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l. Introduction, Let @ and L be two sets, For each

£ el, let @, be a o-field carried by a set 5’(’; . Let

£
(4z,a) be the product of the spaces (ﬁﬁi,aﬂ} . Suppose
given for each © ¢ @ and J ¢ L a probability measure
Pg,y OO ﬂ£ and let Py be the corresponding product
measure on (.

For each ¢ ¢ L and for every pair (s,t) of elements

of ® , let hjﬁs,t} be the Hellinger distance defined by

R — £
hi[s,t} = %I{y/dl?s:j - v/'il?t,g}

Let Hz{s,tj = EE hi{s,t} ;

In a previous paper [1], this author considered the case
where L is finite and where the systems {%j’ﬂj’Pe,gJ are
replicates of each other. Using a definition of dimension of
the Kolmogorov type, it was then claimed that there is a

universal constant K such that, when © metrized by H
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has dimension at most D, one can find estimates 3 for which
Eg n°(6,8) < KD.

In the present paper, we propose to show that an analo=-
gous result still holds for independent observations which are
not necessarily identically distributed. However, in this
more general case, we were able to obtain only the existence

of estimates 6 for which
E, H°(8,0) < K, D log(1+D) .

The method of proof is generally the same as suggested
by [1] and reproduced in [2], but with two important modifica-
tions. The "proof" given in [1] incorporates a flaw which
would allow excessive freedom in the selection of successive
tests, and retain probabilistic statements even when the
sample points are fixed. As a result the computation of
bounds on the probabilities of errors does not take into
account all the possibilities. The intention was honorable,
but the execution deficient, as will be spelled out in more

detail below.



2. Description of the construction scheme.

In this section, it will be assumed that @ is a finite
set,

Let PE be the probability measure corresponding to ©
and let W be a real valued function defined on © X @ and
such that W(s,t) = W(t,s) for all pairs (s,t) e @x @ .
The usual applications will be to cases where W 1is a metric
on © , but there are enough other interesting cases to
warrant consideration of the_mnre general situation.

Any subset AC ® will be assigned a number diam (A)
called its "diameter" and equal to
diam (A) = sup{W(s,t); s € A, t € A} .

Consider a sequence (b ; v =0, 1, 2, -++} of positive

v

numbers such that bv > b and such that bﬂ is at least

v+1
equal to the diameter of ©, Let {ay] be another sequence
such that 0 <a <b . For each v , let (A .; 1 e 1]
- Ty Y v,1 v
be a partition of © by sets A, 4 whose diameter does not
(]

exceed a .

It will be assumed all the way through this section that

the partition {ﬁv i3 ie Iv} has minimum cardinality among
2

all those subject to the restriction that diam Av § 2a,

Such minimal partitions certainly exist,

Say that a pair of elements of Iv is a v~-distant



pair if there are elements s ¢ A and t € A such
v, 1 o' s |

that W(s,t) = b, . For such a pair, let o . be a test
- v v,1i,]

of Av,i against ﬁu,j .

It will be assumed that the tests are selected so that

2
mv,i,j

o ¢“:j:i

:PU 2 i :"j

Construct sets Ev s, VvV=20,1, 2, »=+» as follows. Start

with ED =8 , I1f Bv-l has been constructed, let Jv{: ]'.__'l
be the set of indices 1 ¢ Iu such that Au i intersects
B Further, if 1i ¢ Jv’ let Jv{i} be the set of

v=1 "

jed, which are v-distant from i . Define wv i by

-

%o g ™ i‘:‘fwu,i,j 3§ ed (1))

For each sample point x , there is a certain set, sav
Sv[x) of indices 1 e J, for which v, i{x] =1 . Let

Bv be the set
B, = LJA, 5018, 45 1 e 5,(x)) .

By. construction one has BvE: Bv-l . Also, the diameter
of Bv satisfies the inequality diam ]3‘\J < bv since each

Ay has diameter at most a, < by and since for any
>

v-distant pair (i,j) one has v, 4 ¥, y = o .

The construction just described is the one that we meant
to use in [1]. However, the paper in question would allow

after B

fixing the covers [A v=-1

G g is already obtained.



This may lead to unfortunate consequences.
In order to perform the indicated construction onz must

select the tests v In this respect we shall use the

v,i,j °
following notation. For any two sets ﬁi{: 8 , let
W{Al,ﬂg) be the number 11‘{:11,32} = inf sup( j[l—q}}dPE+ fq:ndPt )

¢ s,t
where the supremum is taken for s e ﬂl and t ¢ AE and the

infimum is taken over all measurable ¢ such that 0 < ¢ < 1,
.» A .) there exist tests
v,1 vs]

such that

For a pair (A
-
Py, 1,3 " ¥v,i,3

H(Aw:i’ ﬂyjj; mv:i:j}

= sup( [ {1"¢v,i,j}drsfhi.wv,i,det 3 8 Eﬁw,i,tisﬂv,j]

A ).

does not exceed EH{Ain, v, 3

For each © € ® and each v , define Uv[QJ to be
the set of points t such that there exists s ¢ @ for which

Ww(e,s) < bv_ and W(s,t) za, . If W is a metric, this

1
is contained in the open ball of radius bv-l +ta .
Assuming that the partitions Eﬂ¢ i] and the tests
L
P, 4 3 are selected as described, one can assert the

following.

Proposition 1. Assume that there is a number pg(v) such

that w(ﬂv i A, j) < B(v) £for all pairs (i,j) which are

v=distant.



Assume also that there is a number C(v) such that every

set of the form UU[E} can be covered by at most C(v) sets

of diameter a, o less., Then, for every k > 1 one has

k
Pgl@ ¢ B] = 2 Zlﬂ(v} C(v) .
V=

Proof. Fix a particular @ ¢ 8 , For each v , let J: be

the set of indices j ¢ I, such that A intersects the

)3

ast vv(a} ~ (€ « @; W(O,t) < b If 1 ¢ J:(i] be the

gl
set of indices j ¢ J: for which (i,j) is a wv-distant

pair. Denote P‘u - that element of the partition

¥

{ﬁ“ i’ ie Ivl which contains @ and let

w: = inf (o

; v,0,4 > 3 €J,(0)].

Whenever © ¢ B, _, one has B, _; c U’v(E) and therefore

*
W ﬁv,[: . Thus, if % is the indicator of the set

e e Bv one may write

Xy-1(1%,) = X, (1-%))

Since Bi o Ei+ for all i, one has

1
(1-3) = (1-xp) + Xp(1-x;) + ==+ + % _;(2-x) -

This certainly implies
k *

The expectation Egl[l-ﬂr:} does not exceed 2 ﬁ{v)ﬂv » Where



Hv is the number of sets ﬁw i which intersect the "ball"
vv{aj 2
Suppose that Nv > C(v) + 1 . Then one could cover the
set U (@) by a certain number N' <N of sets A' .
v v v v,1

Taking these, and the A 3

such that diam A;,i = a,.
which do not intersect V (©) would produce a new cover of
cardinality strictly inferior to that of the partition
[Av,i s g g Iu] . The cover can then be converted to a
partition. This would contradict the minimality property
of [A#,i}' The proof of the proposition is therefore
complete.

The construction in question can be used to give esti-
mates 3 of © . For this, just select any integer m and
a point 6 € Bm , or when Bm is empty, in the last
Bj s+ J =m which is nonempty.

With this definition one can also state the following

corollary.

Corollary. Let g be any monotone increasing function from

A
[0,) to [0,=) . The estimate © defined here satisfies

the inequality

Eg g(W(8,8)1 < g(b ) +2 = g(b )C(v+1)B(v+1) .
O<v=m-1



Proof. Let o = PE{E € Bkﬂ B§+1] .

Then

Eg g[ﬂ[ﬁ,a}] < g{hm} P[0 € Bm] +a 4 g{bm_l} + ean

+ oy g[bk F weE it g[bﬂj .

k
Since Gy + "'+ <2 yfﬁ C(v+1l) B(v+1)

and since the g{hk} form a decreasing sequence,

the sum on the right side is smaller than

g(b )} + 2 = gl I:-?} C{v+1) g( v+1) as claimed .
= 0zvzm-1

The construction described here can be carried out more

directly. For each ﬁv 4 one can select a test #’v i of
] 2

Av,i.

but intersect Bv-

against the union of those ﬁ# . which are v-distant

k)

1 - This is obviously possible, and will

give better bounds in very many cases. However, in general,

we do not know how to evaluate the probabilities of error.



3. Application to independent observations,

In this section we return to the situation described in

the Introduction, with a system (iﬂéa P which is the

o’

direct product of components jé5 s B €L .

,Pg E
Assume first that @ is finite and that the sum H? is
bounded on © x ® , Then, in order to evaluate the perfor-
mance of the construction described in Section 2, with
W=H it will be sufficient to obtain
i) a bound on the number of sets of diameter a  neceasary
to cover a ball of radius bv-l +a and ii) a bound on

the probabilities W(Av i A The latter will result
L]

v,3’
from an application of inequalities of Bernstein type. For
the former we shall use a dimensionality restriction as

follows.

Assumption 1, There is a number C = ED such that every

subset of ©® of H-diameter 2d , d » 1/125 , can be covered

with no more than C sets of diameter at most d .

For simplicity we shall also assume that D > 1 ,

The number D = log C 1is some sort of evaluation of
the dimensionality of @ . 1In Rk, with the maximum
coordinate norm, cubes of diameter d can be covered with
exactly Ek cubes of diameter d/2 . For other relations

with dimension see Kolmogorov [3].
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Suppose first that the numbers I::~1“1 are given and take

a number ¢ € (l,») . Take two sets A . and A . and
V.1 Vil
. 2 2
points s € “»,1 i B8 Ab,j such that H (s,t) > b, -

Writing hj = hj(s,t) for simplicity, let

Lk , k=1, 2, *«- n+1 be a partition of L such that

i 2 2

i) for each k=1, 2, -+., n one has S, = EEELR h£ > C
and ii) the cardinality n is the maximum possible under
this restriction.

For each k, let P I

JEELk

for k < n , the affinity between o

By construction,

o,k = Pa,2 *

and P is at

I t,k
most equal to exp[-Si} j_e_c . To proceed, let a be a
number a e [0,1] and assume that

*) for every i ¢ Iu and every pair (£,0) of elements of

Ay]i

at most equal to a .

the Hellinger distance between Pa,k and PG,k is

With all of this, one can state the following lemma,

Lemma 1. 1In the situation described, if condition (%) is

always satisfied, then for any v-distant pair (i,j) the

sum of error probabilities “{ﬂv oA, jJ is at most equal
A 2

to [t;x(E--‘::sj]n/2 with a :_E_E + 2 a{E-aE} and n equal

to the integer part of b:25b+1 .
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Proof. To prove this note that for any pair ( P,Q) of
prokbability measures the Ll-norm and the Hellinger distance

satisfy the inequality

2112 -ql] = h(P,Q) (2-b2(P ,q))° .

Thus, the condition (%) implies that

1 2,2
> ]1Ps,k PE,kll < a (2-a”) for every ¢ ¢ Av,i o« ol

similar inequality holds for A,

T It is therefore possible

to find tests based on the observations of indices 1 e Lk

only, with sums of error probabilities not larger than

- H
e +2a (2-&2) . The result for the product measures

P e ¢ A@ or B ¢ ﬁv ., follows as usual.

g, ji' F

At this point, it is convenient to write

-2 =-C 2 % -C 2 2
@ e R Taid (2  [3-e % et ED-at " ) .

The bound in the Lemma can then be replaced by the expression

2

":"bv

Exp[ "_J E

n v
-8 c+1l

m(A < e

v,i’ﬂv,j}

assuming of course that a and ¢ are selected so that

1
@4 2a (E-aE)E < 1.,

In the situation considered here, the Pg , may be
rather arbitrary. Thus, there is no obvious way of enforcing
the condition (*) except by insisting that the H-diameter

of each A, 4 is at most equal to a ,
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This leads to the following specification of the construction

of Section 2. One selects two numbers a and ¢ such that

= 2% < 1

w=e + 2a(2-a . One selects also a number q > 1

and let bv-l

With this one performs the operation described in

=qb, with bnidiam 8 .

Section 2 with sets A . of diameter at most a > 1/125 .
>

(These sets can then be taken independently of v 1if one so

wishes.) The operation stops at a certain integer m.

It will be convenient to ref-r to this as Procedure

le,a,q,m] .
The performance of the procedure 1s partially described

by the following result in which g o w(2-w) as before.

Proposition 2. For the product situation described and for

any finite set © metrized by H there is a choice of the

integer m and of (e,a,q) such that Procedure [c,a,q,m]

)
gives an estimate © which satisfies the inequality

Eg HE{3,9} < 54D + (4.03)Dlog D + (23.1) .

Proof. As a first step, let us evaluate the covering
numbers C(v). By Assumption 1 any set of diameter d > a
can be covered by at most CN sets of diameter a or less,
N being the smallest integer at least as large as 1ng2 §~.

Thus



1+ln:'ng,E 2 D

N < ¢ B Jeg

N [-%
Lo
L]

For a ball of radius bv-l

cover is therefore at most

b D
¥oloy 19y ]

Glvi = [ & H

13

+ a the number of sets needed to

Since, typically, b .y 1s going to be rather large

compared to a we shall replace this by the bound
bv-l D

)

¢(v) = (=2

with the requirement that r > 4 + [a/hv~1] .
One can then substitute this in the formula of

Proposition 1 and its Corollary obtaining

2 2
E, H°(6,0) = hm+2e""rm,

with

2 = hk D By
T b3 b, ( ) exp{ - ; I
Gt X © W T Pkel

Introducing the point

u = 2 c‘;_]; - L]

this can be written

D_,2 2v

m
T = (£) = (b q) exp( - 5= b_
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In this form it resembles the integral

D <« 2+D
T 2 U D2 2
Im" ( a:,'l jﬂ [hmq} exp = hmq } dv

Take as new variable the expression

2 2y

bm q and change variables.

iy =

=

The new expression of Im may be written

l+£a
T TR
2 log q

# D
1(2) = (%)

=]

iy /2 exp{-'gx]dx

with zw B o~ .
m

The approximation to the bound on EIE HE s0 obtained

is then
28 =) oo

— 1+5J’ x° exp{~- sx}dx

Kiz) = uz + ( i-} ios o u
z

where we have written D = 28 for simplicity.

Note that
s PR TS, e 28
u=5(":j,"'}q-
Thus letting
28 -] 28
=(E Y 8 (&l q
AD =l a} e’ s ( v ) log q ’

one can write K(z) =u £(z) with

f(z) =z + A fm x> exp( - sx Jdx
2
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The derivative of f 1is given by

£'(z) = 1 - Ay z® exp(-sz} .

Also f'(z) is proportional to

zS-l exp(-sz] (z-1) .

It follows that f£' achieves its minimum at the point
z=1. This minioum is £'(1) =1 - AD exp{-8] . In the

expression of A, the term qu (log q]ul is at least

0
equal to Z2se , The product ‘yaz cannot be large. Since
r>h and D=2s > 1, the term A, exp{-s8] will be larger
than unity. Thus £'(z) wvanishes at two points and 1 is
between these points. It follows that the function £

achieves its minimum at a value z_ > 1 satisfying the rela-

0
tion z = log Zy + A with
A = = log A,
el r°
= lng{:T-E}+ log s
a
- 2s
1 9
+ 3 L ¥ + log( ek ) }

The main terms in this expression are the first two,
especially when s 1is large.
In fact it will be convenient to have a lower bound for

A. One can obtain a crude one as follows. By construction
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e™2Y > e %(2-e°) . Thus 2y=<c . Also a2,/2 cannot
be much larger than unity. We shall assume 32,/-2 i I

In this case one has certainly ec+l/y > 2 and g = 8 .

The first term in the expression of A 1is then larger than
11 log 2 > 7.6 . Thus, even for D = 1 , the number A must
be larger than 6.9 . Returning to the root =z_ one sees

0

that Zy 2 24

Another iteration shows that

= A + log A .

Z

z, izl[1+ [21-1]_1 103{-—‘;] I

To compute the value of f{zg} , note that one may write
B . o B
£(z,) = z,+ [ o) exp{-s(x-2,) } dx

ZD o

=z (1+ f: (1+€)° exp( - sz,¢ }dt )

A

zG[ [ j: ERP["EI:ZD"]-}E} dé ]

z [ 1+ x 1: »
0 s{zo-lf

Assembling all terms one obtains the bound

1
K(z,) = s['c';—l} ¢ zﬂ[l-s——-—-—}—s{za_l

The root z, is an increasing function of the quantity A

used above. The bound obtained for f{zﬂj , that is
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zD{ 1% [s{zD~l}]'1 } , is also an increasing function of

z, whenever z > 1+ (1//s ) . Since z, =2 A26.9 this

last condition is certainly satisfied. Thus it will be
possible to substitute an upper bound for A and still
obtain a bound for K[zﬂj . It should be emphasized however

that K{zﬂ} is a bound for an integral approximation to the

sum which bounds EEHE .

We claim that this same K(zﬂ} also bounds the sum
itself.
To show this consider the funection

plv) = t:.l?“!‘]'"i'sl| exp{ - 52.9°" )

0

in the interval 0 <v <m . This ¢ will be a decreasing

function of v in that interval whenever Zy 1+ s-l .

However z, > A > 6.9 and 2s > 1, so that the condition is

duly satisfied. It follows then that

proving our claim.

To bound the quantity A , let us recall that
1

E}E

v =-% log w(2-w) with w = e + 2a (2-a
For small a , the term a2 does not play a major role
here. Thus we shall replace w by the larger Wy o=

e +a 2,/2 and arbitrarily decide to put @ equal to
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a 22 . With this substitution W, = 2 e and

- -C
wl[z-wl) =4 e S(1-e"") .

Here again we shall select c arbitrarily and set
¢ = 3.69 . Then one can write

L02497L < e ° =< .025

and

6 aE < (78.1) lf;!l_6 .

| A

(77.9) 10°

In particular V. 1-(a%/2) > .9998 and

| A

.097385 < w(2-w) = w1[2-w1} ,0975 and, therefore,
1.1639 < v = L1.1648 .

From this we also deduce that

1
E%"‘ < 4,03,
and

- log a? < 9.46 .

With this particular choice of constants we certainly have

A > 12.9 hence

‘123

] =)

::-25_

2 = Detl
v % Y 0 -

i

From this one sees that a/b_ =<4 10"" and therefore

r < 4,002 ., Finally

[N

c+l r_
= 32] < 13.627 .

log (

To finish the specification, we have to select a value
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of q . The above formulas seem to indicate that g should
be selected as a decreasing function of D having a form
somewhat like gq = 1 + Kl,.-"[KE+D} . For simplicity we shall

take q = 1.2 . With this choice
¥ - log log q = 2.868 .
Therefore

A1111-+10g§+5*%l§-

Using this expression, it is possible to bound the root zﬂ

o~ log Z4 + A , Indeed a short computation

shows that when A > 12,9 one has z, = (1.22)A . Thus

of the equation =z

D
z, = 17.08 + (1.22) log s+ % .

In addition

E:—l q2 =< (2.902) D,

Finally

2,0 2 1
Ej H (8,8) =< uzD[1+D [',zg_-lf}

< (2.902) D(17.08 + (1.22) log '-; + % }

1A

(2.902)(1.132) D (16.235 + (1.22) log D + & )

A

(53.5)D+ (4.02)D log D + (23.1) .

This is smaller than the bound given in the Proposition.
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4, The identically distributed case.

In this Section we shall keep all the assumptions made
in Section 3 and add the further requirsment that the spaces
{iF E’PG E are replicates of each other.

One can proceed exactly as in Section 3, Howevesr, in
the present case it is possible to assume in addition that the
pleces Lk k=1, 2, +++, n of the partition used on the
index set L have a cardinality independent of k . Thus
they are replicates of one another.

When this condition is satisfied, the requirement (#)
of Section 3 can hold for sets ﬁ#,i which have a diameter
< a, depending on v .

Indeed, let hE be the square diameter of Av.i for
the sum of square Hellinger distances taken on the index set
Lk' This must be inferior to aE . However there are n+1
pieces Lk so that the diameter on the whole sum has the
form

af = n hE + VE
with © :_VE < c . Condition (*) will be satisfied if
ai o <n a® . The number n is at least equal to the

integer part of bﬁj{c+1} . The condition (%) is then

certainly satisfied whenever af is such that
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bz
i (== ~-1) A
Y - c+l 5

or, equivalently

2

b 2

"l:-'z - 1 [ 1+!c+1tﬂ ]
-_— 2 2

av a E'U

Assuming, as in Section 3, that hv-l = q bv , the ratio
-] -1
Ethv-l + av] a4, is equal to 2[q bv + Hv] a,~ . The above

argument shows that one may assume

[q b, +a] aJl <1+ g-[l + iSill.%E ]
2 Elv

The construction procedure stops at some diameter bm
which will be determined later on. However the integer m
to be selected is bound to be such that a remains substan-
tially larger than a. This is why we have kept separately
the term which involves a 3;1 ;

In any event, [q b, + a,] a;l remains bounded by some
number K independent of v for 0 < v <m . The number
C(v) of sets of diameter a, needed to cover the ball of
radius bv-l +a is therefore bounded by an inequality of
the type

C(v) =< WP P,

The evaluation of probabilities of error of Section 3
remains valid. This, with the Corollary of Proposition 1,

yields the bound



2 - D 2 o

EE = {6'9} = bm tie" (45 Oivf_:‘:_m-l bv exp| c+1l IJr1.’+1 )
v b

= bi + eﬁr[ltK}D 2 brEn qu exp(- —t > qu } .
1<k<m (c+1)q

Let z be the ratio

(e+l)q m

A simple computation shows that the function of k which is
summed here is a decreasing function as long as z > 1.

Therefore the sum can be bounded by an integral giving

B, H(8,0) = B(z) with

ey = ASEED s a1,

2 ® 2k 2k
I(z) = ——L"-'E' b [ 4a  expl- J‘—Eq } dk
(e+l)q 0 (e+l)q
1 © -x
- 2 1loggq fz 8
1 -z
2 log g © &
This vyields
;c+1152 e"r; lHJ]K -Z
B(z) = {z + e "] .
Y 2 log q

This function of 2z reaches a minimum
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el
B(z,) = i”—;l}-"l— (1+z,)

at the point 2, such that

2, = D{log 4K) + v - log log qz :

Take ¢ = 3.69 and q = 1.2 as in Section 3. Then

v - log log qE < 2.175. Also, using a crude lower bound for
K one can see that z, > 8.42. Therefore the replacement of
the sum by the integral is fully justifiable. In addition

this lower bound for =z, will imply that ai > B85 aE and

Q
therefore
1.2 L.69
K < 1+ = (1 + 170 )
« 14 2L o g4,
= 2 =

Finally, log 4K < 6.34 and 2, < (2.175) + (6.34)D , yielding

B{zG} < 18.50 + (36.8)D .
To summarize, we have proved the following result.

Proposition 3. Assume that the experiment [jZ%EJPg ; 0 @)

satisfies the conditions of Section 3 with a dimension D.

Assume in addition that the components qﬂéﬂ,af,pg E} are
]

replicates of one another.

M
Then, there are estimates © such that

Egy HE{S,QJ < (18.50) + (36.8} ..
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The bound obtained here can be compared with the one
given by the (incorrect) argument of [1]. This was
16 log 6 C , where C is the number of sets of diameter e

needed to cover a set of diameter £ 211/2

. The 1log C
of this previous assertion is therefore to be comparcd to
the present (5.5) D, from which one can presume that the
present bound is in fact smaller than the one proposed in

[1]. The reason is that the choice of constants a, ¢ and

q made here is better than the previous one.
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Section 5. Extension to unbounded parameter sets.

For the proof of Propositions 1, 2 and 3 we have assumed
that i) the set © is finite and that ii) the function
H 1is finite on ©® x 8 ., The present section is intended to
show that both restrictions are removable.

0f course we shall keep the main dimensionality
Assumption 1, according to which any set of diameter 2d can
be covered by no more than ED sets of diameter d, at
least if 125d > 1.

In the preceding sections, the assumption that @ is
finite was not used in any essential manner., Its role was
simply to avoid at that point arguments about the existence
of finite coverings by sets of diameter o

When Assumption 1 is satisfied and when H is a bounded
metric for © such finite partitions {ﬁuJi; ie Iv} will
certainly exist as long as a, zaz 1/125 . Therefore, the

construction procedure can be carried out exactly in the same

manner. Thus Propositions 2 and 3 remain entirely valid if

the assumption that © is finite is replaced by the assumption
that H is bounded on @ x @ ,

In the situation covered by these Fropositions the
space {ﬁﬁﬁa,Pg} is a direct product of components

[ '}’QE’PG,E} s # e L . If the cardinality of L is a finite
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number card L = N , then HE(E,t} < N for all pairs (s,t)
and the boundedness assumption is automatically satisfied.

If on the contrary L is infinite, the sum H° may well
be unbounded or even assume actually infinite wvalues on
8@ x 8.,

In such a situation, one can avoid all difficulties by
redefining what is meant by "estimate" , as explained in [2].

Specifically, let & be the experimentr ° - [Fg; 0eB®]) .
It defines a certain abstract L-space L(€) . On © itself,
Let I be a uniform lattice of real valued functions which
separates the points of @ and is such that, for each
@ ¢ ® the function t ~> H(t,8) is a pointwise supremun
of the set (v : ye ', y(t) < H(t,0) for all t] .

Define "estimates" as transitions T from L(&) to the

*

dual '™ of T and define the risk of T by the formula:
R(T,0) = sup (yTRBy ; v < H(°,0) ) .

With these definitions one can assert the following.

Theorem 1. Assume that [ﬂi{h ng is a direet product, as

described. Suppose that the dimensionality Assumption 1

is satisfied. Then, without any other restrictions, there

always exists a transition T from L(&) to r* such that
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R(T,8) =< B = 54D + (4.02)D log D + 24

for all e € @ ,

If in addition the family [Pg 3 B e @ dis of ZE-finite

i
type, there exists a randomized estimate © in the usual

sense such that

L
(125)°

Ey H°(6,8) < 2B+

Proof. To prove the first assertion let us first note that

[N ]

for any finite subset S of the index set L, the expression
L & h

= ﬁ (s,t)]
E

results immediately from this that € can be partitioned in

still defines a pseudo-metric on ® ., It

classes {CE : j € J} such that

i) for (s,t) € ® x @ ; the value H(s,t) is finite

3
ii) for (s,t) € Ej X EL » J # k, the value H(s,t)
is infinite .

The second property just mentioned shows if
{8, t) e Elj x6 ,3#k, then ./ dPsdPt <
exp|- HE{s,t)} = 0 , so that P and P_ are disjoint.

Consider then a finite subset F(C ® . Let J(F)(CJ
be the set of indices j such that Fj = @jfﬂ F 1is nonempty.

Since J(F) is finite there is a measurable partition

[,%j ; § ¢ J(F)] of P& such that Pgt%j} =1 if OcF, .
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For each Fj and each space fﬁég one can apply Proposition 2.
M
This obviously gives an estimate © such that
2, A
EG H°(e,8) =< B for all @ ¢ F .
Now, with the replacement of "estimates" by transitionms,

the minimax theorem holds in the form

min sup R(T,®) = sup inf [ R(T,0)p(de) ,
T ® L T

the supremum being taken over the set of probability measures

i which have finite support on © , This implies the first

statement of the theorem.

For the second statement consider one of the elements
Ej of the partition of @ . Select a point Ej £ EH and
let U(j,m) be the ball of radius 2" centered at Ej .
According to Assumption 1, this ball can be covered by a
finite partition whose elements have diameter at most (1/12%).
Select a point in each set of the partition of U(j,m) .

Proceed for increasing m, selecting new points only in

U(j,m+1)\ U(j,m) . This yields a countable subset S, of

J
@j such that 1) for each © ¢ Eﬁ there is an s ¢ Sj for
which H(@,s) < 1/125 and ii) the set Sj is discrete,
Let § = U Sj be topologized by the discrete topology,

j
and let FU be the restriction of I' to S . Takea T,

transition from L(€) to I* , such that R(T,®) < B for



29

all © . Then, there is a T,, transition from L(&) to

Fg such that R(T,e) < 2(B + {125]-2} . Indeed, to prove
this it is enough to prove it when @ is finite. 1In this
case T can be approximated by a simple Markov kernel which
gives for each x e a probability measure Tx carried by
a finite subset of © (see Theorem 1 Section 3 of [2]) .
One replaces each point of the support of that measure by the
element of S «closest to it. The inequality results then
from the Hilbertian structure of the metric H . The state-
ment remains valid for arbitrary © by the usual compactness
argument,

Note that if S5 is discrete then for each © , and each
real number a , the set [s : HE(E,S} <=a, s e 8} is finite
and therefore compact. Therefore, according to a standard
argument of decision theory, if R{TD,B} < w the image
TD Pa of Pg must admit an extension to a Radon measure on
5. If in addition the system {?E%G,P } is Z-finite, the

transition T, is automatically representable by a Markow

kernel. Hence the statement of the theorem.

Note 1. The same argument proves also that if ©® itself
can be topologized in such a way that for each © and aceR
the set {s : HE(B,S} < a} 1is a compact Hausdorff space then

)
the conclusion of the theorem holds in the £oim QBHE[E,B)j_B.
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Note 2. Proposition 3 can be translated in the same
manner. The necessary modifications are obvious.

To conclude, let us note that the dimensionality
Assumption 1 has been stated as imposing a liwmit on the number
of sets of diameter d necessary to cover a set of diameter
2d but with the restriction that 125 d > 1.

This is reasonable in the sense that there is no point
in looking at sets which are very much smaller for the
purposes of Propositions 2 and 3. However, in many cases, one
can strengthen the Assumption by removing the lower bound on
d. 1In this case a set of finite diameter is necessarily
precompact for the distance H . Nothing essential is changed
if one replaces it by its compactification. If so, the second
statement of Theorem 2 holds automatically, in the form

Fal
E. H°(0,0) < B provided that (P

o 8 ¢ @} be Z-finite.

g’
This strengthening of Assumption 1 is appealing in the
identically distributed case since then the dimension does

not depend on the number of observations, as long as it

remains finite.
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6. Supplementary remarks on the independent case,

The results of Sections 3 and 4 have been stated in
terms of the distance H defined by the sum
HE{s,t} = E£ hi (s,t) . Although this is often acceptable,
it is clearly not appropriate in some circumstances.

For instance, it may happen that HE(s,t} < 2 but that
Ps and Pt are disjoint. Thus the problem arises of
deriving inequalities for loss functions W which afford a
sharper discrimination.,

One possibility is the loss function W defined on

® x @ by the relation W(s,t) = - log p(s,t) , where p(s,t)

is the affinity jlg’dPs dPt
Writing pE{E,t} =1 - hi[s,t} and
HE{s,t) = - log pﬁ{s,tj one sees that W(s,t) is the sum

2y

exactly similar to the one carried out in Section 3. However

ngs,tj . It is therefore possible to begin an argument

the argument breaks down, as we shall now indicate. We do
not know whether appropriate modifications could salvage the
proofs, even though, as will be indicated elsewhere, one
can carry out a partial argument which still yields some
information. To be specific, suppose that ©@ is a finite
set., Then, one can first carry out tests between pairs

(P ,P_) which are disjoint and reduce the pioblem to a case
s t
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in which W remains finite.
If one partitions the sums Ei WE[s,t) into blocks

b Wﬂ{s,t} * ¢ , the bounds exp[- =2 hi }  of Section 3

can be replaced by the better bounds

exp[- Z Wﬂ(s,t} } = I pﬁts,t) .
,EELk ﬂeLk

Similarly, the restriction that the H-diameter of sets
A i be inferior to a certain value a can be replaced by
¥

the somewhat stronger requirement that for every pair

one have

(gl,ez) of elements of Hv,i

c
sup(- W(¢,,6,)1 =1 - a
In other words the procedure works exactly as before,

except that it is no longer possible to obtain a usable lower

bound on the number of blocks Lk of the partition of L .

This difficulty can be remedied if one assumes that each

component {ﬁﬁi,a ) provides very little information by

3’ Po,y

itself. For instance one may assume that there is a number

e =< 1/2 such that hi{s,t) < e

o for all pairs (s,t) .

0

Howewver, under such an assumption, the result of Section 3
is already of the same general nature as the one that we

sought here, since we can write



B

He < W < [- ']é— logfl—en} ] B < (2 log 2) HC .

0

The only other awvailable improvement is that, when the

restriction hi = g is satisfied one can obtain better

coefficients. For this it is enough to replace (c+l) by

(e+e_ ) at all approximate places.
a



34

References

[1] L. LeCam - "On the information contained in
additional observations."

To appear - Ann, Stat. August 1974

[2] L. LeCam Notes on asymptotic methods in

statistical decision theory.

Centre de Recherches Hathéﬁatiques
Universite de Montreal. 1974

XVI + 270 pages

[3] A. N. Kolmogorov - On some asymptotic characteristics
of totally bounded metric spaces.

Doklady Akad Nauk SSSR 108 (3) (1l956)



