
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possible description is that the processes considered here, and
called thereafter "linear processes," are families (KX, yD>; y ¢ ??]
of real-valued random variables subject to the restriction that for
every pair (y;, y,) of elements of '9 and every pair (o, a,)

of real numbers

Xy aqyy + 9y, = @ <Koyp) + 6, KK, 7).

Since, however, we shall be concerned mostly with distribution
problems, it will be more convenient to ignore the basic space
(Q,d, P} and reconstruct special probability spaces whenever
necessary.

All computations of probabilities will be made from the joint
distributions of finite sets (X, yj}; Y € ’fal} as is usual in
the theory of stochastic processes. In this respect the first
theorem needed is a theorem of Bochner which can be formulated as
follows.

Let 0 be the space of all linear functionals on the vector
space '9, Let (1 be the smallest 6-field of subsets of 0 with
respect to which all the functions @ — (w, ¥y, y € ?’ are
measurable,

Theorem 1 (Bochner). Let ¢ be a complex-valued function
defined on 7} In order that there exist a probability measure P
on {Q,A&]} such that

o(y) = [ @YD pian)

for every vy ¢ ’;(,, it is necessary and sufficient that
1) ¢(0) = 1.
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2) a —= g¢(ay) is for each y continuous in the real

variable a,

3) 1f c¢ 1is a complex-valued function defined on ?_. and

differing from zero only on a finite subset of 1* then

z £ e(y)e(y') o(y-y') z 0.
yy

If these conditions are satisfied the corresponding P is

uniquely determined on ( by the function .
The family [Kw, y); y ¢ '?} described in the theorem is a

linear process. Further, according to the theorem, every linear
process admits of such a representation. If X 1is a linear process
on the space ‘3«, the characteristic function o(y) = E ei{x'?>
defines a measure P on the space ([, &) of theorem 1. This
measure P will be called the distribution of the linear process X.

Consider now the space ®, of complex functions defined on 0
by expressions of the type

f(w) == u(y)ei<m’y>
4

where o is a complex function vanishing outside of a finite subset
of ? Let 750 be the space of functions which are uniform limits
of functions of ;. Further let © be the subspace of &, formed
of real functions. Clearly ¢ 1is a uniformly complete algebra
containing the constant functions. Hence ¢ is also a lattice for
the usual point by point operations.

The distribution P of a linear process X induces on ¢ a

positive linear functional E according to the formula

Ef = E£(X) = f £(a) P(dw) .
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The linear functional E will be called the expectation attached
toe X.

Since the measure P 1is defined only on a very small g-field
it is usually necessary or convenient to extend its domain of
definition. Also the space Q 1is often much too large for
convenient handling., For these reasons we shall restrict our
attention to processes X which satisfy special properties of
tightness as defined below., In this definition the letters N, E
and ¢ need not have the meaning associated to them above,

Definition., Let E be a linear functional on a vector lattice
® of bounded numerical functions on a set 0. Let % be a family
of subsets of (i, Suppose that for every € > 0 there is a & > 0
and an F ¢ & such that the inequalities

1) supl|f(x)]; xe 0} 21,

2) supl|f(x)|; x e F)} = &,
imply |Ef| S e. Then E will be called <J-tight on ©.

A

A

For obvious reasons we shall limit our considerations to
directed families é;'such that Fi € ;ﬁ} i=1,2, implies the
existence of an l?3 e F for which F, U F, < F3. It is clear
that the notion of J -tightness is not altered if to & one adds
all the subsets of its elements, so that one may assume that G C F
and F el implies G e JF. A family & satisfying these
supplementary restrictions will be called a cofilter.

The property of Jfltightnﬂss is evidently a property of
continuity. In fact, let Top on ¢ be the topology of uniform
convergence on the elements of {F. Let T; be the strongest locally

convex topology which coincides with Top on the uniformly bounded
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subsets of ®. To say that E is M-tight is to say that E 1is
T, continuous on &,

The space Q involved in the definition of F-tightness plays
a relatively inessential role. For instance let Q be the
completion of 0 for the uniform structure induced by ¢ on Q.
Let F, and &, be two directed families of subsets of 0. Let
{;;_ = (F; Fe 3}_} where F is the closure of F in  and let

1]

.':F: be the cofilter generated by Fi. If ﬁ; =&, the notions of
tightness for 51' and ané are equivalent and equivalent to the
notions of @; or éfr";_-—tightness.

Consider now a vector space ’%,. with algebraic dual 2 and let
% be a vector subspace of (I, Let X be a linear process over
’9. If there is no vy ¢ ’?- such that y # 0 but {x,y>=0 for
every x e ¥ we shall say that UE.‘Q} is a dual system. For such
a dual system we shall denote by w{%, ’ij} the weak topology induced
by ’2f on .,fé and by 1[3‘3 » ?} the strongest locally convex topology
for which the dual of % is 7.

Even if X does not separate ’@. there are always locally
convex topologies 9C on ”9_ for which the dual of ['Z't, €] is %
but these topologies are not necessarily separated,

Consider then a subspace Z of ’%&— and let JC be the family
of all w{.‘f, ?] compact convex symmetric subsets of .E We shall

restrict our considerations to processes X whose expectations are
K-tight on the family ¥ of restrictions to 5& of the elements of

the space ¢ defined above,

Such an expectation E can be extended to a larger space J

as follows. Let B be a subset of ¥ which is bounded for the
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uniform norm on %, Let f be the space of all numerical functions
on % Let B be the closure of B in A~ for the structure of
uniform convergence on the elements of J, Let ¥ be the union of
all the sets B obtained in this fashion. Clearly E possesses
an extension by continuity to the whole of ¥ and this extension
is still K -tight on V. The extension E so obtained can now be
extended further by the Mac-Shane-Bourbaki procedure,

We shall denote by the letter J the space of all bounded
numerical functions which are integrable in the Mac-Shane-Bourbaki
sense for every J(-tight expectation on ¥. The extension of E
to J will be denoted E and called the Radon extension of E.

If F is a w(2%, ’a) closed subset of 2% then its indicator
Ip belongs to J. The expectation E(IF) will be called the
probability of F and denoted P(F). These probabilities always
satisfy the following "separability" requirement.

If K is a w(.ﬂé,’?) closed symmetric convex subset of -

and KO 1is the polar e (y: vy €%; sup[l<x,y>|; x € K] = 1},
then there is a gountgble subset D of k0 such that

P(K) = P{;:E IKX, ¥l = 1}-

To recognize tight expectations, or by abuse of language tight
linear processes, one may occasionally use the following criterion.

Let 9, be a locally convex topology on ?f. for which the dual

of ? is ¥, Let g be the family of equicontinuous subsets of

%. A linear process X _over ’5& is 5—1:15111: on Y if and only if
for every € > 0 there is a ‘g-neighbnrhoud V of the origin of ’y.

such that



for every finite subset F of V.

When the topology %% of ’?f- is metrisable, the statement that
X 1is -ff-tight is equivalent to the statement that E is o-smooth
on (¥, #). Also it is equivalent to the statement that the P
outer measure of Z in Q0 is unity.

Note that X -tightness is nothing but {F-'tightness for the
family {F of sets which are 1[?’,.13‘ equicontinuous,

Suppose now that f is Jﬁ-tight on ¥, and let H be the
intersection of all the w{.’é,’?] closed convex symmetric sets
¢ ¢ such that P(C) = 1. Then ﬁ(ﬂ} =1, A similar result holds
for wl’,ﬁ-,?} closed linear subspaces of 25. 1In this case H is
simply the polar of the set of elements y €Yy such that
feiu{x'?}P(dx) = 9p(ay) = 1 for every real number o, This last
set is also the polar of H.

Probability measures which are KX -tight on 3% are already
restricted enough to behave in a tractable manner in many problems,
In fact, in spite of the great apparent generality inherent in the
arbitrariness of dual systems (%, ’5‘}, the study of K -tight
measures can for most purposes be carried out as if ’yv was a
Frechet space of dual %.

This can be seen as follows., If P is K -tight on 2% there
is an increasing sequence [Kn] of w(,ﬁ,?) compact convex
symetric subsets of J such that ;[[Unlcn]"'} =0. If H is the
smallest closed linear subspace of X for which F(H‘.) = 1 one may
replace K, by K:; =K, N H without essential change, Consider
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then the space £ generated by the sequence (K, N H}. Taking a
quotient of ?f- 1f necessary one may assume that £ separates the
points of ?%. Topologize 'a: by the topology of uniform convergence
on the sets K; and complete the space so obtained. This gives a
Frechet space ? The space ’?E is precisely the space of linear
functionals defined on & whose restrictions to the compacts Ig;
are continuous, Further, a linear functional which is continuous
on ? is an element of £ so that Z 1is the dual of the Frechet
space ?.

One can even go somewhat further and show that each one of the
compacts K; ¢ £ can be taken to be the closure of the union
A, = Uy A, of a countable family (A, ,; kel,2,--) of t(E,%)
compact convex symmetric subsets of Z,

To show this consider for each integer n the measure b
truncation of P to K; defined by wu,(S) = F[Et1 K;]. There is
a smallest w[Z,,?.] compact convex symmetric subset B of Kr'l
such that u_(B)) = "”n" = F{K;]. We shall now show that B is
the closure of a union Uk Ay Of 1(25,’%?) compact sets, Let
M  be the set of y's ye ’? which vanish on B . Let Z_ be the
subspace of % spanned by B,. The topology -rl:Zn, ’ZZ'J’MJ induced
on Z by the quotient space ?Iun is stronger than TEE,,?].

It is therefore sufficient to consider the case where @; is
a Banach space of dual % with unit ball B such that B is the
smallest w(E,’?} compact symmetric convex set for which F'(B) = ],
Let L be the space of P integrable functions for the Radon
measure P on the compact B. Let S be the unit ball of L

for the norm
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el = [ 1£60 1Bax)

and let S, be the subset of S consisting of functions £ such
that |f(x)| = n for each x ¢ B. To each f ¢ L associate a

"center of gravity" G(f) in Z by the formula
G(£) =ff(x)xif{dx).

The map f — G(f) is a continuous map from the Banach space L
to £ topologized by =[Z ,’i] and the set S 4is mapped into B.
Therefore, according to the Grothendieck form of a theorem of
Dunford and Pettis [I] the image G(s,) of S, by G is a
T[E.,’Z;] compact subset of B. Let A be the closure of G(S)
in £. Then A 1is a symmetric convex TEE,?;] compact subset
of £. Further, A CA =™ et A-U_A andlet I
be the closure of the convex symmetric set A.

If C 1is a convex subset of Z whose closure C does not
intersect An, we must have f{ﬁ) < % If not there is an f = 0,
f e S such that f(x) =0 for x ¢ A, and f(x) = EF(E)'_['I for
x ¢ C. For this f we must have G(f) ¢ BN T and G(f) ¢ A .
This is impossible so that F(ﬁ) < 1/n. Similarly, if E{I) <1
there is a y ¢ ? such that |[<z,y»| =1 for z ¢ X and such that
a = P(z: <z, y) * 1} > 0. Taking a function f equal to al on
(z: <z, yD> > 1] and zero otherwise leads to a contradiction. Since
B was by assumption the smallest w(Z ,{"{,} compact convex Symmetric
subset of Z such that f’J(E) = 1 we must have B < A hence
B =&,
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One cannot conclude from this that P(A) =1 as can be seen
from the following example. Let 7#- be the space of continuous
functions on the interval T = [0, 1]. The space 7% is a Banach
space for the uniform norm and its dual 2Z is the space of Radon
integrals on T.

For each t ¢ T let ﬁt be the probability measure giving
mass unity to the point t. Let X be the linear process defined
by <X, yp=<b., yy= y(t) where t is taken at random according
to the Lebesgue measure A on T. The positive part B' of the
unit ball B of Z£ 1is a w(z,?) compact convex set such that
‘f’(B“") = 1, Further, let A, be the set of signed measures p on
T which are such that there is a bounded measurable function £,
|£] 2 n for which <u, y> =<\, fy> for every y ¢ ’éﬁ Then B
is the closure (for (Z,%)) of U, A,; however every E,Y)
convex compact subset of B has measure zero for P.

Such a situation cannot occur if the topology T(Z,?} is
metrisable. This can be easily derived from the above results or
proved directly as follows. Suppose that Z possesses a metrisable
locally convex topology for which its dual is ’?- (then this topology
is T{,E','gé)}. Consider the characteristic function ¢ defined by
o(y) = E ei{]{,y:,. An immediate application of Smulian's theorem
shows that o 1is w(’?_,ﬁ} continuous on the w(’?, #£) compacts
of ?f..

Thus ¢ is also continuous for the topology of uniform
convergence on the -r(fﬂf.) precompact subsets of £. Since these
precompact sets have dense countable subsets it follows that P 1is
carried by a separable subset of Z hence is Z-tight for the family
F oot precompact subsets of ¥,
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In particular, let P be a J-tight probability measure on a
dual system [ﬁ’, ?]. Let T be a linear map from 2% to a Frechet
space £. Assume that T 1is continuous for the (%, ?} topology
of .7'.{’ and the metric topology of Z. Then the image of P by A
is .‘f——tight on Z for the family & of strongly compact subsets
of £.

The converse proposition is also true when 2% is the dual of
a Frechet space ? Explicitly, assume that 3; is a Frechet space
of dual.jé and let X be a linear process on q; such that for
every T(f,?) continuous linear map T of % into a Frechet
space #Z of dual Z,' the process TX 1is fr"-tight for the family
5" of w(5F, ,E_',') compact of Z then X itsélf is &X-tight on 7.

In this statement TX is supposed to be defined by the equation
<&K. z'} = <X, T'=l> where T' is the transpose of T. Since T
is (%, '5) continuous T' maps ",EI into *ZGJ,

In many problems one is led to consider the following type of
situation. For a given linear space %p one selects a locally
convex topology % on ‘9 for which the dual of [‘?f,%] is a
space %. The topology 7 need not be Separated. If X 1is a
linear process uv&r-’?- it may happen that X is not only X -tight
but that X is also ;?:tight on the space ¥ for the family f of
?:-equi¢ontinuuus subsets of %. Since J -tightness is equivalent
to oJ-tightness for the family & of sets which are T[?’a"]
equicontinuous a restriction of JF-tightness for a system [.?é',‘%(,ﬂg}
is a stronger restriction than X -tightness. The theorems stated
above for J(-tight processes gpply also to A-tight processes in an

obvious way.
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In the sequel we shall almost always work with processes which
are {F:tight on ¥ for the family & of equicontinuous subsets
of % for a topology 9Z.

Let then ]{1 and x.z be two u'.?:-t:ight linear processes, Their
sum X; + X, 1is also F-tight.

Further, call the processes X, and X, independent if for
every finite set F ¢ ?. the sets (KX, ¥>; y ¢ F] and ({57
y € F] are independent. It is equivalent to say that for

RACSIS o

= E we have

%]
lalX,, y>+iBLX,, >
1
Ee ., 9, (ay) 9, (By)
identically in vy € @. and the real variables a and B,
1f Kj, j=1,2 are {F-tight processes and J{3 = X; + X, the
Radon extensions 5_1 of the distributions of the processes Kj

satisfy the convolution theorem in the sense that
[£@)F;(de) =By (an) [ £xenF,(ap)

.fﬁetdy)ff(x+y}§1(dx)

for every f in the space J defined previously,

This representation of ’15'3 will be used frequently in the
sequel.

3. The.concentration of sups. Consider a system (3¥,7Y,¢)
formed by a linear space ‘?, carrying a locally convex topology &
for which the dual of ’5{ is *. Let [x,; j=1,2,*++,n) be a
finite sequence of elements of £. Let K be a w(},%) closed
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convex symmetric subset of %, An inequality on the concentration
of sums of independent random variables can be obtained if we can
first derive inequalities for the number of sums of the type E(i‘xj}
which belong to K. For this purpose we shall recall the following
lemma, due to Sperner and Erdls [2].

Let S be a finite set and let J be a family of subsets of
S. For every set F let x(F) be its cardinality. For a given
integer r 2 1 1let us say that J has property L i1f for every
pair Fi; i=1,2 of elements of nf the inclusion Fl‘: FE' implies
that x[F, N FJ] < r.

Lemma ($peroer=ErdBs). Let j be a family of distinct subsets
of a set S. Suppose that J has property m.. Ihen

() 23 (P; BEag <niE

with n = x(8).

In particular if the elements of ;dp are not comparable then

A

() 5 (] wieh 25 <5 <ngl
hence

| 1 n
; e ——r— E .
H(,J) —

Returning to the n points Exj; j=1,2,--+,n} in the space
_%, let K be a closed convex symmetric subset of %, Consider
sequences € = [e;j; j=1,2,+++,n) sguch that gy = ¥1. Let S(e) =
Ej ijj' For a given x ¢ % 1let Ex be the set of sequences ¢

such that
S(e) - x e K,
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If ec E, and k is an integer, k=1,2,---,n let e(k) be the
sequence obtained from & by reversing the sign of €. Explicitly,

1f
L L TAREL S FL LW PRLFL'Y

then
E(k) - {E]_JEEJ .'.’Ek“l'-Ek’Ek'f'l"..JEn}'

This gives S(g) - Sle(k)] = 2e,. %, . Therefore S[e(k)] will be
an element of x + K only if X € K.

For a particular e' ¢ E, and a particular integer k one
cbtains a sequence y = E'{k}. This y may be obtainable from

other sequences, say e, r=2,3,*++,v with e" ¢ E_.. Note that

ef(j) = €°(j) implies eF = €% so that, if y = sr{jr} the

correspondence between r and jr is necessarily one to one.
For € ¢ E,, let v(x; e,k) be the number of sequences

e' € E, such that e(k) = ejfj) for some j. Let v = v(x) =

max{v(x; €,k)} the maximum being taken over all ¢ e E, and all

integers k.,

Since each € e Ex provides n different sequences e(k);

k=1,2,*++,n and since each such sequence may originate from at most

v elements of E_ the number of distinct sequences formed from E,
is at least equal to (n/v) x(E,) .

Therefore if x, ¢ K and if x + K contains m points S(e)

the complement of x + K contains at least nm/v points S(e).

Lemma 3, Let [xj;j=1,2,---,n} be n points of i As sume

Xy ¢ K and let Ej; j=1,2,***,n be a sequence of independent random
variables such that Pr[ﬁj = 1] = Pr[ej = -1] = 1/2. Let
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n
S = jE]_ ﬁjx‘jr

then, for every x ¢ ‘&

1
PI[Se x +K] = T
E (n+l)
Proof. Consider a particular x ¢ 35. ’
Let v(x) = sup (vlx: e,k]; e ¢ E ., k=1,2,°++,n) be defined
as above and let v = suplv(x); x € %], Since the number of elements
S(e) situated outside of x + K is at least (n/v) times the

number m situated inside, we can state that

P[Se x + K]l & —B - Y
m+%m Hay

Consider now a particular point b € & such that v(b) = v =
suplv(x); x € ] and let E = E,. There is a particular sequence

e' and an integer jl such that v[b; 5'.11] = v, Hence there are

sequences ' and integers jr; r=2,3,-+-,v, such that S(e’)eb +K
and Er(Jr) = €'(j;) for r=2,3,.+.,v, Letting y = ar(jr} one

can write

S(e") - S(y) = S(e¥) - sle"(3 )] = 2 3, Xy -

To simplify the notation one can assume, without changing anything

r

essential that jr = r and Ej xj = X, Let a=b - 5(y) and
r “r

let A(e) = S(e) - S(y). We are then in a situation where for

r=1,2,**+*,v we have
A(eT) = 2 x. € a+K,

X, ¢ K.
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These conditions imply in particular that for every s=1,2,:+-,v
and every r=1,2,:++,v we have X. - X, € K, Thus for any fixed

g=1,2,°+-,v, the set Xg + K 1is a closed convex set which does not

contain the origin but contains all the points x rel,2,"+,v,

r’
The sum § = Eﬁjxj can also be written in the form S =T + Z
with

v

T = jEl ﬁjxj
n

Z = 7

€ Xa.
j=v+1 jxj

Since T and Z are ilndependent we have
P[Sex+K]zsupPITez+KI.
=

It is therefore sufficient to consider the behavior of T alone.

v
Now T = Ej=1 ﬁjxj with xj x, € K and Xg ¢ K.

Let g = [aj; j=1,2,+++,v} be a sequence such that €5 = 1

and let T(g) = E;=1 €sX;. To each such sequence ¢ associate the

set F(e) of integers j=1,2,+++,v such that Ej = +1, If e
and e are different and such that F(e') = F(e") then
T(e") - T(e') =2 = x5
jeG
where G 1is a certain nonempty subset of the set of integers
(1,2,:++,v). Let s be an element of G so that x_ + K contains

s

all the elements #j with j e G. Since xg + K does not include

the origin and is convex and closed, there is a vy e‘?; and a 6 > 0
such that (z, y> 2 & for every z ¢ Xg + K. Letting a = {xg, y>
this implies
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{Xg +u, yp=a +u;, Yz 6
for every u € K. However, since K is symmetric we also have
a -Lu, ypz 6 for every u e K. 1In particular
sup(|Cu, ¥>|; ue K} s a - 3,

Consider now the sum w = 2 Est "j‘ For this sum we have

i, yo=2xg, ¥>+2 2z, ¥ reG, x#s)

z 2 a + 2[k(G) - 1]6.
Suppose now that A is a positive number such that w € AK. Then,
according to the above inequality

2a + 2[x(G) - 1]5
> e ﬁ

>

A

In particular w ¢ 2K. Hence, if T(e') ¢ (x+K) and T(e") =
T(e') +w then T(e") ¢ x + K this implies that the sequences e
for which T(e) € x + K give rise to sets F(e) which are not
comparable,

An obvious application of the Sperner-Erdls lemma gives then

1
NV FT

Summarizing, there is some integer v 2 1 such that both inequalities

P[Tex+K =

v v
P.[Ssx+E]:nw o=

and

1

P[Sex+K =
"!‘\F+I

are valid. It follows that
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3

EESEJ{-FK];W

as claimed.
The preceding lemma 3 will allow us to derive an inequality

on the concentration of sums of symmetric linear processes as
follows.

Consider a system ‘[-ﬁ',ﬁ,ﬁ} formed by the linear space 'y-
with a locally convex topology % for which the dual of % is X.
Consider only linear processes which are H-tight for the family F

of equicontinuous subsets of .f:" and take probabilities for the
Radon extensions of the distributions.

Theorem 2, Let {zj; j=1,2,+++,n}) be n independent F-tight

linear processes over ’g. Let Qj be the Radon extension of the

distribution of Zj and let M be the measure M = Ej Qj.

Suppose that each Zj has a symmetric distribution and let K

be a w{ﬁ,’?) closed convex symmetric subset of

Then, for every x € 5& and for W = zjzj we have

2 <1
E’PEWE!*FK] =W

with
g = M(K®).

Proof. Let y, be an arbitrary nonzero element of ? If
x €% let X = x whenever <x, yu>.=;ﬂ and let X = -x if
<x,yn‘> 2 0. One may assume P {KZ,; y55=0) =0 if it is so
desired. The operation x — X applied to the process Ej gives

a process Ej‘ The distribution of Zj is the same as that of EjEj
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for real-valued random variables Ej which take values (-<1) and
(+1) with equal probabilities, equal to one-half. Therefore we
may argue as if W was equal to Zijfj. Let © be the set of
values 0 = {Ej; j=1,2,+++,n}. If N(O) 4is the number of Ej sguch
that Ej ¢ K, lemma 3 gives

1
[vee)+1]1/3

Furthermore, EN = s and variance N = s.

p(@) = Pr[W e x + K|€] =

For any t ¢ [ﬂ, sj one can write

1 r 1 a-T 1 1
(t+1) 173 = (g41) 173 + [e-e] [ (s+1)ﬁ3} s

Therefore
1 1 -
PWe x +K] = +[1--—IT3-]E[E-].
(s+1) (s+1) ,
since E[N-s]” = 1 E[N-s| 2 243 this implies

1/3
PlW e x + K] :——-—-—173-1 i 1 {s+1) 2 d .
(s+1) T2 {51+1]|]""':jl A's

Hence

e @l
P[WER“I‘K],EW

as claimed.

For small values of s it may be interesting to use a different
bound. 1In fact when s < 1 the expectation E[N/s)- 1]~ is
precisely equal to the probability that N be equal to zero,hence

inferior to e'ﬂ. In this case one would obtain
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Plw K] gt =1 - —L
=ET (s+1) e [ (s+1) ]

al e [Lw e's][l m]

In particular P[W € x + K] can be equal to unity only if
s =0,

On the real line, a procedure due to Kolmogorov makes it
possible to extend the validity of an improved version of theorem 2
to variables which are not symmetrically distributed in such a way
that the order of magnitude of the bounds be not substantially
altered. We have been unable to achieve this in the infinite
dimensional situation, However, the procedure used earlier by
Paul Lévy in a similar connection is still applicable. For this
purpose we shall need two lemmas, which are essentially due to
Paul Lévy,

Lemma 4, Let X and Y be two independent identically

distributed linear processes over the space ’y Let K be a closed
convex symmetric subset of .ﬁ. Then

*

(P[X-xeK])® 3P (X-Ye 2K

The other lemma is the lemma on the increase of dispersion
which has been already used in the proof of lemma 3; namely, if
X and Y are independent and Pr[}{ +Ye xy+K] 2p there is an
x e such that P_,_h[}[ e x + K] 2 B.

Theorem 3. Let (Kj; j=1,2,*+*+,n}] be n independent linear

processes over ‘?. Assume that the processes Kj are J-tight and
take probability statements relative to the Radon extensioms.
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Let S = 231-1 J{j and let K be a w(.ﬁé,‘?p) closed convex
symmetric subset of %. Let

cl2k; Ej] - igg-P [;j E X + 2K]

s =% (1 - cl[2K; xj]}.
3

Then, for every x ¢% we have

P(sex+K]z I—-%;%Igf .
s+ g

Proof. Let (¥,; j=1,2,-+:,n] be n independent linear

processes which are independent of [xj; j=1,2,+++,n}. Suppose that

the distributionsof Kj and ‘fj are identical, Let T-E‘fj and

let W=8-T=52, with Zy = X,
According to theorem 2

P [We EK]E'E(T%HE
o+

with t =2 P _[Z, ¢ 2k]. By Paul Lé'vy's lemma on the increase in
r=j

Yj'

dispersion

P [zj € 2K] = sup P {xj € x + 2K] = cl2k; xj].
X
This implies t > s. According to lemma 4

Plsex+K] s (P[we 213172,

hence the result,

Remark. The quantities C[2K; xj] which occur in the statement
of the theorem may occasionally be difficult to evaluate. In such
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cases it may be helpful to use the following lemma adapted from a
result of Loéve [3], page 247.
Lemma 5, Let X and Y be two independent identically
b ==
distributed JA-tight linear processes. Let A be an arbitrary
subset of ’? For each y € A let u(y) be a median of the

numerical random variable <X, y>» and let a(y) be an arbitrary

number. Then, for every o > 0

%—5{::E]<x.y> - u(y)| > e} = f{;zﬁiix-Yh ¥ * E}

<o P - > E
52 P{?:EI<K,Y> a(y)| 2}'

To the preceding results one must add the rather obvious but
important remark that the concentration of a sum § = zxj can be

bounded by functions of the concentration of the real variables

S, ).
Let V; be the real-valued variable Vy = {Kj, y> and for

every positive number 1t let
Y;(y,7) = sup P[a <V, < a + 1],
j . j

Kolmogorov's argument gives

P[bszv, b +12] =2 Int [1 + %] {? 1 - 'l'jf]h-r}] “S‘la'E-

From this inequality one can obtain in an obvious manner the following
result, Let K be the set
K = {x: sup|<x,y»| 2 1; y € F)

where F is a finite subset of ? For a positive number T let
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P5() = sup PLawpkX;,y) - 2| 2 .

Let K be the closed convex set

K = {x: sup|¢x,y)| = 1}.
yeF

Then, for every A > 0 and every =

Plfs € X + AK] = 2[:;(1?)]1!2 Int[l + :}] {z f1- aj(-r)]}-lfi‘.

Further inequalities can be obtained through the use of the Normal
approximation theorem.

Some of the inequalities obtainable on the real line cannot be
extended to linear spaces or Banach spaces in general as can be seen
from the following examples.

Let ?, be the space of summable sequences of real numbers,

If y E/?j. is such that y = {}rj; j=1,2,--+,} 1let |ly]| = Ejlyjl.
Let Z be the space of bounded sequences x = [x,: j=1,*++) with
I x| = sup, Ele-

The Banach space 2 is the dual of the Banach space ? Let '
z; be the sequence whose entries are all identically zero except
the jth one which is unity, Let zj = zj with probability one-half
and let zj = ~zy with probability one-half. For each integer n
the sum S = 27, 2, takes values in the unit ball of 2. Thus
if K is the ball K= {x: ||x||]21-¢€), 0<e <1 we have
P[2;€X] =1 and P_{s e@/1-€)K = 1. This shows that unless
further assumptions are added one cannot hope to obtain bounds on the
probability of falling in a convex set from similar bounds on the

summands involving smaller convex sets.



wml o
In the preceding example, the variables 21 are not identically
distributed. The following construction indicates that an assumption
of identity of distributions is not sufficient to allow a definite
improvement on the situation. Consider again the sequences 2z
defined above. For a given integer n, let [E&; j=1,2,---,n} be

a sequence of independent identically distributed variables such that

Plz; = z] = 5-“1—3, P2y = -2,] - -2-1%
for ke1,2,°*",n. Let T, =3}, Zy. The probability that the
values taken by the zj be all disjoint is larger than [1- {nfn3}]“,
Therefore, except for cases having a total probability not in excess
of 1 - - (lfne})n < 1/n, the sum T, has a norm ||TnI| exactly
equal to unity although PIHZjH = 1] =0,

As n tends to infinity the two sums S, and T just
constructed behave in essentially different ways. However, we have
Pzl =1] =1 and Pl | = 1) and also P[ﬂzj'u =1] =1 and
PIT | = 1) > 1 - 1/n,

The linear process Snn = E?il zj, sum of an infinite sequence
of independent random elements Zy such that P[zj = zj] =
P[zj = -zj] = 1/2, can also be used to illustrate the meaning of
the definitions given in section 2. When the topology “C of ?% is
the topology defined by the norm, the system ¥ of functions
introduced in section 2 is precisely the space of all bounded
numerical functions whose restrictions to the balls uf’.ﬂﬁ are
w{.ﬂ.‘,?} continuous,

The family <k of equicontinuous subsets of 2% can be replaced
by the family of balls in ¥, The Radon extension P of the
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distribution of Sm is defined for all closed balls in %. Therefore
the domain of P includes all the closed balls and all the open balls
in _'3‘4 However, in a system of axioms of set theory in which the
continuum is not a weakly inaccessible cardinal it can be proved
that P cannot be extended to a 6-additive measure whose domain
includes all the Borel subsets of the Banach space -’ﬁ. In such a
situation, there will be some bounded strongly continuous numerical
functions defined on % which are not integrable for P. This type
of circumstances cannot occur in a Hilbert space or a reflexive
Banach space even if the space in question is not separasble.

4. An_application. Consider a linear space ’f’f with a locally

convex topology . Let Z be the dual of ['7‘1,"@].
If X is K-tight and K is a subset of % let

clk; X] = sup P[Xe x + K]

be the concentration of X at K,

For each integer n let {Kn,j; j=1,2,+++,]) be a sequence of
identically distributed K-tight linear processes over %( Let m,
and "k be two integers and let

k

n
Sn = jfl xn,jr

m
Th= jE xl.'l,j'

Further, let v be the integer part of (k,/m ).

Lemma 6. If K 1is a closed convex symmetric subset of % and

_— 5
n -.-n{c[a; snj[}Eh
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then for each n there is an X, € " such that

PETnexn+EKJ;1-En.

Proof. This follows from theorem 3 by noting that S, has

the same distribution as a sum

Yn
R, + jfl Tn’ j
of independent wvariables such that Tn i has the same distribution
’

as T .

=]

Lemma 7. Assume that Vo —™ ® as n—= o and that there

is a constant b independent of n such that

lim inf P[S € bK] > 0
n—+=00

then the inequality

lim inf C[K; S ] > 0
=0

implies
lim P[T_ e 6K] = 1.
n—=00

Proof. Let e, = 5!*;“!:[1(; Sn]'ﬁ as in lemma 6 and consider a

sequence X € % such that

P{Tnexn+21{];1-en.

Suppose that x_ ¢ 4K. Then the closed convex sets 2K and
X, + 2k are disjoint and the difference Xy + 2K - 2K = x, + UK

1s a closed convex set which does not contain the origin of %.
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Therefore, there is a Yy € %F such that
1) e, Y2l & for x e 2K,

2) <x, Yoy 21 for x e x, + 2K.
L] ] L r
Let X1,3? Sp» Ty Dbe the real variables defined by Hﬁ,j =

I
(ﬁh'j, Yars S; = {Bn, Yo I -idTﬁ, no+ Kolmogorov's theorem,
applied to these real variables gives inequalities of the following
type. If £ 1is a real random variable let

Y(1,E) = s:p Pla =€ =a+ f],
then for A and <t positive we have
s 5] =2 me[t + Qi [1 - venm ]}
Also by definition of Yo
clx; s.) = v[z; sl].

Hence, for every positive number +t there are numbers Bn such

that

A

N R P e 8% .

This implies

[P

@) e

The inequality vy[2; Srlnj 2 C[K; S,] implies also that for a suitable

 #{IX,5 - gl > o}

choice of E; we have

1,2 1
kn E'xl;,j-anl I[Ijﬂ;’j'ﬁnll " ]J SA~m,
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Under these circumstances there are constants c, (truncated

expectations) such that

]
gn - knch = En

and

]
Ta = ®Ch = %y
are random variables with relatively compact sequences of

distributions on the line, Furthermore, Pn tends in probability

to zero. However, by definition of y_ 2 we have

Plr, z21] zPfT, e x +2k] 21 - ¢,

hence for n sufficlently large, mc ~> 1/2. This implies in turn

v

. 1
'<5n’ w =5, = E;‘mncn +8n 235 Vp * &y
It follows that for every 0 < b < co we have
lim P[S_ e (b+1L)K] =0
(5a ]

contrary to the assumption made. Hence, for n sufficiently large
we shall have X, € LK, hence

P[Tne 2K + 4K = 6K] 21 - e,

This completes the proof of the lemma.

As an application of theorems 2 and 3 one can derive some
results concerning Central limit theorems for linear processes.
For independent real variables [;j; j=1,2,+++,k] such that the
distribution L(Ej} of Ej be P,, it is known that if the
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variables are suitably centered the convolution product
k
LX) = P
%) = TI 7,

differs little from the Poisson exponential exp[E[Pj-Jg], provided
only that the dispersions of the variables involved be somewhat
similar [4].

Also it appears difficult to extend this result to linear
processes in general; some partial results can be obtained as follows.
For each integer n let k  be an integer and let {xn,j;
j=1,2,*+*} be a sequence of independent linear processes. We shall

assume that k — ® as n —- oo and that each Hh’j has been

written in a split form

%n,9 = [t - 8,510, 5 * &0, 5V, g
where the variables gn,j’ Un,j‘ ?h,j are all independent and

1.='[E“_j =1 =1 - P[E,n,j =0] = %, % %

kn
A sum Sn = Ej=1 xn,j can then be written in the form

S, =Uy +V, +W_ with ,

n
k'n.
un = jfl - ynsj)uh:j
kn
V. = 3 £

n j-l u,jvn,j

kn

Wai® 2 Onis ™ Fargiigye

The variables . introduced in these formulas have the same

»3

«distribution as the ¢£ but are independent of all the other

n,J
variables.
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| Let Yn_.j = (1 ~ Fn,jjun,j and let A vy = ’E(Yn,j) and
En,j = ‘E[En,j vn,j].' For the distribution of Un the usual

argument gives the inequality
I‘tn kl‘l cr.E
o - w5 s B2 1500
j=L =™

Also, if the variables Z, j are identically distributed a theorem
E

of Prohorov implies that
k
n
Hn(vn) - exp{jil [Bn,j - I]}“ sk .

Similar inequalities are applicable to the distribution of W, .
Under favorable circumstances one may expect that the

distribution P, of S, may be approximated by the exponential

k

k
n n
Qn = exp {jil (Pn,j - I)} = exp{jzl [(An,j_n"' {Bn,j_n]}'

[} 1
Let A, ; be the symmetric of A, 3 and let ezﬁ,j = Ay gt A e
Let K be a closed convex symmetric subset of % such that

lim inf sup Qn[x +%K] = £ >0,

==

Then, if Fn is the measure

I""n
B~ o820 {? i 4,5 - 31}
we also have

lim inf F_(K) 2 €° > 0.
n—-m
Consequently, according to theorem 2, if {B,} is any sequence

of numbers tending to zero and



Gn = exp{ﬁn .En [Fﬁ,j - %]}

J.—-
we have

lim G (K) = 1.
T=4=C0

Consider now the distribution of . This distribution may
23 »3

be written

Mi,3 = Pn,j B, ;

with

2 an.i 2 un

B = - £ — ;
n,j i un,j 1 e

An application of theorem 2 gives the following result,

Lemma 8. Let [xn,j; j=1,2,---) be independent K-tight

linear processes written in a split form as explained above,
I1f K“ is a closed convex subset of % such that

1
a) lim inf sup [% + 5 ] >0
== X Qn e Kn
and if in addition either
k, .
b) zZ a- . —=0
j=1 n,j
or
L‘) O e )

and the variables zn’j are identically distributed for each n

then

lim P|W_ € e
Wy € K]

Note that when the split form X, g - (1-€ j}Un gt &n j v j
» » » ¥ 2

is chosen such that v, j does not take any values in K the
¥
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condition (b) that E?El “ﬁ,j'__h 0 1is a consequence of (a) and
the condition that a, —= 0. In fact, condition (a) implies then
that 2?21 ®,,j Stays bounded. A slight refinement of the preceding
argument can be used to show that in any event the condition (b) can
be replaced by the weaker condition E?El ug’j — 0,

Consider now the case where for each n the linear processes
[xn,j; j=1,2,+++]) are identically distributed and suppose that the
split form xn,j = (1-En,j}un’j + En,j vﬁjj is also selected so
that the distributionsof En,j’ Uﬁ,j and Vn’j do not depend on j.

Let Yn,j = (1"h,j)un,j as above. The distribution

k
\ n
Ql'l, = Exp{jfl [An’j o I]}
can be written as the distribution of

' H“

Un = jfl Yﬁ,j

where Hn is independent of the Kn,j, En,j' etc. and has a
Poisson distribution with expectation kn' In this case let &

be the difference a, = U; = U,. This difference is a sum of a g
random number of terms Yﬁ,j or (-Yﬁ’j) but the number of terms

in the sum has a probability tending to zero of exceeding kgfu.
Similarly the number of terms in U; exceeds knfﬁ with probability
tending to unity. Thus lemma 7 gives the following result,

Lemma 9. If the Yﬁ’j are identically distributed for each n

and either

lim infC[K; U_] > 0
=00
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lim inf C[X; U] > 0
n—-00

and for some b > 0O
lim inf P[U_ € bK] + P[U_ € bK] > O
T—+00
then
lim P(W, ¢ 6K] =1
TF—=00
and
lim P[U, - U, € 6K] = 1.
—=00
The preceding lemmas lead to a theorem which can be used as a
stepping stone toward the proof of Central limit theorems for linear
processes. We shall formulate it as follows.
For each n let (X j j=1,2,+++} be a sequence of independent
#
linear processes. A split form Xn,j = (l'an,J)Un,j + an,j vnjj
will be called favorable to the closed symmetric convex set K if

the following conditions are satisfied:
1) Un,j’ En,j’ vn,j have distributions independent of j.

2) lim P[E = 1] =0,
=00 [n’j ]

[
3) 1If Un - Z;:I (1'€n,j)uh,j and Un is the corresponding

Poisson sum
N

\ n
Un 2 jil (l—E“:j}Uﬂ:j

then

lim inf{c[k; U] + c[k; U J} > o,
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4) For some b <

1
lim inf{P(U, € bK] + P(U, ¢ bKI} > O.

Theorem 4, For each integer n let k_  be another integer

such that k — . Let (X i3 j=1,2,-++] be a sequence of
independent identically distributed K-tight linear processes, Let

(B be the family of closed convex symmetric subsets K of % such
that for each B > 0 there is a split form of the (X, j] favorable
3

to PK. Let 7 be the uniform structure defined on 7% by the

vicinities {(xl,xe}; (x;-x5) € K} for Ke 73.

Let
Il kn
F:n s j-l;l;. Pnjj = J:[jil xn,j]

and let Qn be the exponential
k

= e fz [, - ).

Then for every bounded %(-uniformly continuous numerical function £
defined on % we have

“ﬂlff(x)rn(dx) - [ £69g5(a0)| = o.

This is an immediate consequence of our previous lemmas,

2. Empirical distribution functicns. Let T be an arbitrary

set with a 6-field JJ. For each integer n let P, be a
probability measure on L and 1let [Tn j; j=1,2,-++] be a

¥
sequence of independent random elements having individually the

distribution P, on J
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For a numerical function y defined on T let

2(n = [ly(®)1%p,(de) .

Let ‘Bcn be the space of square integrable functions on (T, .0, 0
This space is a Hilbert space for the norm S

Each Tn,j defines a linear process ¢ on ‘%  according

n,j
to the prescription

G (7,30

The normalized version of the empirical distribution function most
frequently encountered in the statistical literature is the linear

Process

I ) =
= — F - =
R R T =R ™

with

1
xl'l.,j "E (E"l'l;_] =5 Pn)-

Several well-known theorems on the asymptotic behavior of Fo
can be expressed roughly as follows., First, the distribution of
F, "differs little" from that of F; = ?El Kﬁ’j where N_ 1is a
Poisson variable independent of the xh,j having expectation
E N, = n.

Second, and in a more restricted sense, the distribution of
F, "differs little" from that of the normal linear process G,
having expectation zero and the same covariance as Fﬁ (ni F;).

A related and somewhat simpler process is the process
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- Nn -n T Hn NE
= F + = .
Hn n ﬁ pl’l ""4"1‘1_'] 1 ﬂ_j P

This process H_  is decomposable in the senses that if {yl,yg,---,yk}
is any finite subset of two by two disjoint elements of ?n‘ then

the variables {(]:ln, Y r=1,2,+++,k] are independent,

Note that Fn-‘ F:: and I-lIl have expectations equal to zero and

EICF,, ¥2I2 = EIKF,, wI? = $2(y) - <P >12 5 s2(y).

In addition to the above processes it is convenient to introduce
processes F[n, vr;], F [, vy] and H(n, v,) defined as follows,
i
1E I% is a Poisson variable independent of the %,j with
E lﬂ-\ - then

) n
Blm v 28y

i M,
F [“""n] = 3 Xn'j,

j=1
M
1 n . 7% * M. -v,
U Yo =z b fng t A e P lan)e- ==a,.

Finally we shall also use the symmetrized processes H{n,vn} =
H(n,v,) - H'(n,vn} where H'(n,v,) is independent of H(n,v,) and
has the same distribution as H(n,v“). By the symbol Hn will be
meant H(n,n).

Let B_ be a convex symmetric subset of ?’n' Denote % (B.)
the linear subspace of ?n spanned by B, and consider on "?{Bn)

the norm

Iyl , = inf(n; y € 2B,).
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Let i(ﬂn) be the dual of the normed space %En). This space

%(B_) 1is a Banach space for the norm p, defined by

P (x) = supliKx,y>l; Iyll, = 1.

A set En€:‘%Fn will be called stochastically bounded if for
every € * 0 there is a subset S~ T and a number b such that
(a) p“(T"\S) =e, (b) if te€ S and y ¢ B, then |y(t)| = b.

In particular lattically bounded subsets of %, are stochast-
ically bounded.

Lemma 10. In order that £ considered as a linear

n,j
process over ?(Bn) be tight for the w[ﬁ(ﬁn), '?(Bn)] compacts

of :E(Bn), it is necessary and sufficient that B, be stochastically
bounded.

If B, is stochastically bounded the processes Kn,j’ F.» ;,
Hn and Hﬁ are all tight for the weak compacts of Jf{En}. Therefore,
probability statements may be made for the Radon extensions of their
distributions. This will be the meaning attached to the symbols P
used below.

Let C be the concentration function defined in the preceding
sections

C(K; F) = sup P[F e x + K].
x
For any closed convex symmetric subset K of :%(Bn} define
Talvy, K] by
- 3
310 [V Kl = P[H(n,v) € K] + C[K; F(n,vp)] + c[k; F (n,v)].

Lemma 11. Let {B | be a sequence of convex symmetric subsets
1¥n satisfying the conditions
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(E:l) Each Bn is stochastically bounded.

{CE) sup{sﬁ(y}; y € B, n=1,2,°++}) < o0,
(C3) 1f K, is the polar of B, in X(B ) then for every

a > 0 there is a sequence {vn} such that

3
lim (n—) = o and lim inf TnE""n’ oK ] > 0.

Then Palle: = F;) tends to zero in probability.
Proof. If condition G3 is satisfied then for each a > 0
there is a sequence [vn] such that vgfn — @ and v /o—0
and also w [v , aK] —= 1 as follows immediately from theorems
2 and 3.

Further, Yo € B, implies

E(F{n,vn), Vo = E{_F*(n,vn}, Yo = E{ﬁ(n,vn}, yn} =0

and

*
EICF(n,v) 21 = EIKE" (n,v,) 3012 = £ EICH, v )y 12
v
 +
One concludes easily that
- »
P[Fn—Fn € 3aK ] — 1.
Hence the result,.
According to the preceding lemma, to find limiting distributions
of functions of F, one may in many cases replace F, by F;.
Furthermore, it will often be possible to argue instead on H, which
differs from F; only by the addition of a one-dimensional random
variable,
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The conditions C; and C, of lemma 1l are simple and easily
verifiable., Unfortunately similar statements cannot be made for
condition EE' We shall give below examples of sequences [Bn] which
satisfy another condition, essentially much more restrictive than
C; as follows.

Let B be a stochastically bounded subset of 1¥n and let
K, be the polar of B  in i(ﬂn}. Let En(z, a) be the smallest
cardinal k such that there exists a linear subspace L of (B )

of dimension at most equal to k such that

?[Hﬁ_e (L + aK ))

¥

E,

The cardinal S_(e, a) will be called the dimensional spread of
H at the level (e, a).

A sequence (B ) of stochastically bounded subsets of ??h
satisfies condition Gh if for each & and o there is a finite b

such that the dimensional spread En(E, @) stays smaller than b,

A sequence an} which satisfies C,, C, and C, necessarily

satisfies 63 in the sense that

lin ing B[, e ak ] > 0.

To give examples of situations where Cu is satisfied one can
use the following simple lemmas., The first of these will be
recognized as a classical result of P. Léhy. The second is a
particular form of results which can also be credited to P. Lévy.
The third is the Hajek-Renyi form of Kolmogorov's inequality.

Lemma 12. Let X;,X,,---,X, be real random variables. Let
S = Zj.; X;. Assume that for each k the conditional distribution
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of Sm - Sk given 51’52’“"51( has median zero. Then

Plmax| s, | ~ €} =2 P{Is,| > t}.
Lemma 13, Let X;,X,,-++,X be independent random variables
having symmetric distributions. Let ﬁﬁ = E xﬁ and 52 = 2?___1 ﬁ?.

Let s-.&:‘:;‘_1 X, .
if

2
E eis = e:-t'p[- % + E.]

2.~1
eyl - s {36 -9 (3 )

with g(t) =cos t - 1 + t2/2 and 6° = max 6°

J

Lemma 14, Let }{-.,)Le, ---,Xn be independent random variables
j == — =] e &

with expectations zero and variances ﬁ? = E ?. Let 5, = E?

X.
=1 3
and let {cj; j=1,2,+++,n+l) be a nonincreasing sequence of numbers

such that ¢, = 0. Then
1. o 2o
P{ sup S| >t} = b A 1y, Tl
{k !ck k } ?5 a1 2
For applications to the present situation note that the
characteristic function of the process H[n, v ] is given by the

expression
log E exp[i{H(n, v,), y)]

v
= - —-I-:l sg(y) + Evnfg[{—'%l] P, (dt).
Lemmas 13 and 14 give immediately inequalities applicable to

the processes H_ or Hn as follows,
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Lemma 15. For each positive or negative integer k let Uy

be an element of ‘%ﬁ and let ¢, be a nonnegative number. Assume

that the u, are two by two disjoint and that €L 4 LR Further-

more, assume that P = E o bt ?n Let 1y, = El_;--m My and

52 - sup;, n§ sﬁ(uk). Then

g(t) P{;ﬁpickgﬁﬁ’ ug>| > t Enu/‘ [ ]pn(dT)

+ £ (1-62)71 82s2(p),

and

P{sﬂplck{ﬁn, V2l > t} - ;lg s2(p).

This lemma together with lemma 12 can be used to derive a number
of results relative to empirical cumulative distribution functions.
To obtain theorems which can be used to derive the well-known
result of Donsker and results of a similar nature relative to other
norms or to multivariate cumulative distributions, we shall study
symmetric convex sets Bn which are defined by means of sets
[Jn; j — Yi3 Zps wn] as follows.
a) J, 1s a totally ordered set,
b) the map j — Y5 associates to each j ¢ J, an indicator
Yy € ?:‘n in such a way that j, = j, implies j’jl = :rjE,
almost everywhere,

¢) z_ 1is an element of ?‘n’

n
d) w, 1s a positive nonincreasing numerical function defined
on Jn,
e) B_ 1is the smallest convex symmetric subset of % which

contains all the elements wn(j)]rjzn for j € J -
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Let S = fjn,jl,u-,_jm] be a finite subset of J_ such that
J4 £ 34,1+ To the set 5 one can associate an orthogonal projection
TI-S of the Hilbert space % into itself by the formula
m

Mg x = 1o Kk

- - d
with u, jrjk ij-l an

Jx wezee,
c =
k L]
sn{uk z“)
If x(S) is the cardinality of S, the rank of TI—S is at most
¥(S) - 1. Furthermore, for each jy €8S let r = sup[fﬂn{j)fﬁn(jkj;

k-1 <3 = Jpf. Then
TTS B, < (sgp rk)En.

It is enough to prove the corresponding membership relation
for elements of the form wn{j}yj ne If J & jn or if j = s [
or if j 1is one of the elements Jy; k=0,1,2,+++,m of S the
result is immediate., If 50 %1 3 ji then 'ﬂ's Y5%n is a linear
combination of y, _qz, and Yic%,+ The result follows easily,

To the system 7 = (J ; j —= Yi5 S 2,; wn] we shall associate

numbers as follows.
a) mﬁ . = SUP{SE[(Y-.]O + 75 - 5 )En]; je€dy, vy 2y, T],
» m o

b) Gﬁﬂr = 2 sﬁ[{yjm - :.rg}Bn],

52 o 2[ )
c) T 1§E2m s, {}'jk Tjk_l)ﬁn1=

1
d) ﬂn,-,r - EHIE[E EI'L] (ij".'fjﬂ) dpn
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with g(a) =cos a - 1 + GEIE and with En equal to a measurable
function which is such that its equivalence class én is the
supremum of the equivalence classes uwn{j}ijiénl for j e J,

that is,

e) Bye By =4 suplw,(3)yyl2z,]; 5 € 3,0,

Progositian 1. With the above notation, let D be an arbitrary
countable subset of B,. Assume that the system w is such that

wﬂ(j} = 4 'wn(jk} if 4« Jn is such that ijk-l = f"j 2 g’jk' Then,

for every e > 0

P{sup[l;(ﬂn, (I-TTIvl; v e D] > 35}

o2 5 | 8 o2
n,mT n,™m n,m
2 E g T T 1—*';5'“]
n,mw

In addition, if G, is the normal linear process having
expectation zero and variances EI(En,y;)!E = 2 s,ﬁ(y) then

F{S‘-‘PD@n; (I-TT¥l; y € D] * Se]
2

a - 2 EE
n n,m n,mT
“2'm® 1.8
k)

Proof. To make the following proof more readable we shall
omit the subscripts n whenever possible. Thus J, becomes J

and Wo becomes w, etc.

Enlarging the family D and the set J if necessary one can
immediately reduce the problem to the case where each element of D
has the form w(j)yjz for j e J.

Further, we may assume that D contains the elements w(ji)jj z
i
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corresponding to S5 and elements w(j v,z for k=-1,-2,--+ and
k=m+l,m+2,--+ selected in such a way that w(jk) < 4w{jk+1} for
all values of k. If the range (w(j); j € J) was not connected
one could enlarge J to render it connected so that the preceding
type of inequality would become possible.

Hajek form of Kolmogorov's inequality implies

W s5[710F]

P{sup[!{ﬁn,w{j)yj=>|; yy 2 ?jﬂ} > E} = -

and similar inequalities for {H_, w(j) (y.-y, )z> for y. > y .
1 g i m

To complete the proof let =y. =¥ and ‘¢, =
R TR k

sup[w{j}; Jpag ¥ 3 jk}. According to lemma 13

oy H = < ":'l “k
g(e) kil P{%l(ﬂn: ¥ z>| E} = ;1 E(E U Z)dp“

2y~-1 m
.;..é. (1 - % 32 1:"1 c;‘; sﬁ(uk z)

with 8% = supy ::E sﬁtuk z). The result follows from the inequality
o Y lzl =4 w(olz| s 8 g,

and an application of lemma 12, The argument for En is exactly
analogous,

Corollary, Let B, and the system w be as in the preceding
proposition. Assume that p_ € 42:1 and let K  be the polar of
B, in %(B,). Then both H and G are tight for the
w{_%{un},'y(an)] compacts of _’1(3“). Furthermore, if a process
H (I - TTg) 4is defined by <H (1-TT), y>=H,, (I-TTg) ¥> then
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i o 52 ﬁE
o (3 k) 525 o ofy fr 33258
n,

=t
for the Radon extension P of the measure associated to this

process. The corresponding inequalities hold for T_(1-TT)

Similarly defined.
For applications to convergence theorems, consider a sequence

(B,} where each B_ 1is the symmetric convex set associated to a
system [Jn; o i Yj3 Wps zn]. Assume that the essential supremum
B, of the wn(j}yj !znf satisfies the following uniform
integrability conditicn.

(05) For every € > 0 there is a number b such that

a) f Bﬁ(ﬂpﬂ(d‘r) < e,
|8, (%) |>b

b) If w.(j) > b, then

fsrj (ﬂﬂﬁ(-r)pn{dﬂ < e,

1

e) If w,(j) <b™ " and j; > 3, then

Je@ Gy -y @paen <.

Proposition 2. Let (B ) be a sequence of convex symmetric
subsets, B <% . Assume that B_ is gemerated by a system
(3 3 — THESN wn] satisfying the condition Cs.

For each n let f be a numerical function defined on (B).
Let K, be the polar of B, in %(B_). Assume that [(f,] satisfies
the conditions

(Cg) supl|f (x)|; xe H¥(By); n=1,2,""*] 3 A< .
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(G?) For every € > 0 there is an integer N and a 6 > 0
such that n z N and xiE’ﬂ‘:{Bn) and x; - x; € 0 K
implies

I £,(x1) - £,(x,)]| < e

Let F, be the normalized empirical distribution

n
F ow— T (&

n ﬁ j“l '["I.J.j - pﬂ‘-)‘

Let G, be the normal linear process having the same

mean and covariance as F .. Then

1im E £ (F.) - E -0
i £ (Gy)

for all positive linear functionals E and E = which

are extensions of the Radon expectations associated to

Fn and Gn respectively.

Proof. 1If the proposition is valid for a sequence (B ] it

is also valid for a sequence {E;] such that B;c: B,. Thus it is

permissible to assume that the measures P, are nonatomic and that
the ranges fwn(j}; j e Jn] and [sﬁ(yjzn}; j e Jn} are connected.
This can always be achieved by enlarging J, and introducing
supplementary indicators ¥y

The conditions CE imply that
2 2 .
suP{wn{J}sn(yjzn), jed, n=l,2,+*) < oo,
Therefore,

suplu, (1) f 1¥52z,ldpy; 3 € 3y, m=1,2,7) < oo,

Let T[, be a projection corresponding to a finite set < i £
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satisfying the conditions of proposition 1. From the inequalities
wp(j} -3 ¢Wﬁ(jk) for j,_q <3 s j, wused there it follows that
Tl Bp < % B,. If in addition the T[, have bounded rank the usual

central limit theorem implies that the difference between the
distributions of F_ [, and G, T[, tend to zero.

Because of condition 05 one can choose sets 5, such that
a? = Eu. Also ﬁE stays bounded and, using the connectedness

n,w n,m
of the range one can choose the set Sh in such a way that
2
Oon,r = E8(e).

The number of elements R(En) necessary for this stays bounded.
In this case the of proposition 1 tends to zero. Therefore,
for every e' and &', €' >0, &' > 0 there is a sequence

{Trn} of projections of bounded rank such that
1lim sup ﬂ'ﬂn(l - '|Tn} ¢ 5'1(“} < g,
lim sup F{Eﬁfl - TT;} ¢ 5'Kn] i

Since H, has a concentration function at least equal to that
of ﬁﬁ and since wﬁ(jquyjzn|2dpn stays bounded, a similar
property holds for H . It follows that the same property holds
for F: and G, hence also for F,.

Summarizing, for every € >0 and & > 0 there is a number
k(e) < oo and a sequence {TTh} of projections having rank less
than k(e) and such that TTn B, C 4 En for which

lim sup P(F_(1 - TT)) ¢ & K] < e,

lim sup Bl (1 - TT,) ¢ & K,) < e.
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The assumption made on £  implies that for n large enough
| £, (B = B (B TT)] e
except for cases having probability at most 2,
For any positive extensions of the Radon expectations this
implies

1im sup |E £ (F.) - E £ (G.)| = 2Ae + 2¢
mn*n fnnl

+ lim sup |E £ (F 1) - EE,(G,TT)I.

The Radon expectations are certainly well defined for functions
of the type x — o(x TTh} where ¢ 1s a bounded continuous
function on the finite dimensional space Ek = Jﬁ{En)TTﬁ. For such
bounded continuous functions E f(FhTT%} - Ef(GnTTﬁ) converges to
zero. Although the fn need not be continuous or even measurable
the result follows by a standard argument. This completes the proof
of the proposition.

To illustrate possible applications of proposition 2 let us
mention the following examples.

Example 1. Assume that the measures P, are all equal and
equal to the Lebesgue measure p on the interval [0, 1]. Let Vo

be the empirical cumulative distribution function corresponding to

n independent observations from p. Let V be the cumulative
distribution of p and let w be a function defined on [0, 1]
such that (1) w is nonnegative, (2) w(t) decreases in t for
t e [0, al, (3) w(t) increases in t for t ¢ [B, 1] with
0<a<p=<1, (4 w(t) is bounded for t € (a, B), (5) fw"(t)dtca,

For instance, the function w(t) = [t(1-t)]%, ' - 1/2 <a 50 has
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all these properties. Then sup, w(t) #/n [V (t)-V(t)| has the
same limiting distribution as sup, w(t)|u(t)| where u is the
Normal process having mean zero and the covariance E u(t)u(s) =
min(s,t) - st.

This can be seen by applying proposition 2 to the intervals
[0, al, (a, B), [B, 1] separately.

Example 2. Assume that the measures P, are probability
measures all equal to a measure p on the Euclidean plane, (The
k dimensional case can be handled similarly.) Let V, be the
empirical cumulative corresponding to n independent observations
from p and let V be the cumulative of p. Let U be a Normal
process, defined on the plane, having expectation zero and covariance
identical to that nf"fﬁ'(vn-V}. Then sup{x’?)*WE |?“(x,y) -
V(x,y)| has for limiting distribution the distribution of
Supx,ylu(x,yﬁl. To prove this order the plane by the usual
lexicographical order and take this as the totally ordered set Jﬁ
of proposition 2,

Example 3. A further example of possible application refers
to the Chernoff-Savage statistics. For simplicity we shall use
conditions which are much too strong for certain applications but
indicate how proposition 2 can be applied.

The functions considered by Chernoff and Savage are of the type

Tm,n = E(m’“){fmm,n[um,nfm{s} + u:;,ngn(s)]dfm(s)

-Iq’m,nE‘m,npm‘(s) + ul;l’nqn(s}]} dp_ (s)

where the PB's and a's are suitable numbers and the Pp'S and q,'s
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are probability measures on the line. The function £, 1is the
empirical cumulative distribution for a sample of m independent
observations from Pp- Similarly, g, 1is the cumulative obtained
from n independent observations from Q. Both m and n are
assumed to increase indefinitely.
Let hy  =a  p +0 d andlet X and Y, be the

random functions
xm -ﬁ (fm = P ):
Y =vn (g, - q,).

Furthermore, let & be defined by

n
e 4
m,n Al am,n x\n +,¥,E um,n Yn‘
With this notation the function Ty.n Day be written T . = T;:llg; +
» » r

T2 + 13) wieh
T:E:],-El = B(m,n) fq’m,n[hm,n(’g)]d[fnfs) -pmcsjl,
T:E; = ﬁ(m,n)f {Pm,n[hm.n(s) + 'ﬁm,ﬂ] - mm,n[l'ﬂ-n,n{‘?'}]-}dpm(s}

Tn(l?'l)l = B(m,n) f fpm,n[hm,nfs) i ﬂlm,n] " ®m,n hm,n(s}]}

d[£,(s) - py(s)].

&

The first term TIEI:‘; is, except for the coefficient pB(m,n),
a sum of independent identically distributed real random variables
subject to the usual limit theorems. No elaboration on its behavior
is necessary here.

To obtain some indication on the behavior of Téf;’: and TEEL

we shall make the following assumptions.
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| stays bounded.

2) L p(m,n) and L A(m,n) stay bounded.
A/m 4n

3) The ®n.n Satisfy a Lipschitz condition
3

log, n(u+v) = oy ()] 2 bylv|:

These assumptions can be relaxed to a noticeable extent by using the
full strength of proposition 2. Thus one could replace (3) by local
Lipschitz conditions which would allow unbounded derivatives, Also
one could assume that the a's are random and replace (1) and (2)
by "boundedness in probability" and assume that (3) holds only in
a limiting sense, The above conditions, although they are too
stringent for some applications are sufficient to indicate the
possibilities of the method used here.

First we shall show that under conditions (1), (2), (3), the

terms Tn(:?gl Lend to zero in probability as m and n tend to
infinity.

For this purpose, let % be the space of bounded measurable
functions on the line. Consider # as a Banach space for the
uniform norm. According to proposition 1, for every e > 0 there
is a finite v and projections T[ and T[], of rank at most
equal to v such that ||X (I-TT )|l < e and 1, Q-TT Ol <=
except in cases of small probability. The Lipschitz condition (3)
implies that it is sufficient to prove that

B{(m,n) f{ » n[hm a(8) + (meI' ) + _‘_ nTT] 'q’mp[%,n('g}]

d(£ (s) - dp_(s)]
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tends to zero in probability.
v
The term am,n(xm TTm) may be written um,n Ej-l cm,j Yn,j
where the u j are elements of & and the m,j Bare random
: ] ¥
coefficients. One can assume fJu_ j” = 1. Also one can assume that
¥
Ejlcm j| is bounded in probability.
Finally, using again the Lipschitzian character of Pm,n it

is easily shown that it is sufficient to prove that

Ry,n = P(m, n)f{mn[hmn(ﬁ) _mJ %15m, 3 Um, j »J__j=1nj“-1]

- mm,n[}&n,n{sn} d[fm(5) - mes)]

tends to zero for functions Up,y and vy o, such that "u jH
and |v j“ 1 and for random variables c_ m,j and En § such
that not only E[lc jl + In jtJ stays bounded but also such that
the n, j take values of the form k&, k integer |k| =b for
some & > 0. One can then classify the values of the original
observations (Ei] {nil into (vb)® sets. On each one of these

sets Rm,n has the form
1 m
m 2, (PGy) - Ep(Ey))

where p is a certain bounded function, Since jam,nl is smaller

than the maximum of these sums it converges to zero in probability,
Thus to study the limiting behavior of 'ﬁn11 it would be

sufficient to be able to describe the limiting behavior of T{E)

Under conditions (1), (2) and (3) the limiting behavior of T(E)

is the same as that of
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B(m, n)f{ ®n, nl:hm a(8) + _1:1_ u (s) + %‘_f v (s)]

- 9, P, (501} 2By (o)
where u  and V_  are normal processes having expectation zero

and the same covariances as Xﬁ and Yn respectively.
This follows immediately from propesition 2. Coundition 3
implies that A is absolutely continuous with respect to the
]

Lebesgue measure and has almost everywhere a derivative Yo e
.“

Thus, it is tempting to rewrite the foregoing expression as

L) 5
Té}n + Té.; with

a a'
1{ - p@m [ [-"f (e} +-at “nis)]!ﬁ'm,n[hm’n(s}] dpy, (5)

and

187 « p(m,m)[ {ﬁm,n[hm,nm + vy ()] = 9y o[hg. n(®)]

- wm’nfs) ﬁm,n[hmjn(ﬂ}]}dpm(ﬂ} ’

where

(s) =E"—“-u(a) +f=-'1’-‘-?(s}
'II.'I.I'.I. ﬁ ﬁ

The term T‘uj has a Normal distribution. Under suitable

conditions the term T(5% would be expected to tend to zero in
p

probability. Note that to prove that Tfﬁi tends to zero in

probability it would be sufficient to show that



Ran = E(m,n)f-{mm,n

- mm,n[hm,n{’}] 7

tends to zero if the
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o

*hm‘n{s) + EE:IE u (s) + Eﬂﬁlﬂ vn(s):l

n

a ﬂ.
BBy (s) + Ba vnfsi]vm,n[hm(s)]} dp, (s)

u, and v, are bounded sure functions,

lugll + vyl s b < co. This can be shown easily by the method used

to show that Tlgjg tends to zero. It follows, for instance, that

T&?& tends to zero whenever Pq.n 18 8 fixed function ¢ having

a continuous derivative ¢¥. In more general situations one may have

to verify that the P, measure of the set of points s such that

hn n(s] is close to

a discontinuity of is not excessive,
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