MIXTURES OF POISSON DISTRIBUTIONS. 1I.
SOME SIMPLE CASES

By Lucien Le Cam”

University of California, Berkeley

1. Introduction, A numerical random variable X 1is said to
be distributed according to a mixture of Poisson distributions if
there is a probability measure F on the positive real line such
that

00 k
Prob(X=k) =\/:j e” A 'ET F(dn)
for every nonnegative integer k.

Mixtures of Poisson distributions occur in many different
contexts. A general type of circumstances leading to such mixtures
has been described in [1] as follows, f

Let % be an arbitrary space carrying a o-field &. Let u
be a positive measure on (L. Let @3 be the subring of ¢ formed
by the sets which have finite measure. Assume that for each Be @3
and each integer m there is a B € g3 such that Bc B, and
m = (B ) < co.

Consider a random mechanism by which points are selected in %

in such a way that if A€¢@D the number N(A) of points fallingl

in A 1is almost surely finite. Assume in addition that, given
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N(A) = n the positiom of the n pecints X1,X5,*0*,%,  in A have
the same joint distribution as if the xj were selected at random

independently of each other with the distribution

WS N A
Prub{xj e 8) = AT

Under these assumptions, for every A €@ the distribution
of the variable N(A) is a mixture of Poisscn distributions.

This can be easily proved as follows, using the operational
notations of [2]. Let 4 be the measure giving mass (-1) to zero
and mass (+1) to the point unity of the line., Let Q be the
distribution of N(A). For any (8 >A let Q, be the distribution
of N(A) given that N(B) = n, Finally let F

of
a4 N B)
n = U8B ().
According to the assumptions made

Q, = [T + pa]”

B be the distribution

with p = pg = u(A A B)/u(B).
Hence (see [3]),

[, - exp[npya] || = dpg
lQ -fexp(m}FB(dhilJé kpy.
If u(B) tends to infinity, pp tends to zero, hence
fexp{m}FB{dh}

converges to the limit @, in the sense of the Ll-narm. As we

shall prove in section 2 such a convergence implies that F, tends

B
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in the ordinary sense to a limit F and that Q =L/‘exp(hﬂ}F{ah).
It has been shown by Greenwcod and Yule [¥] that certain

empirical distributions of zccidaonts are fairly well represented by
Poisson mixtures, These authors assume that the mixing measure F
is a Gamma distribution,

In accident studies, the occurrence of a mixture can often be
attributed to a lack of homogeneity of the population, More
precisely, consider a population of n individuals subject to
"accidents" and observed for a given length of time. Let xj be the
number of accidents sustained by the jth member of the population.
It is often assumed that Kj has a Poisson distribution with
expectation hj = Exj. The number hj is called the proneness of
the jth individual, A lack of homogeneity is reflected in the
variation of hj from member to member., If it is assumed that the
individuals have been taken at random independently from some very
large population, one may consider that the lj are results of
independent trials on a population characterized by the measure F.
Under these assumptions the Kjis are independent variables
distributed according to a Poisson mixture,

Neyman and Scott [5], have derived tests of homogeneity which
are in particular applicable to the case where F 1is assumed to be
a Gamma distribution.

It is clear that the Gamma distribution has been selected in
such studies because of its general shape and because of its general
tractability, For this reason it may be interesting to investigate
the performance of the tests devecloped in [5} for other mixing

distributions, The present paper represents a study of some
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particular cases in which such investigations can be carried out
rather easily.

g1, RUCINE dlstriborions snd cortesponding mixfurgs. The
purpose of the present section is to chow that the correspondence
between a mixing measure and the resulting Poisson mixture is one
to one. Further, the correspondence is bicontinuous for suitably
selected topologies, The existence of consistent estimates of the
mixing measure follows from this,

Whenever convenient, we shall employ operation notations. For
instance, let & be the space of bounded numerical functions on the
space of all integers. The space & 1s a Banach space for the norm

defined by
ju] = sup |u(x)].
s

The finite signed measures on the integers form, under the comvolution
operation, a cumulative Banach algebra 7Z identifiable te a subspace
of the dual of &. The measure & which assigns mass (-1) to zero
and mass (+1) to the point unity is an element of 2. The Poisson
distribution having expectation A is simply exp(Af}. A Poisson

mixture Q with mixing measure F can be written
Q =JrexpE1&}F{dh}.
Let u be a complex-valued function defined on the nonnegative

integers and such that
i oo

k=0

for every nonnegative ). Let u be the transform



By definition

. k
Juaar) = = i) [e™ dy F(an).
I ¥ :

Therefore, whenever h/lu(k}iQ{dk) < o0 one can write

fﬁme'?‘ﬁam =fu(k}q(dk}.

It follows that Q determines all integrals of the type
ufG{h]F{dh} where v(a) = Wa™@h w20, a >0,

The Stone-Weierstrass theorem shows that Q determines all
integrals of the type /v(A)F(dA) where v is continuous and
vanishes at infinity, Therefore the correspondence F <—= Qp 1is
one to one,

Consider two random variables X and Y which take only

nonnegative values, One can write

YA Kb

Ee~ ~Ee Y-X)a . 112,

= E{e(

Suppose that Prob(|Y-X| > e} < &,
Let f£(X,Y) =1 if |Y-X| s & and let f = 0 otherwise.
Then

IE[Y - XY\ 5 25 4+ EEx, 1) X0 [(¥2 | ]

For every real number u one can write
I+
o
It follows that

[E[e¥8 - X247 || = 26 + | 2e®® ££(x,v) 21X jyx]3
2E

LA

256 + Zee
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when X takes only very large valu=s, better bounds may be obtained
as follows,

If Prob[X <] < 5, then

[E[e¥2- X2 [ 5 26 + 25; + ee®®E[a 22|

»

where Z 1is a random variable taking only wvalues larger than 2.

For Z 2z » 21 it is easily seen that |ﬁeZ&” < 2/4%. Finally

one can conclude as follows. ?%dhﬂr““
Theorem 1, Let F and G be two measures on the positive ,_{Hfff

real axis. Suppose that the Paul Levy distance of F and G 1is

inferior to e. Let QF and QG denote the corresponding Poisson

mixtures. Then

llQp = Qgll 5 2e[L + &®¢]

If in addition F{[0, )] =< 6 for a z 1 then

EéeEE

YN

This theorem implies in particular that if F — F in the

ordinary sense then G — Q in the sense of the norm. In
n
addition, the proof shows that it may happen that ”QF - qGi[—-+ 0
n ol

even though the Lévy distance between Fn and G“ does not tend
to zero. This may happen when for every 3 * 0 the measure
-G, [{[0, )} tends to zero.
To obtain a result in the reverse direction note that if J%\

denotes the Poisson distribution Ph = exp[an} then

-u u"
({m, c0)) ’=Jr ET du.
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1f QF denotes the mixture correspording to F this gives
@ T
o Uma) = [ r(an) [ o™ Er au
it

oo . T
z [ UEan)[ e B au
t 0 _'

It follows from this that for a family {Qg, F « &) to be
relatively compact for the topology induced by Paul Lévy's distance
it is necessary and sufficient that the family (F: F € 5;7 have
the same property., As a consequence, if QFn — Qg in the sense
of Paul Lévyfs distance, then Fn —+ F in the same sense.

The coﬁtinuity of the map QF —+ F implies that whenever
consistent estimates of Qp are available consistent estimates of F
are also available, For instance, suppose that N,; j=1,2,+*+,n,**"
are independent random variables having distribution Qp. Let G
be the empirical cumulative distribution of the first n wvariables.

Take for estimate of F any distribution F_ such that

s:;p [1 -Gn{m]] - QFn{ (m,0)}| = iﬁf s:p][l-Gn(m}] - QH(m,m}]+%,
then E£ converges almost surely in the sense of Paul Lévy!s distance
to the "true" distribution F. |

3. Contiguity and asymptotic normality. Let [Pn} and {Qn}
be sequences of probability measures on o-fields (&_ ). By the
norm ”Pnﬂqnﬂ of the difference P_~Q, will be meant the quantity

I8 - Qall = 2,22 [24{A) - Qalia)l-
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The two sequences [P“} and {Qn] will be called "equivalent" if
HPn-Qn“ tends to zero as n tends to infinity.

Let (T )} denote a scquenca of {étn;-measurahle functions
taking their values in a fixed Euclidean space. The equivalence of
()] and {Q,} implies that the sequences (T ] having a limiting
distribution L(T) wunder {Pn] (resp. Qn] have also the same
limiting distribution &L(T) wunder [Qn} (resp. Pn}, Conversely
the preceding property implies the equivalence of [Pn} and Eqnj.

An equivalence relation, weaker than the preceding, has been
introduced in [6| under the name of "contiguity." Specifically,
the sequences {Pn] and (Q )} are called contiguous if the
sequences [Tn} tending to zero in probability are the same for
(P} and (Q.].

Let wu, =P, +Q and let h be the Radon-Nikodym derivative
h = {dqnfdun). Let ﬂ{hn; Pﬁ] denote log(h/l1-h). This measurable
function which takes values in [-oo, +00] will be called the
logarithm of the likelihood ratio of Q, to P,. In the sequel
we shall have to add quantities of the form .ﬂﬁgﬁ Pn]' This can
be done with obvious conventions (such as oo - co = =00) concerning
the addition of infinite values., Another procedure avoiding *
iafinities altogether is given in [6].

Letting x = A{Q ; P_], the contiguity of (P )} and (Q}
is equivalent to the compactness requirement that for every e = (
there is an n(e) and a b(e) < oo such that n z n(e) implies
{Pn + Qn}{EInE > b(e)} < e. The equivalence of [Pn] and [Qn}
corresponds to the requirement that for every e there is an n(e)

such that n 2 n(e) implies (P_ + Q. )([x,| > €} < ..
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Contiguity will often enter in our arguments by the following
proposition. Suppose that [Tn} s a sequence of [&,n]-measurable
functions such that the distributions .E:{ex“, TnIPn} converge to a
limit J:[ax, T| 1in the usual sense of convergence of integrals of
bounded continuous functions,l Assume that for every e > 0 there
is an n(e) and a b(e) such that Q_{x, > b (e)] < e for n > n(e).
Then, .t]:exn, Tn]qn] converges to the distribution exﬁﬁe}:, T1
which has density eX with respect to .E[ex, Tla
In the following sections we shall be concerned with sequences
(p,} and (Q,) such that .B[xan“:[ converges, as n tends to
infinity, to a normal distribution _A(u, UE}. The contiguity
assumption is then equivalent to the rel;atinn 2p = --::IE.
Furthermore, we shall be particularly interested in the case
where both P " and Q, are product measures describing the
distribution of independent variables Ih,j; j=1,2,¢4+,v,. Let
Pn,y = 'Ean,ijnl and let gq, ;5 = 3[%,1-1%1- The differences
Pn,j - qn’j will be called asymptotically negligible if
E'“Pjﬂpn,j - qn,j,” converges to zero as n tends to infinity,

In [6] we have stated the following theorem.

Proposition 1. Let the differences [la, 5 - p, 4] be

asymptotically negligible and let y = ﬁ-;:qn j3 Py j]' Let
¥ F

p]{nj
xn=‘?‘j In,j and let 5§ =2‘.jLE * -1],

n
The following conditions are equivalent:

(a) £(x,) converges to X¥[- é W2, Uel.
(b) <£(s,) converges to K0, 4:12].

Proof. This result is closely related to a classical theorem

of Bobrov (see [T], P.J¥4. Since the reduction to Bobrovts theorem
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requires some argument which is not given in {5] we shall give the
details of the proof.

Note first that both (a) and (&) imply that for every e > 0,

say e = ID'E, the sum
& ; -
5 Pn[lxn,Jl el

tends to zero as n —s ® ., Since (a) implies the contiguity of

(P} and [Qn] it follows that under (a) the sum

? Qn[ixn,j| o E]

also tends to zero, Under (b), let Aj j be the set where
4

1 j] < €. Then, according to the central limit theorem
3

5 Xn,
j'j;*n,j[e Y- ey 5 - 2 By, 58n,5) < P,g(Ag, )]

also t?nds to zero, therefore Ej Qntynn,jf > E]. tends to zero,
Let pﬁ}j{B] be defined by

Pn,j(B F\An’j]
Pn,j®n, !

Pn,j(B) =

and similarly for q;,j. Clearly ”p;’j - Pn,j“ - QPn,j(AE,j)'

1f P; is the product of the p;Jj then ﬂP; - P_|| tends to zero.
Similarly for Q:l Replacing the sequences distributions {Pn] and
{Qn} by the equivalent sequences {P;] and {Q;] if necessary

one can assume that 11ﬁ,31 2 e = 10"2  for every u and j. With

this supplementary assumption one has always

Xn

s i
Ele 1lp )} = o.

Therefore, if Sn is asymptotically normal, the limiting

distribution must have expectation zero. Let Sn g= exn'j - 1
:
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and assume (b) satisfied. Then

e I o e _lE 5
Xn,g = 108(1 + 8y 5} = Sy 4 - 5 8y, + 018, 5]

with [€] < 1. According to the ceatral limit theorem Z4 SE 3
»
converges in probability to 6° and

3 2
'J.; E[s, ;17 = [J; E sn’j]s;p E[Spy, 4

converges to zero, Therefore {a) holds.
Conversely, if (a) holds, let g = -E Xn,j* Expanding the

axponential gives

” 1 2 3
52,3 = Xa,j * 3 Xa,3 + &lxq, ;17
Hence
-1 2 3
iu“:j EE x’“:j{ éEII’“:J! 7
For mn large enough this implies
1 2 i 2
[p‘n,j -EE xn?jl éEE]Inljl )
and finally
3 2
%2 Va5 TEF Xn,5e
The convergence of Ej“n j to (1!2}a2 implies that
2

2
b2 = sup Z
3 Hn, j 3 ]“n,jl jlun,j!

; 2 2
= . h . : é
converges to zero. Hence bot Zj E In,j and Ej E[xn’J4a n,31
converge to the limit 0° ag n— o, This, in turn, implies
1 -2 ;
that E[Sn,j .4 " In,j] converges in probability to zero and
(b) follows by application of the central limit theorem.
The preceding proposition 1 will simplify some of the arguments

of the next sections. The situation considered there can be

described in its full generality as follows,
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Let (T, j]; j=1,2,***,v, be a double sequence of positive
»
numbers, For each n, let [Kn ) j=1,2,4¢+,v, be a set of
i 3 T

independent random variables. It will be assumed that for each

value of n there is a probability measure F_ on the interval

(0, oo) such that, when k is a nonnegative integer,

Prob[X g k] = HI "n,3 (AT, j}k dF ().

The problem is to construct optimal asymptotically similar tests
of the hypothesis that the Fn are degenerate distributions giving
mass unity to a point of (0, oo) against the hypothesis that Fo
is not degenerate.

To apply the result of [6] we may consider a particular
sequence (P_] of simple hypotheses for which the measures F,
are degenerate at ) and compare it to a particular sequence (Q,)
of alternatives for which the distribution G, of (An/a,) is
nondegenerate, The results of [6] depend on the conditions

(A) the sequences [Pn} and [Qn} are contiguous,

(B) the sequence &£(x ) = £{A(Q,; Pn]|Pn} converges to a

normal distribution. |

Let L B Ay Tn,j and let s_ = Ej 215 It will be assumed
throughout that the following condition is satisfied:

(C) The sequence £#n} tends to infinity.

Let Pn,j and qn,j be the distributions of xn’j under B
and Q respectively, It will be assumed that

(D) the differences

That is,

Pn,j = dn,j BT asymptotically negligible.

o 7,3~ 51— O
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Let ¢y, be the function defined by

W k]
wo(xa) = [ e L) X ag (o).

The likelihood ratio of qﬂ,] to Py, 3 takes the form
*n{xn,j’ an,j}. The function y_ and its logarithm are convex
functions of the pair (x,a). For a given value of a, the function
kK — ﬁﬁ{k,a) defined on the set of nonnegative integers determines
G, entirely., Furthermore, for a fixed value of a, there is a
nonempty interval of nonnegative integers k such that wﬁ{k,a} <1
unless G, is entirely concentrated at the point ¢ = 1.

I1f X is a Poisson variable having expectation a then
E y,(X,a) = 1 and Variance y (x,a) = E[eau - 1) where U has the
same distribution as {g-l](gf—lj for variables ¢ and gt
distributed independently according to G, . This variance is a
convex increasing function of a,

The condition that the differences Pn,j = %n,j be
asymptotically negligible is equivalent to the asymptotic
negligibility of the wvariables ﬁh{xn,j’ an’j} - 1, for variables

xn,j which are Poisson variables such that Exn,j = an,j'

Lemma 1. Let p(a) = min{a, ¥2a), Let X  be a Poisson

variable such that EX 6 = a . In order that wn(xn, an} converges

in probability to unity as n — o0 it is necessary and sufficient

that when £(¢) = G

the variables p[an)|gn-l| converge in

probability to zero.

Proof. The sufficiency of the condition is an immediate
consequence of theorem 1. To prove the necessity of the condition

it is sufficient to consider three cases: (1) a,Z —% 0,
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(2) ay —= a £ 0, (3) a, — . In the first case Prob(x = 0)
—= 1. For the convergence of ¥, to unity it is then necessary
and sufficient that
~ 00 -4 I:a"'l‘]'
= il i -
ta(0ag) = f e TG0 —1s,
Since -an{g-l} < a, the condition is also equivalent to the
convergence in probability to zero of a | -1l.
For the other cases, let 2z =+a_ [(X /a ) - 1] and write

Vo in the form

o(Zg) = [ expl-ay(e-1-loge) + 2, e, logelacy(e)

Z .t

EIE dM_(t),
wvhere t =+a_ log¢ and where M, is an appropriate measure., The
possible values of Z_  range from -aJE; to +oo by equidistant
steps, Since w; is a convex function of Z , convergence to
unity at points «, B, v such that o < g < v implies uniform
convergence to unity in the interval [a, ¥]. In both cases Zn
has a limiting distribution, From this it follows that convergence
to unity, in probability, of ¢, implies that w:(z} =M/Hexthn(t}
converges to unity for every x in some interval Eu, @) with
a < 0, Furthermore, the convergence is uniform on bounded

subintervals. In particular

M ]l = v (0) =‘/E}m2@£;ﬂn{£—1-1ugg}}dsn(g] <1

must converge to unity., This implies the convergence in probability

an|gn-1|9 to zero.
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The foregoing lemma 1 leads to a condition [D'} which is
equivalent to the condition {D) sta:ed previously.
and let p(a) = min(a, /a). The
differences pn,j - qn,j are asvrrcntically negligible if and only

if p{an)|§n-1[ converges to zero in probability.

The condition (B) which expresses the convergence to a normal

distribution of Zj[ﬁnEK - 1} is a more stringent

n,j’ %n,j4
condition than condition (D). Before investigating it in particular
cases note the following.
Let S, 45 = wn[kn,j* an,j] - 1 and assume that xn,j is
Poisson with expectation a_ i For every sequence {an} of
>

positive numbers we may write

[ n
g = . 4
6,5 = a0 F Payd

with

Sa, =f| e-1] %0 {Bxp [-a, j(¢-1)] ex“*-"-lldcn(e}

X, 3
Bard oo {2 st (1 T-facy o).

1
Suppose that there exist normal distributions Aﬁ; and th such

that the Levy distances
1 1
dis(V , .t[§ Sn, 347
and
n n
dist{)(n, .t:[:? sn,jj}

n
both tend to zero, and suppose that the sequences {j.,!';} and Un."n}

are relatively compact sequences. Then the sequence of joint
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I 1 1]
distributions (L[= S, jj, L2 S, j} is also relatively compact.
: ’ 2
Furthermore, every convergent surzcquence tends to a joint normal

distribution.

From this remark we conclude C{nat, in many cases it will be

1

n,j
Of course the convergence of these distributions to

sufficient to investigate the limiting distributions of Ej S
r
d ; .
an EJ Sn,j
normal limits may not be necessary for the validity of condition (B).
In many derivations it is important to be able to truncate the
variables X 3 and the variables E,+ In this connection, the
»
following inequalities are relevant,
Assume a = 1. Let n,=¢, 1if € z p, and let n, =g,
f e, T h with g, < 1. Then

_ EEE Eqa8 ) Ennaﬂ]

n;/H Eﬁa&[i_e{ﬁnpen}a%jgcntg]‘

(0,8,

Pn

Hence

_ (Bat)as

Ieall 3 /7, I I dc,(e)

iEf[o,ﬁn} [1 i E-(Bn-ﬁ}%]dgﬂw

3 Eat/}b 1 (Pa=€)4Gy (8).

’"n

A

If a > 1, the same inequalities give

MJsafmsf%mL
i 11



Similarly, let n,
otherwise, Take Y =1

-

For all values of a th

leall = %j: 1-e

A

For large values of a

Let € be defined by

n,]

]
Il

_‘j;wh,ﬂﬂ)

.
l

€. s =€_: + €
n,J n,l n

Let Q, be the distribu
variable g; defined by

TE Ej En,j —p 0 then

....]_'?'- P&
=¢, if ¢, S, and let £

I
-
o

3 Dje'c-tr': wnrite
Y aAr (g~ _Yad
e ™ ia B - ];.[dGn{g‘}

,00) r

is gives:

V0 ) -

Ej}'fn,m }min [( E=v,)a, lldGn( ).

it may be possible to obtain better bounds.

n,] m?{n {?n‘j B.J:E‘n)(ﬁn-g}dcn(&.]’ L[;’:D:E'n}dﬂn{a}}

min[{g-'rn}ﬂn,j ,1]:1(3“( E)

3"

tion obtained when £, 1is replaced by the

g, 1f 4. 2g, *1
E;E €y 1f By S 64 F
PR RN

e, - el — 0.

In the following sections we shall almost always substitute

1

Q, with Q.
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For the variables X 3 note that for Poisson distributions

¥

" o ) -
P{{m,m)}zj‘eu:l..,.duge *—1—:_231-;-&1
A 0 My m; ]
mi 24/ e " m,

Consequently, for wvariables g, such that ¢ 2 v,

T
g/ Yy ¢ A
% Prob = = n 5 n n!j ._.E.Ll n
3 & Exn;.j = mRI mm;_] E'n,j e F ]

¥

= B

L. Mixtures with bounded expectations. As a particular case

of the general situation described in section 3, consider the case

where a_ = sup; a, ;

interested in the situation where in addition both an and the ratio

stays bounded. We shall be particularly

a;fan with a; = inf, a,,j» stays bounded away from zero. To refer
to this in a simple manner, let us say that condition (E,) is
satisfied if a, and a; stay bounded away from zero and infinity,

As previously stated it will also be assumed that 5, = j an,j
tends to infinity,

In addition, throughout the present section, it will be assumed
that the following condition holds.

(F) There is a sequence (o )} a number b and a positive
integer k such that ;f /

n
2) If 7, =oa,log ¢ then Jrnj = b.
3) =, u;gk remains bounded.

In the remainder of the present section, it will be convenient

to denote by k an arbitrary fixed integer satisfying condition (F).
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Let Kn j have a Poisson distribution with expectation a .
F J n.‘j
The moment E[X_ g By j]r is a polynomial of degree at most r
F F J

whose term of lowest degree is a_ .., Therefore, if a

stays
Dy d 4

n
bounded there exists coefficients ﬂk such that

- 72k 4
F B,y " a3l 2 G B
For every e > O there exists an n(e) such that n z n(e)

implies ea, > a, exp(b/a ) + 1. For such values of n the

is equivalent to the one-sided

inequality |xn,j - an,jl 2 ea

a, j F Eog.
Taking Yy = exp[hfun} one can apply the truncation inequalities

inequality X j =
¥

given in the preceding section. These inequalities imply that, for

Q, as well as for P, one has

L EQL
C an n
Z Prob }{._ > Eq = s (— 3
g [ % | nj Eﬁ;fg n {sun

as soon as @ exp(bfa_ ) = 3. For n 1large this implies

C n
?Prnbﬁ{n’j *>ea] = e T T
. n
According to the boundedness condition sup s a;EF < o the

above sum tends to zero as n — oo, Let P;, (resp (Q;} be the
distributions obtained from P, (resp. Q) by replacing X3 by
1 !
zero whenever X3 > € a . The differences ”Pn—Pnil and ﬂQn'QnH
tend to zero as n increases. Consequently, it will be sufficient
t

to investigate the behavior of the measures P; and Qn'
[ .=

-~ = - —
. Let “h,j = lfan Eﬁn,j aﬁ,jl' Let Un,j = Yn,j if
[%,,;] s & and let U, y = O otherwise,
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Let I-%l be the distribution of T corresponding to
4
G, = -.E{En}. Let E’n,j(T} = log E e n,j’ the expectation being
taken under the assumption that the distribution of U j is given
>

i

by P . Let Hn,j be the measure detined by

Hn’j(S] = LEKF['BHJ(T)I{JHH(T}.

The density of Q;l with respect to P; is the product of the

functions ¥4 defined by
?

ta,g () = e v a (o),

Let . = U where U has the distribution
€ w“JJ ‘r‘;’an( nrj} n,j i
corresponding to the truncated Poisson P+ We shall now

investigate the limiting distribution of

Sn =§ [ﬁn,j - 1]

= Ef{em['run’j] - E exp[7 Un,j]} db[n’j('c}.
Let
B,y = Mg 5(7)s
v“:m:j = [UI;:j = B Ugrj-]gnxm:j.

According to Taylor's formula

Ba,i =0 = 2 5r Yan;

1
s qmemrJ, T [, s (0,

with



- 21 im

B PP i Ekl’“’” ,
W, i (Tov) = Ugy e 1 n,j|® ) 1]'

Let
B,e = T 97

Lemma 3. Assume that (F) is satisfied and that a stays

bounded, Furthermore, assume that the sequence of distributions

2 2 }
ol - l[
J:[ang i [Un’j E L ,J]

is relatively compact. Then

_ 1 2
5“ JE vn.ml:j “ 2 z [ n,j R U“:j]

converges -to zero in P; probability. Furthermore, if Sn has a

limiting distribution, it is a normal distribution having expectationm,

equal to zero.
Proof. Let us show first that assumption (F) and the boundedness

of a_  imply that

k

-2 X =V .
*n j me=l B+ T,8,J

converges in probability to zero. For this purpose note that

o5 T O “

]
remains bounded. Furthermore, for every positive & the sum
Z; Prnb{jﬂn jl > ﬁ} converges to zero, It follows that the integral
5 :
terms of the Taylor expansion of §  converges in probability to

zero, Consider now a term of the form

= B
vﬂ,m i 1qli|rn,m,j
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for m > k, Since the coefficients B
) nlmij
is bounded by au expression of the type

are bounded, the

variance of
a Vi i

e )
n,J

=

Bn
Z E(U .
J o

n

Since this converges to zero and since the V are bounded

njm?j

variables having expectation equal to zero the sum Un converges

m
#
in probability to zero. Therefore,

sﬂ-'jﬂ -mi]_ Er vn:m:j

converges in probability to zero.

Taking k z 2 one can write

-2k
2 Ck %n %n
222 1Y, 5| > o] 5 Egep—,

J
for Y, 4 = 1/a, (Kn,j - an,j)‘ It follows that

Bﬁ,ﬁ var ? [YE,j - E Yij}

and variance ?n o @are simultaneously bounded or unbounded,
2

Consequently, if {&(V, o)} 1is relatively compact then e
» :

1 2
I Bn,E *n
“n

must remain bounded, This implies that

2 2 2 ] 2m
= o
? E v“:mlj & {E‘jlp Bn;mJJ_, j 5 Un:j
2 ] -2m
= [sgp Bn,m,j_cm 8, G

.9

Em[hm' ]E[Bé s a_u]u_E(m-E},

n,2 n n |"n
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converges to zero for every m > 2, Finally

converges in probability to zero as claimed, The limit points of
the sequence {EE%MEJ] are necessarily normal distributions with
expectation zero,

To evaluate the limiting distribution of vn,l note that such
a limit can exist only if 2,[B ) 4 2 Efu, y - E u“’jje remains
bounded, In this case the uniform asymptotic negligibility of the
variables “n,j implies again that the limiting distribution is
normal . with expectation zero. This completes the proof of the lemma,

One may ingquire whether the sum

k
? mil E]'.? vn,m,j

may have a limiting distribution in cases where vn’E does not.
The following argument shows that in the situation covered by (E,)

such a possibility 1s highly improhable. If n is large the

covariance matrix of the sums V is not singular. Let a?
n,m n,m
= variance vﬁ,m and let o, = sup %n,m* If o, tends to infinity

the joint distribution of the wariables

[é: v“:m }

can be approximated by a normal distribution with expectation equal
to zero, This normal distribution is either nonsingular or is such~”
that some coordinates are zero while the other coordinates have a

nonsingular distribution. 1In any event the sum

1
Z2Zg m! 1"]rnl.mj,j

J o oR
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is approximately normal and nondegenarate, Therefore, the original
sum cannot be expected to have a !iuniting distribution.

To complete this secticm le% us chow that, under the conditions
of lemma 3 we may substitute to ths wvariables U“,j the nontruncated
variables Yn,j without affecting the limiting behavior of Sp
Let m be an integer m = 2 and let k; be larger than or equal

to 2., Then

m=2k 2k
1 1
E{Itn, "1 19,51 > e} e 7 Elrgjl
m=2k, =2k
1 1
=t ﬂn 1 anjj.
Therefore, 4 "
z E{|Yn’j "tllY, 51 > €]} = C, € s, o

taking kl > k tives the desired result,
Collecting the results just established one obtains the
following theorem,

Theorem 2, _Assume that sup a < oo and that condition (F)

2 -l
is satisfied, Furthermore, assume that Bn,E 8, Cn

Let ®n, 3 be the density of anj with respect to Pn, j considered

stays bounded.

as a random variable for the Poisson measurc Pn'

El:- wn = j(cun j-'l}" T_her_k‘

A

X -1) - = B Y
j{%:j j n,l,j "n,jJ

1 2 2
3R,z 0 - e

converges in probability to zero. The sequence of distributions

2 2
E{Wh} is relatively compact if and only if 1fu“ Ej Bn,l,j 85,3
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stays bounded. Under this supplementary restriction, the cluster
points of the sequence £(W ) arz normal dietributions whose

expectation is zero and the secuences {Pn] and {Qn} are

-

contiguous,

Note 1. The preceding theorem applies in particular to the
cases where 8n u;H stays bounded, but this condition is not
necessary,

Note 2, The domain of validity of theorem 2 can be
substantially extended by means of truncation procedures applied to
€, @as indicated in section 3.

Note 3. Under the conditions of theorem 2, assume that Wh

has a limiting distribution, Then there are numbers c, such that

QA
lng 'ap—-n i ﬂn — Wﬂ
converges in probability to zero,
The expression of 2[w, 5-1] can be simplified further as
e
follows. Let B, =‘/"TdHn{T}. Assume that the conditions of theorem
2 are satisfied and that {E{wﬁj] is a relatively compact sequence,

Consider the sum

b [ani’j - Bn]‘fn’j.

This sum has expectation zero and variance

i

The difference En - En,l,j may be written
B 5(T)
B - B,y = o[t s e ey
=IE' n,3(7) T[eﬂn,j(ﬂ - 1]dHn(-r]

1 2
s at‘l.,j ;‘E [ﬂn.tl:j Bn] '
n
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Consequently there is a constant K such that

N L T iatae e

Bnlef[eﬁ'ﬂ:j{ﬂ - I]Edan{*r].

By 3(T)
The exponential e “’j{ is, by definition, equal to
TU
E e n,J where Unj is a bounded variable,
:

Taylorts formula gives

2
expfB, (V)] =1+ T EU 4 + T(E VT j)o, 4(7)

where ¢ j{T} is bounded by some constant K;. Therefore,
Bn (%) 2
[e n,j - 1] < TE(E 'I.In’j)E + [1|3{E “n,j)Etuﬁ,j]Kl

4
" ; S 2 42
+ 7 Ky [E{Unjj}_i ’
Reverting to the Poisson variables it is easy to show that ]Eﬂn j;
E

is smaller than a;E multiplied by a term which decreases like
- Ea“
e

. Finally
2 2 -2
|Bn"En jl =2 Bh,2 %
where & —= O, Since Bﬁsﬂ G u;# .is bounded, the sum

n,1,j B“]Y »]

converges in probability to zero and ;jﬁ%1j - 1] differs from
r

B B
—-E E -
Tn'an]'?n%,j 8,51 + - 2 20,5 7 2,31
n
(with Zn.3 =%y 3 - an,j} by a quantity which tends to zero in

probability,
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5. Applications to the construction of tests of homogeneity.
In this section it will be assumed ithat the conditions of Theorem 2
are satisfied and that (£(W )} is a relatively compact sequence
of distributionms,
Under these conditions the random part of log dqnfdPn is

equivalent to

W, = R, % Xn,g * R . (X, §=8n,5)°
where R, and R; are constants such that R; z 0.

It follows from this that asymptotically optimum tests of the
hypothesis (P,) against the alternative (Q,) can be constructed
by rejecting P, - % w; is too large.

The difficulty in the application of this result to tests of
homogeneity lies in the fact that the hypothesis of homogeneity does
not specify the wvalues of the an,j entirely,

In the situation described in section 3 where the a, 4 are
proportional to some A, multiplied by the length of the period of

observation one may consider that the ratios of the a to their

n,j
sum are given, This will be assumed here,
To obtain some results in such circumstances, let [an j} be
¥

a fixed sequence of numbers and introduce the following variables
1) szj - xn:j B Bﬂ‘.il.'lliII

2) u, =-—-zz

"Vf_ j n,j*

2
3) V=== 2 [Zs 5 = an, 31

J5

Under the assumptions made here if X 3 has a Poisson distribution
r
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with expectation a 4 then U, and V  have a joint distribution
whose distance to a centered normal distribution tends to zero as
n-—~ oo,

Consider the following iocal problem, Under the hypothesis
tested the variables xn,j have Poisson digtributions with
expectations A, 2,3 such that A, = &4 = %p * wafs_ with w
finite,

Under the alternatives the ﬂn,j have distributions which
are mixtures of Poisson distributions corresponding to measures Hj
which satisfy the conditions of Theorem 2 and the requirement that
{L(Wh}} be relatively compact.

Let P, be the distribution corresponding to the Poisson
sequence {&n,j} ;tself. The log of the likelihood ratio,
log dandPn, of another one of the measures considered here to P

can be written as
T.=u W +w V. +eco &
where ¢ tends to zero in probability and ¢ 1is nonrandom, For

instance, the case of Poisson variables with expectations %, a, j
2

such that An z a, g = s + wﬁfsn corresponds to u =W and
o J

n
v, = 0., The whole family of approximate likelihood ratios can then

n
be indexed by the two parameters u and v, coefficients of U,
and V_ in Ty

It follows that the family of distributions considered here
is apymptotically normal in the sense of [f]. An asymptotically
best asymptotically similar test of the hypothesis of homogeneity
corresponds to a test that v = 0 against v > 0 for the normal

approximation.
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Let p, be the regression coefficient of V  on U,. The
best similar test of the hypothesis, uader normal assumptions would
be to reject the hypothesis if V_ - p U z v, for a suitably
selected number <, . Consequently, the same test is asymptotically
best for the local problem envisag=d here. The test statistic

indicated by this reasoning is

& L 2 . -
B NS e 3 [zn,j 2, 3 zn,j]

2 [(%,5 - au,j]e }

Xn, 31+

»

5 3
o 5

As the last expression indicates 8, can be computed only if

the ag j are actually known., To be able to test the global
2
hypothesis instead of the local one suppose that 5, 1s an estimate
A .
of s, and take a3 ==ﬁnfsn)a“,j ﬂﬂ.eﬂtlm&t& of a, 5 When
A
the ratios an’jfan arelknan the estimate a,, can actually be

computed,
Let
'E "/_ j {[xn i B :(n:j}
A W
and let 8 =4/5. /8 6. Then
A 5 _~8 2
8 -8 = [“E“] z &b
ﬂfﬂn n ud
s Sn %n
- — z a Z
S'n En j nJ‘j n:j
>
thezterm Z a n,j E 3 has expectation zero and variance EJ a“’j
= ah n,j = aﬁ sn. Therefore,
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2
A [_En- Bnl 185" S
lgn - 8,] = aafo D e [ - LS
nV n

where E|§n|E = 1. Since a_  stays bounded the difference Eﬁ'ﬂn
will tend to zero in probability provided that S -s !sﬁf# converges
in probability to zero. Such a condition is satisfied for instance

if 5, 1is taken equal to Ej X j
-1

Sumrmarizing, let Th,j = 2n,j s, and let S be an estimate

of s, such that E%fq%JS;E converges in probability to zero.

*
For instance S may be taken equal to Ej xn,j' Let ©6_ be

equal to

E; ’fs—j [Exn J nr“:jjg ) xn:j}'

Then B; m B tends in prnhability to zero as n — 00, '

This convergence property has been proved above for the Poisson
measurés having expectations a#’j. Because of the cnntiguity
properties insured by theorem 2 the convergence to zero of
E%rﬂn_ﬂ =3/% and E - 8, will also take place for all mixtures
corresponding to measures H_  which satisfy all the requirements
of theorem 2,

Under the hypothesis tested the distribution of &, 1is
approximately normal with expectation zero and variance

L+ 2({ aﬁ j]sal' It will be convenient to use instead of B; the
L

statistic T: defined by
#*
&
T, = 2 »

—
Y1 4+28 == =

Under the hypothesis tested Tn is asymptotically normal with

mean zero and variance unity. Finally the results just established

can be summarized as follows.
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Theorem 3. Let [[K ] be a double sequence of random
—_— j

variables, Assume that under the vpothesis tested the En P are
¥

independent Poisson variables will awpectations aj g - Vo 3
:l J

where the T, | are known and S, is unknown but tends to infinity.
¥ ]

Assume also that 8UD, 35 8aTn j < m.
E ] 3

Consider alternative hypotheses where the Kn j are independent
r
but have distributions B j which are Poisson mixtures

Ea A
I, j =fe e dG, (&)

such that assumption (F) of section 4 is satisfied for some sequence

Qe Let

u, =-Js_nf[103 €146, (¢)
vy =45, [[log €1%dc,(¢)
"7t

-1 2
=[5, + 255 = r7 4] £ ; 1 AL A e GO

Assume that for each sequence {Gn] considered the parameters u_

and v_ _stay bounded, Let 7y be such that

n
2
u
CD-
i‘f 'E-E.du=!5,
NZTY 7y

the test which rejects the Poisson hypothesis if T  z v is

asymptotically similar of size &§. Furthermore, this test is

asymptotically most powerful among asymptotically similar tests.
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To complete the statement of the theorem it remains to compute
an expression for the power function of the test. For this purpose
note that, according to the theorcns proved in [6], if e, 1is
asymptotiaally normal with mean =zerc and variance o for the
Poisson variables then 6, 1is asymptotically normal with the same
variance o° under the contiguous alternatives. The expectation
of the limiting distribution of 8  1is equal to the limiting
covariance of 8, and T = log dqn!dPn. In the present case
Tn =u U + v V. Hence the limiting covariance of T and e,
is equal to the limit of 2v“{£ as,j}salu

Let K, = (= aﬁ’j}sal. It follows that under the alternmatives
considered the distance between L(T;} and the normal distribution

with expectation

yn e
ST,
tends to zero as n —+ @, The power of the test is approximated by
A ewﬁ? du,

NE2T Y y-p
This expression is increasing in @ . Furthermore, for a fixed
value of v,, the expectation ju 1s increasing in K. This is
understandable if ¢me notes that
= EE.LJJ&
Ka 3 L 8, J

is an average of the wvalue of the ay j°
¥
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