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I. Introduction. Let X; 3 i=1,2,**+ be a sequence of

independent identically distributed random variables. Assume
that the individual distributions of the xj belong to a
family {Pg; ©e®) indexed by some set @ which carries a
prior distribution p . It is well known that under a
variety of fairly mild conditions, the posterior distribution
of @ given KI,KE,"*,KH concentrates itself around the
"true value" ©, ©of the parameter. It has also been shown
by Lorraine Schwartz [1] that, under rather weak restrictions,
the posterior probability of a neighborhood of Gu tends to

unity exponentially as n tends to infinity.

The present paper concerns itself with some refinements
of this result of Lorraine Schwartz. The inequalities given

here are probably not the best possible, but they already
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2
yield various bounds which seem to answer agreeably certain

questions raised by the study of sequential estimation

problems.

The second section of the paper gives some preliminary
definitions and propositions concerning the Hellinger trans-
forms used as tools in the sequel. The third section
elaborates two bounds on the posterior probabilities. The
fourth section gives an application of these bounds to the
independent identically distributed case under standard or

weaker than standard regularity restrictions.

II. The Hellinger transform. Let % be a set carrying a

6-field a . Let S5 be a finite set. For each seS let

P3 be a probability measure on @ . In the product space

R® , Pproduct of copies of the real line R 1let U be the

simplex formed by element o = [us; seS)} such that a, >0

and Za =1. Let m=Z2P and let £ be the density
8 B B s

£ = dPEfdm . The Hellinger transform of the family

{PS; seS] 1is by definition the function a ~-> ¢(a) defined

on U by "

e{a) = [f[I fs ®ldm ,
s



This is a form of the Laplace transform of the joint

distribution of logarithms of likelihood ratios.

I1f C5 is a sub-g-field of @ one can restrict the
measures PE and m to GF and compute the Hellinger
transform on G&? instead of ¢ . To indicate the ¢-field
used we shall employ the notation g¢[a; a] , 9l[a; ]
and so forth. The following two lemmas are well known (See

for instance C. Kraft [2]).

Lemma 1. The logarithm of ¢(a) 1is a convex function of

a . Furthermore if (A c /7, then
ela; a] = ofa; ]

Proof. The first statement is the substance of Holder's

inequality. For the second statement, let m' be m

-

restricted to CB and let f; be the density of the
restriction of Ps to (E? relatively to m' . Then fé

is the conditional expectation E{f[#]} taken for the measure

m . Thus
us
o(a;@) = J(IE(E |R)] ®lam .

a
However, since the function {uﬂ; S5€8) ~na o 1.1;"r is con-
a a
i s -
cave we have n_[E(f_[})] ° > E((If_ ") |8} . Hence the

result,



Taking "expectations" and conditional expectations
for the measure m as above one obtains also the following

result.

Lemma 2. Let REF] be an increasingly directed family

of sub-g-fields of 0 . Assume that @ is the smallest

6-field containing all the CE? . Then Eifsﬂ'lﬂ] converges

in m-measure to fs and m[a;{gy] decreases to o@[a;a]

for each a e U .

Proof. If the (jzy were indexed increasingly by
integers, this would follow for instance from the usual
martingale theorems. However, even in the general case,
the fs are bounded by zerc and unity, hence approximable
in any Ib space by functions which are CSaneasurable for

a suitable (E%}. The result follows immediately.
let 7 = [Al,&E,'**,ﬁh] be a finite partition of

unity by sets ﬁj € . Let wﬂ{a} be defined by

Corollary. The wvalue o[a; @] is the infimum inﬁﬂ ¢“{aj

taken over all finite partitions of unity by elements of a .
A

According to this corollary, the definition of

¢(a; @) wused here is the same as the original definition



of Hellinger.

To obtain bounds on posterior probabilities we shall
use a particular inequality on Hellinger transforms for
product measures and averages of product measures as

fﬂllWSi

Let T be a Borel set in a complete separable
metric space. Let (x,0) and (1f8) be two measurable
spaces. Let P be a probability measure on @ and let
Q be a probability measure on GE‘ . For each te T,
let Ft be a probability measure on ¢ and let Gt be

a probability measure on (B

Assume that for each A € ¢ , the function ¢t ~~> Ft(ﬁ}
is measurable in t . Similarly assume ¢t ~~, Gt(B)
measurable. Denote product measures by the tensor symbol
Ft % G, . Letp and v be Borel probability measures on

T.

Proposition 1. With the notation just described, let

L=J Fu(dt), M = [ Gv(dt) and H = [(F® G )u(dt) .

Then, for any a €[0,1]

J(am)®(arRQ) % < (f(an)®(dr) 1Y Jy(a)

where +y(a) = sup_ j(dﬂv}ﬂ(dq) H=



Proof. Consider the product space [y, ax{?]
carrying the measures H and P®Q . Let
a7 = [hl,AE,---,ﬁm} be a partition of X by elements of
@ and let 7" = (B;,B,,+++,B ] be a partition of 7 by
elements of ng. Let m =o' X 7" be the partition
[A1HBj ; i=1,2,-++,m , j=1,2,+++n)] of ZxYy . According
to Lemmas 1 and 2 the Hellinger product pla) = f(dH]a(dPﬁﬁqjlpu

is smaller than

o (a) = iﬂj[H(A1XBj)]“[F{ﬁi}Q{Bj)J1"“

Now

H(AXB)) = [ F,(A;)G, (B,)u(dr)
e L(Ai} J Gt(Bj}"Ji(dt} 3

with L(ﬁi}vi{dt} = thﬁi}u(dt) . Thus, for any partition

n *
M= X one can write

l-a y
WAR) 5 Ggla) s ifj!L{ﬂi?IGIP{ﬂiif [/ 6. (B;) vy (48) 1% 1Q(B, )1 ™

In this double sum fix i and take a sum over ] Eirast.

The corresponding factor is

1-
% [/ Ge(By)vy (a0)]%1Q(B) 1%



Take an infimum over m , leaving w' fixed. Apply-

ing Lemma 2 to the above factor we get

°(a) = inf o (@) = 3 [L(a,) 1%p(a,) 1 f(a, )% (a0) e

[L(a)1°1R(A) 1 () -

< Z
3
Applying Lemma 2 again, but this time for refinement of

m!' , this yields

9(a) = v(e) S(dL)%*(ap) ™™ .

This is the desired result.

ITI. Two inequalities on posterior probabilities. Let T

be a Borel set in a complete separable metrizable space.
For each t e T, let Pt be a probability measure on a
space [X,0} . Assume that for each A € @ the function
t ~v» P (A) is measurable. Let . be a probability
measure on T . For each Borel set BC T let PB be
the probability measure defined by

w(B)PL(A) = [P (A)u(de)
1f u[B) > 0.5

Define a probability measure on Z X T by the integral



IBPt(aJu{dt} and let x ~~> F_ be a choice of the con-
ditional distribution of t given x for this joint
distribution. A simple computation shows that one must
have almost everywhere the equality

dPB

F (B) = u(B) o2 (%) ,
T

where the right side is the product of p(B) by the

evaluation at x of the appropriate Radon-Nikodym derivative.

In this expression, the existence and essential
uniqueness of the measures Fx is guaranteed by the
assumption made on the Borelian character of T . To derive
from the equality some useful inequalities one can proceed

as follows,

Let P be another probability measure on (x,a) .
This measure need not be one of the Pt . Take a number
a €[0,1] and two sets V and C which are Borel subsets
of T . To use the inequalities given below, one attempts

to choose V so that Fv be much closer to P than PC p

Consider the number B(a) = f{ch)d(d¥}1_a and the
-1
corresponding probability measure dH = B(a) {dPE}ﬂ{dP]l-a .
This is well defined if g(a) > 0, that is if P and

P, are not disjoint, Let ¢ be a test of H against P



P chosen so that [ 9dd and J(l-¢)dP are "small".

Proposition 2. With the notations and assumptions just

described, let a be a positive number and let A be the
dP
set of values of x where EFE e T . Then

[ [F(0)17P(dx) < [, (1-9)dP + "% (a) [;Ii_{ﬁr’} [, o .

Proof. Let £ by the function X ~~. £(x) = [FR(C}]H
By construction 0 < f(x) < 1 . Also, on the set A the
measure P 1is absolutely continuous with respect to PT

and dPT > u(V)dP, . Thus, on this set A one can write

\Y
o = (48] (& |7

this gives

[, €4P = [, (1-9)£dP + [, ofdP
(1-9) dP aa [u(c)]* i gp
< Jy(o)ar + (@) e™ (M g, o B
C a
< [p(1-0)aP +p(@) ™ (KA 7, oan .

this is the desired result,
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Corollary 1. Under the assumptions of Proposition 2

one has for each g = 0

P(F_(C) > e} < P(A%) + &7 B(aje™® [%r .

This is an immediate consequence of Markov's inequality

applied to the inequality of Proposition 2 with ¢ taken

equal to unity.

Corollary 2. Under the same assumptions

PF,(C) > €] < B(A%) + [,(1-0)dP + e le? ﬁ—% ) wdke

for any test ¢ of PE against P .

This is obtained from Proposition 2 by taking a =1 .
The two inequalities given by the above corollaries are
really very closely related since f(a) will be small when
the corresponding terms in Corollary 2 are small and
conversely. However actual use will depend on how easily

the appropriate terms can be evaluated.

In typical cases, to force P(&F} to be small one
will have to take for V a very small neighborhood of a
parameter point © (if any) such that P9 = P . Thus, the
term [u[ﬂ)]a [u(v}]‘“ will be large. The inequality will

be effective only if either B(a) or [ 9dPz can be made
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much smaller than [u{?jla . We shall show in the next
section that this is often the case, For the present,
let us note that it is often convenient to evaluate P(Aﬂ}
through the use of Hellinger transforms as follows.

Take o < 1/2 . Let ¢(a) = f{de}u{dP}lwu . Assume
p(a) > 0 and let M be the probability measure

dM = E¢(u;] [de} (dP) . This construction gives

9 (a) dP dP"’)“ Consider the affinity [ [aMap]Y/2 =
¢{Eﬂ[¢(ﬂ)]lfg . Since the logarithm of ¢ is convex one
can write log m(%} > li%ég log 9(a) . Since we limit

ourselves to a e (0,1/2] this gives ﬁ(%} > [1.1:-|[::|'.:J]3"Jr2
hence f[deP]UE > ¢(a) . It follows that ||[P-M|| <

E[l—@E{a)lle . Finally this gives

Pll-e < So<1+el >1- 2 [19°(a)]*/?

Direct application of the inequality of Corollary 1 of

Proposition 2 yields the following result,

Lemma 3. Let P , Pv and P. be defined as above.

Let o(a) = f{de]u{del_u and let @ be a non negative

number. Then, assuming' a €(0,1/2] one has

PLE(Q) » e « o L0Z(@1'" + () D]

y w (V)
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Finally let us note that the function x ~~> g(x) =
Fx{ﬂ) is a test function. The power of this test satisfies

= u(C) . Hence p(C) = pn(C) [ @dP, +

the ralation [ @dP c

o
w(B) [ mdPB and if p(C) 1is close to unity

1-u(C
"—'L%TLI"&B

2§ mch =1 - 7%

c) -1
w(C) :

=
is also close to unity. Thus if P is a measure such
that [ FK{C)dP is small, the test ¢ provides a test
of P against P, whose level at P 1is small but power

Cc

at PC or ?T is large.

IV. Independent, identically distributed observations.

Let ® be a Borel subset of a k-dimensional
Euclidean space Rk . For each & € @ let Pg be a
probability measure carried by a 6-field Q¢ on a set
X . For each integer n , let {x“,a“} be the correspond-
ing product space and let Pg,n be the product measure,
product of n copies of Py - Let pu Dbe a probability
measure on the Borel subsets of © . Denote the conditional

distribution of & given x = (xl,xz,-*-,xn} by the
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Let GB be a particular element of © and let

p = ng and Pn = Pgo'n for simplicity. We shall

concern ourselves with the limiting behavior under Pn

of the posterior distribution of © in the above set-
up.

Following the notation of section 3, assume that
for each A € ¢ the function ¢t ~n~> pt{&) is measurable

and let Pﬂ,n be the measure defined by Pc,n -

1
m 'Irﬂ Pg'_nj.j.[d@'} .

Let p_(a) be the number g (a) = f [dPG’n}a(dPnjlpﬂ

The following proposition is analogous to Lemma 6.1 in

Schwartz [1].

Proposition 3. Assume that there is an integer m and

a test function ¢ defined on {In,an] such that

/ mdPn.:_yl and [ mdPt,n ;_1-32 for every t e C .

Then for every integer n > m and every a €(0,1/2]

one can write

B (@) = [s(2-s))°[*/™

with s =y, + Y, and with [n/m] equal to the integer

part of n/m .

Proof. Let v be a probability measure carried
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by C . Consider the test between P and Q= fPt my{dt}
which minimizes the sum s of the probabilities of error.
According to the assumption made s = [IPm AQll =< Yy + Vs -

However HPm -Q|| = E[I'I|Pm“Q!|].i 2/1-p2 where

SR 2
p = j.gﬁﬁmdQ . This can be written in the form p < s(2-s) .
The logarithmic convexity of the Hellinger transform implies

then that

[ (@)1 ® < p® < [s(2-5)]

m

a

for every a e[0,1/2] .

Suppose that n > m is of the form nk + n' for
an integer k and an integer n' < m . An application of

Proposition 1 gives

ak
B, (e) < [s(2-9)1%° .
This is the desired result,
The above proposition will allow us to derive
exponential bounds for certain posterior probabilities of
fixed sets C . One can also use other bounds which can

be substituted in Corollary 2 of Proposition 2. One

possibility is the following.

Let Z be a measurable map from ﬁ@aa to the
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r-dimensional Euclidean space. Let 1-1t be the cumulative

distribution of y for p. » For each integer n let

Hu be the empirical cumulative distribution of y . Let

[l Rl | = sup (H (5)-(H(Y) |

For 1 > 0 let +v(t) be the number (1) =

sup P{n1;2|

IHn—H[| > 1} where the supremum extends to all
n,H

cumulative distribution functions on R® . According to
a result of J. Kiefer [3] for each g > 0 there is a

constant c(e,r) such that (1) < c(e,r) Exp[—{E-E}TE] .

Lemma 4. Let W be a neighborhood of Qﬂ in @ and

let % be the k-dimensional Lebesgue measure on Rk .

Assume that there is a4 number b = 0 such that for all

t € W ame has ||Ht-HQ || > Eb|t~ﬂﬂ] . For each integer
. -1/2
n

n let v be a positive number and let 6n =

Let ¢  be the test function equal to unity if IJHn-HG || =
o

bv 6 and to zero otherwise, Let C_ = (t e W; |[t-8 | > v & ).
n n n o' = mn
Then, for all t ¢ C  and all n one has f¢n§Pt’n <

ﬂb|t-col\/ﬁ] and [(1-¢ )dP < y(v ) . Also

fo Unydp, In(at) <87 [ ¥(bOA(d) .

n T|>V
= 1
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Proof. Let Sn be the set of values of

x=(xl,x2,-f-,x“] such that i!Hn-ngll <bvs . If teC,
and X € Sﬂ one can write

| [ -H |lH By ] - |8 -ty [
o o

=
> blt-o_| + b{|t-6 | - v 6]

- bitﬂ-ﬁ I
b o

This implies P_ (S ) < y[b|t-6_l/n ] by definition of y .

The last inequality follows by integration.

In many problems the existence of functions y whose
cumulative satifies the conditions of Lemma 4 is obvious.
Existence of such transformations can also be proved under
a variety of regularity restrictions. A system of conditions
insuring the existence of the transformations was given
in LeCam [4] (see page 184). They are similar to assumptions

which will be stated below.

In order to apply the inequalities of Proposition 2 we
need, in addition to the above upper bounds estimates of
lower bounds for the densities (defdP} . The following

argument is often usable.

Let ¢ be a number, a €(0,1) and let
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a l-a 3
wla,t) = f{dpt] {dpgl ) . Since we have assumed only
o

the measurability of the maps t ~~s> pt{A) it is
conceivable that t ~~> w(x,t) might not be measurable,
We do not know what the situation is in general. However
t ~e> w(a,t) d1is certainly measurable if either ¢ is
countably generated or if the maps ¢t ~~> p, are strongly

measurable.

Lemma 5. For every neighborhood V of GD such that

w(V) » 0 and every o €(0,1) for which t ~w @(a,t)

is measurable on V one has

oy /1o, 81 (d0)

| ¥

9 (@)

> {;%ﬁT i) m{u,t}p{dt]}n ;

Proof. Let v be the probability measure defined

by w(V)v(dt) = p(dt) on V . According to Lemma 1

[(ary )%(ar )T > fis(ar, %@ ) v (a
In addition
f(ap, %) = fu(e,0)]"

The result follows by application of Holder's inequality.
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Let J(t) be the "information number"

dp

J(t) = [[log ﬁ 1dp, *

0
o

This is equal to the derivative Eﬂ%g*El at a =0 1if
this derivative exists. Thus the convexity of log w(a,t)
in o implies w(a,t) > exp[aJ(t)] . One can then

deduce from this and from Lemma 5 that if J(t) > - b

for all t € V then mn{u]_i exp[-nab] . This result

can be used to reconstruct the proof given by Schwartz

in [{1] (Theorem 6.1). However, in many respects the bound
J(t) > = b is an unnatural requirement since it is

possible to obtain the same type of exponential bounds

in stiuations where J(t) 1is always -« .

Let us consider now a more restricted situation

describable as follows.

(Al) The point is an interior point of ©

(A2) the prior measure yu has, with respect to the

k-dimensional Lebesgue measure » , a continuous

strictly positive density,

(A3) 1Let h(s,t) be the Hellinger distance defined by

h(s,8) =[] /A, -/, |°

. Then for [6-6 | < e,
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lim sup i h(e+t,t) = 52(9] < ﬂg o G
| e]-0

Theorem 1. Let (Al), (A2), and (A3) be satisfied. Let

W be a neighborhood of the point Ga and let C be

its complement, Assume that there is a uniformly consistent

test of Da against C . Then there is a neighborhood

W, of ©, a constant K and a number <y < 1 such that

i Tl
Po,nlIFx(Q) | 2 77} = Ky

for every © € Wl &

Proof. Let m be so large that there is a test

¢ defined on (%,a") such that 16 [(1-g)dp, <1
o,m
and 8 fmdPt n =1 for all teC. Let p(t,8) be the
2

affinity p(t,8) = _,"{n:!l:angd]:«t]1"(2 . Select an open set W

S
1 1024

for all t e W . The bound chosen on p{t,@a} is such that

i ]

such that 6, €W and such that pgm{t,gﬂ} e &

||P. _-P || = 1/16 . Therefore, we have also
m, t m,@a -

8 f{l-m)d?t.m %1 for all te W,
Let En(a,e} be the number

B (a,8) = "r(dPC,n}a{dPQ,n} e

for © e W, and a €[0,1/2) . According to Proposition 3



one can write

ﬁn(ﬂ, 9'} i K]_Tl

for ¥y = E-lIEm and Kl = Elfm' and all © € Wl .

Suppose that Wl has been chosen such that if © € wl

then EIG—QGI < g, so that assumption 3 applies to all

0
points within ED!E of Wy - For each @ ¢ W, and

each n select a small neighborhood ?n of @ . For a
given g > 0 , the second term in the inequality of
Proposition 2 can be evaluated at a = 1/2 giving a bound
of the type

K, a al2 1/2

;}: 7 e [u{?h]]_
E

where a 1is an arbitrary positive number, say a = 2 log?2 .
For this term we can obtain a bound decreasing exponentially

provided that u{ﬂnj be larger than a term of the type

2n
KETE with Vo > ¥y « For this purpose take for ?ﬁ a
cube centered at € with sides equal to {Tgnjlfk .

2 _2n

> Vo with a coefficient

Then u(?n} is larger than K

KE depending only on the lower bound of the density of

L on the set (6: |9-Qu| < gy)] which contains Wy -

It remains to see that, with this choice of a and



1

t . —

Vv he probability of the set A = [x: ?ﬁ__L_ 21
E,Il

decreases exponentially.

For this purpose let p(t,8) be the affinity defined

above. Assumption A3 implies that h(t,8) < 6,[t-¢|
1
2 1

and |t-o| < EOfE . According to the definition of V_

or equivalently pe(t,g} =1 - ﬂ§|t—9|2 for 6 e W

this gives
1/2 1/2 0
f{den’n} (dr,) > [1-K5 v3]
1.2 1% _.2/k
with K3 5 52 2 and 13 Yo . Thus, for n

large enough to insure that KB?g < 1/2 this gives

1
o, = Jldp, dP.] /2 > exp[- n K3T§{1-R3T§)]

n,n

1 n
> exp[- 3 nKE'rS] ;
2 n n
It follows that 1—mn < 1l- exp(-n KBTB} <n K3T3 .

Take a value Yy such that 73 ais R l . Then
n(v3fvu}n satys bounded and therefore {1-@3} < quz .

This gives, according to Lemma 3, the inequality

Y K, v, 2n/3
1. 2n/3 n/2 1 1
(;_) ] f_u Kh Ty + 2 K 2

P, [F_(C) >
Ry 2 2 Y2

Ths choice of Yo being unhampered except for the



k/2

restrictions Yo > Ty and Vo <Yy
2(2k+1) k

< 1 one can choose

Yo such that Vo and then Yy slightly

larger than Yy E2k+l} . With this choice

T n
Py, ulfxl®) Z V1 2K Y

for any <y such that 74{2k+1} > Yy -

This concludes the proof of the theorem.

Remark 1. It may be worth noting that, for a given prior
i, the rate of convergence obtained above depends only on
the bound of Assumption A3 and on the integer m necessary
to achieve a suitable test of LN against

o,n

(P_ , t € C] . The neighborhood W

£,n 1 depends only on

that integer m , the bound of Assumption 3 and the range

in which this bound is walid.

Remark 2. One could alsoc obtain a similar result using

Lemma 5 and instead of (A3) the following assumptionm.

I > o
(A}) There is an e >0 such that if [6-6_ | < ¢,

the quantities

(,0) = f[1 dpt]-&
Jitg,8) = og =—]dp
dpe o

tend to zero uniformly as t—= 9 .




A proof can be carried out following the lines of

the proof of Theorem 6.1 in [1].

Note that (A3 and {Aj_l_) are very different.
Neither one implies the other. It is possible to obtain
the result of Theorem 1 under a much weaker assumption

which is very much weaker than either (A3) or (A;}.

A corollary relative to the behavior of Bayes

estimates can be phrased as follows.

Assume that (Al)(A2) are satisfied and that either
(A3) or (ﬂi} are also satisfied. Let & be a positive
number and let Gé be the set of points which are at
distance at least 25 from W . Let £ be the loss
function obtained by taking 4(@,t) =1 if |e-t| > &
and 1(6,t) = 0 otherwise. Let an be a Bayes estimate
for this system. Then there are coefficients K and
¥, ¥.€(0,1) such that Pt’n[a@ﬂ € Cé] < K '\-'n for all
t e Wl .
One can obtain further refinements of the above results
if further assumptions are imposed on the family

[pg; © € 8] . For simplicity let us add the following

assumption.
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(A4) All the P. » t € W are mutually absolutely

continuous.

Let then X (t) be the process obtained by sub-

stituting in {«:1[::1:.*’-:113&'}*]""2 a variable whose distribution

is Py -

(A5) The process t > X,(t) is differentiable

in quadratic mean at t=0 and the derivative Yg has

a covariance matrix A(8) = EgYéYg which is non singular

If (Al) to (A5) are satisfied, one may assume witbout
loss of generality that (%,a} where the variable x
takes its values is the interval [0,1] itself. Also,
letting Ht be the cumulative distribution of x for Py
there is for each © € W an interval |[t-6| < g(8) and
a number b(8) for which the assumption ||Ht-Hg]} >

2b(e) |[t-8| of Lemma 4 is satisfied. (See [4]).

According to Lemma 4 for 6 e W and for b = b(e)

there is a test °_ of © against the set En =(|t-8]| > vnén]'

a2
6n,JE = 1 such that f{l»mn}dPg,n < K exp[-b vn] and

k 1 a A
/ ¢ndPEn,n =80, g wl-bv. ]

v
n

Take vi = qE log n for some constant q . The
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second quantity written above takes the form

2 2

k-2 -_{%-I-hq}

K{qE log n] 2 n

Thus if we take for vn a set of the type
V- (e |t-o] < ﬁ] and apply the same argument as in

Theorem 1 we obtain the following result.

Theorem 2. Let conditions (Al) to (A5) be satisfied.

et 8 be an element of W and let Cn be the set

C, be the set C_ = (|t-e]| > q Aog o In wW.

For each © € W, each integer r there is a

number q and a constant K such that

1 1
P@,n[Fx(Gn} > nr] < K =T

It is sufficient for this purpose to take q so that

quE is slightly larger than (r- %}k+l .

Unfortunately the technique of proof uses the lemma
of [4] which does not seem to lend itself easily to a
strengthening which would be uniform on an open subset of

W , although this is probably possible to obtain.

Of course, under assumptions (Al) to (A5) the usual
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Bernstein-Von Mises theorem is still available. The
posterior distribution of © , differs little, in
L,-norm, from a suitable Gaussian distribution. The rate
of convergence in this approximation seems to depend

mostly on two factors.

One of them is the rate of decreases in Ll—mean
for u of the remainder term in the first order Taylor
expansion of the process Hﬁ . That is, of the rate of

convergence to zero of

i W%F |1 X+€) - X (0) - &Y ||dg

as g=— 0 . The other factor is the rapidity of con-

vergence to normality of the distribution of 1: E 4 {xj}
Vvn

We hope to give results of this nature in a further paper.
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