*

& - . *
A remark on empirical measures

by Lucien Le Cam

Department of Statistics
University of California, Berkeley

1. Introduction

In a remarkable paper [1], R. M. Dudley showed that suitably normalized
empirical measures satisfy a central 1imit theorem on Vapnik-{Cervonenkis
classes of sets. These results were further extended by Dudley himself [2,3]
and by D, Pollard [4,5] using classes of functions instead of sets. The present
paper offers an extension in a different direction. For simplicity we have
confined ourselves to classes of sets. Within this lTimitation the extension
is threefold. First, we consider independent variables which need not be
identically distributed. This is, in a way, a minor extension since the arqu-
ments are the same as in the independent identically distributed case. The
second extension is that we let the class of sets vary as the number of obser-
vations increases, The Vapnik-Uervonenkis exponent of the class can increase
almost at the v/n speed. We presume that this is not the best achievable
result but it is the one given by the method of proof used. A third extension
is that we do not actually assume that the classes of sets under consideration
are Vapnik-Cervonenkis classes but only place a restriction on the number of
subsets the classes carve out of the samples under consideration. This is
minor in the sense that the proofs are not changed in any major manner.
However, it is of some importance in applications and fits with the attitude
taken by Vapnik and Cervonenkis in the proof of their law of large numbers.

The problem was brought to this author's attention by attempts to use

empirical measures for the construction of asymptotically well behaved estimates.

*This research was partially supported by U.S. Army Research Office grant
number DA AG 29 79 C 0093.
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A few remarks on that subject will be found in Section 2 below. Section'?

also contains the main definitions, a lemma nbtainab1e'frnm the standard chain
arguments using the Bernstein-Bennett-Hoeffding bounds and a description of

the nature of the “"central 1imit theorems" to be proved. Section 3 contains

the main argument relative to the Vapnik-Cervonenkis classes. In it the number
of observations is fixed and measurability problems are assumed away. Section 4
is about passages to the limit and Section 5 gives our method for the handling
of measurability problems. It is not much simpler than Dudiey's but may have

some merits otherwise.

?. Hotations and main definitions

Let n be fixed and let {xﬁ,An] be a given measurable space. Let
pj,n; ji=1,2,...,n be n probability measures on {xn,An] and Jet Z5.n
j=1,2,...,n be n independent variables with distributions L{Ej,n} = Pj.n
The empirical measure Mo defined by the %5.n is the measure such that
un{A] = %— Elln{cj,n}. The corresponding empirical process is defined by
In{A] = 1 ;n{A} -EH{A}] where ﬁn = %. E]pj’n, Here A can vary through
the o-field An. However, we shall restrict A to vary in a subset S, CA,
subject to various restrictions.

In the situation where {xh,in] and Sn do not depend on n and where
the Pj n are all identical to one particular measure p, Dudley [1] has
shown that if Sn = § satisfies the conditions used by Vapnik and Cervonenkis
and suitable measurability restrictions, the processes {IHEA}, AES} obey a
central 1imit theorem. Cases where the p.

ALl

naturally in the study of robust estimates. See [6]. In such cases the

vary with j and n occur

empirical measure u, 15 a peculiar mixture without any clear statistical sig-
nificance. However, one can give it a significance if it is computed on the

appropriate space.
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Assume for instance that the observation relative “to the pair (j.n) -
takes its values in a space {Fj H,E‘ n} and that the possible distributions

for it are measures depending on a parameter 8 with values in a set

98,3,n
2. Assume that the 9 §,n are all dominated by some probability measure

j n Instead uf the original observation, consider the log 1ikelihood func-

tion 6-+ lo = A, |8 as a random elemen with values in

g —aﬁ—l—‘ jan E IE [w t Ej! ue
the space F{o, [—m +m}] of functions from © to the interval [-w=,+=). This
provides us with a space (X ,A ) independent of n if © is independent of
n, with x" = F{@,[-=,+=)}. In this space, the empirical measure of the

Ej = is a sufficient statistic. The distribution of Ej " under & s a
L] L]

certain measure py ; . on A
) k)

Let “J,n

Then the density of Pg .1 wWwith respect to mu N is the evaluation x(8&)

at & of the element x EX = F{o,[-=,+=)}. It is independent of j. For

be the image of nu n obtained by the same transformation.

two values, say s and t of the parameter ©, the corresponding average

- 1 - _ "
measures p_ = E'E“s,j.n and p, satisfy equalities of the type

[P =Pyl = F L Sydan 'Pt1i1n|

far L1-nnnm5.

Similarly,

2

n]{xﬁ-ﬂrﬁjz =] J{-"'d_p

-Vdp. .
: pt‘J‘nJ

5.J.N

for Hellinger distances. Thus, if the empirical measure M is close enough
to the average p it may yield good estimates of #. If a subclass S, €A
yields at the same time a central limit theorem and a norm sup{|ﬁs{h] -Et{A}|;
AEESH} equivalent to the Hellinger distance, estimates can be constructed by

a minimum distance method carried out for the norm introduced by Sn.
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Note that in the passage ta the logarithms of, 1ikelihood ratﬁas, the

structure of the space X, = Flo,[==,+=)] becomes independent of the families
{pﬁ 5 n BE€E, J=1,2,...,n}. However, the selection of possible classes Sn
Bl B
needs to take into account the structure of these families. It is clear that
one may want to let them depend on n. It is also clear that the number of
sets of the type {§1,n'tz.n""’;n,n}r15' S € Sn will need to be considered
as a random variable with properties depending on the underlying Pa j,n°
Fud @
Hence the motivation for the extensions described here. It is also clear that
to obtain definitive results one will need to consider classes of functions,
instead of classes of sets. For SimP]TC'TtI we shall not do so here, even
though a simple method usable in special cases will be mentioned later.
Let us return to the (X ,A ), 8 CA and p_ = l-fp Metrize S
n"''n'* “n n n n j j,n* n
by the distance d"{A,E} = ﬁ“{nu} where AAB 1is the symmetric difference
of the two sets A and B.
For any o« € (0,1), 1let Fu n be a maximal subset of Sn subject to

the condition that if .l'JL_.r = Fﬂ , i=1,2, are distinct, then EH{A1£5AE] > a.

o
Let Hn{u} be the cardinality of Eﬁ n* In al1 the arguments we shall assume
that the Kn{u] are finite and let Ly be the function defined by

Hz{u]

_ n
Ln{{!} = {log -'-2'&—']'

1/2

The following lemmas record a fact that has been established repeatedly
in the arguments concerning empirical processes. The chain argument used in
the proof goes back to Kolmogorov. For the present case, see Dudley [1] and
the references given there. However, since the result does not appear as such

in the literature, we provide a sketch of a proof. The lemmas can be stated

for functions instead of sets. In such a case

X (¢) = g [4(z; ) -Eelzy )] .

5|~

n



LEMMA 1. rIet {¢ji J FI.E,..:,m} -ﬁnd {wk; k =.i,f:",...,l"'l_‘f be two sets of '
meagurable functions defined on '[J{ A ). Aesume that ﬁi ¢.- <1 and
0=y 1 forall j and k. Assume also that for each by, there is a ¢
such that lek—¢j|dﬁn <p<1/2. Then, if np > 4 log EEE

one has

J

p

Proof. To each k assigna j(k) with Jllpk_‘tj{k}]dﬁn < p. Let
W = [ﬂ-‘kF .I'I{k:l]+' According to the Bernstein-Bennett-Hoeffding inequalities,
for € > 0 one has

E
P'r{|h'. (w H} e} < 2 expl-—=—1} .
2(p+ef/n)

Considering only the case where e < p/n, this yields
ri EE'
P S'LIP lln{mk” =g} < ZM exp[~ﬁf

2
Let z = %ﬁ and let f(z) = v/2pz +2M exp{-z/2}. The derivative of f vanishes

at a value z, such that z,-log z, = 1ug[2l’~12p_1]. If EHEp_I > e, sucha

z, verifies the inequalities ':-:lg[EHEp'1] =zp=2 Iug[EHzp'jj. The inequality
e < p'n with ¢ = f'E_pz'E will be satisfied if 4 Ing[EMEP'l] < np. Thus,

under the conditions of the lemma, we can take for = the value r"?pTu
Repeating the argument for w) = [y, -¢ (H]- and substituting yields the

result as stated.

LEMMA 2. Fizx an o € (0,1) and an integer m. Let EE = ad™. Agsume that

- < i and that 4LE{|::} < na. Then there te amap T from an to

F 2 such that, except for cases of total probability at most e8/2 one has
£ ;N
’ g2 5
supy (1%, (A)-X[x(W)1]s Ak, ) < 2 ST
' EE_{HH_.”
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Preof. For each integer v ='1,E,...,m. let F . = {Eu K k =I,E,....Kn{4“H)}
ﬂfu.n g '

be a subset of S selected as indicated. For each ¢, ) et ¢u+1'j{k] €F i
k] * 4

- ‘\-:"l'"F s} |
be such that J1¢u.k_$9+1,j[k}|dpn-i 4" 'w. Note that the numbers Kn{4vu]
decrease as v increases. Thus the inequalities assumed in the lemma allow
the application of Lemma 1 for each v = 0,1,2,...,m. For a given v, except
for cases of total probability at most E#EE'2”+], one will have

] EK (4Va)
sup Ixn{q]'-.:,k} _xn[:bu-l-'l .j“:}]l < 44 109[—1—]}

K
- 4{4‘*%}”%”{4 o) .

1/2

This recursive procedure assigns to each ¢ﬂ K F n @ particular
O m=1
¢ EF so that, except for probability at most 2vV2a E 21 one
molk) = " 4My v=0
will have

sup [X (¢ ) = Xp[on 1]l < N a) A _(a%) .
K ’ v=0

It remains to evaluate this last sum. However the fact that Lnl is decreasing
as a function of v dimplies
v
(@) (8%) < 4J (ad¥) /2L (oY )dy .
=1
The result is then obtainable by changing the variable of integration to
X = {ﬂ¢3]]H2 and noting that 16/log 2 < 24.

The foregoing Lemma 2 says that one can interpolate the process In viewed

as defined on Fu B by its values on the smaller class F 5 - At least this
: £ £ 4N
will be so if the integrals J Ln{xzjdx are sufficiently small. Later on we
0

shall allow the classes Sn to vary in such a way that for each ¢' > 0 there
€

is an £ > 0 independent of n such that J Ln{ledx <e' for all n. The
0

number called o in Lemma 2 will also be made to depend on n so that the

corresponding classes F. .n Will tend to invade all of 5.

n
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Since s depends on n, it is got pu%sib1e_here to state that the xn
converge in the Prokhorov sense to a specified limit. What we shall prove is
a result resembling "tightness", to the general effect that the processes xn
can be arbitrarily closely approximated by processes of bounded dimension.

Explicitly we shall use the following definition.

DEFINITION. The esequence of processes {Hn[.ﬂl]; AESH} admits finite dimen-
stonal approzimations if for every € > 0 there t8 an N(e) and a elass
EI:L.F_‘. CSH such that

(i) the eardinality of 5"] . remaing bounded ag N —ree,

(1) there are maps T, from 8 to §_ . guch that for n > N(e)

one hae
sup {[X (A) -X [t (A)]]; A€S } <¢
except for cases of probability at most «.

. ; -1, 2
According to Lemma 1, the classes F“n‘" with o such th?t o, Ln{un} < n/4
will admit finite dimensional approximations if the integrals J Ln{xz}dx are

0
equi-convergent. The problem is to pass from them to the classes Sn them-
selves. If one can do so, it will be possible to approximate the distributions

of the processes {xn{A}: ﬂiESn} by suitable centered Gaussian processes and

"central limit theorems" will ensue.

3. A symmetrization argument

In the present section we consider the same objects X , A, S, p. _,
n* 'n* “n* “i,n
ﬂj g 2s in Section 2. However, since n will be kept fixed, it will be
]
omitted from the notation whenever possible. Lemma 1 allows us to pass from

a finite class F , to a larger class F,- For a given o and a set S € 5,
£



let f(S) be an element of F_ selected so that PS4 f(S)] < a. Let P4
be the class of sets of the form  S\f(5) and let ”u.E be the class of sets
of the form f(5)\S for S € 5. Let D= Dc:,'l ”‘:’u,z- It is clear that to
bound sup |X(S)-X[f(S)]| 1t is enough to bound sup {|X(D) ; DE'DH}.

To gu this we shall use an argument imitated from ﬂapnik-Eermnenkis (71,

Dudley [1] and Pollard [5]. It relies on Paul Lévy's symmetrization inequalities

as follows.
n
Let Z be the process defined by Z(A) = /n X(A) = § [Iﬂl:zj}—pjl[A]L
3=
Let Z' be an independent copy of 7. Let Y =12-7'. 1If the class ﬂu Was

finite or countable,Paul Lévy's inequalities would say that
Pr {sup |Z(A)-m(A)| >x} < 2 Pr {sup |Y(A)| >x}
A A

for a median m(A) of Z(A).

We ghall proceed below assuming that for the classes considered here
Paul Lévy's inequalities are valid. Conditions implying their validity will
be given in Section 5 below.

The process Y can be described more specifically as follows. Let
{r;j.nj}; i=1,2,...,n be independent variables such that L{gj} = L{nj} = pje
Then one can write

n
Y(R) = T U (A)
j=1
with Uj{A}I = IAI[r,j] - I.ﬁh_j}‘ Consider also other variables of independent
among themselves and independent of all the .t;j, Ny Assume that F'T‘[Gj =1] =
F-‘r[t;j =-11 = 1/2. Let Y* be the process defined by Y*(A) = E -:Fj]l.ljl[AH.
Looking first at Y**(A) = § uj[ujin}], one sees the processes Y, Y** and

Y* have the same distribution. We shall proceed below ueing Y* instead of Y.
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' Let F be the sample {ﬁ1.t2....,tn;ﬁ],i.+,nn}._ When F is givéﬁ, the
Uj{A}; j=1,2,...,n are determined. We shall call them the pattern cut by
A on F and write them Uj{A,F}; j=1,2,...,n to exhibit the dependence on
F. For each fixed pair (A,F) the vector [UJ{A.F}; §=1,2,...,n} is a map
from {1,2,...,n} to the three point set {-1,0,1}. We shall call M(F,P)
the number of different patterns [UJ{A,F}; j=1,2,...,n} obtained as A
varies in P. Let N(F,P) be the number N(F,D) = 5:9 {§1Uj{A,F]|; AED],
Let Fk = {£1’£E““'£n] be the set of first coordinates in the sample
[gj.nj], Let FE = {n1,n2,.¢+,n“} be the set of second coordinates. It is
clear that JEIUJEA,FH cannot exceed the cardinality of (A ﬁF]]u[A r"qu}.

LEMMA 3. [et F be fized. Then
KE
Prisup[|Y*(5)|; SE€DP]>x} < EH{F,ﬂ}exp[uw}

Proof. Take a particular S €10 and consider Y*(S) = Z Uj|uj{5,F}|. It has
the same distribution as 2(V —;J where N = E|Uj{S,F}|Ji N(F,P) and where

V is a binomial variable obtained from N trellals. each with probability of
success 1/2. It follows then from the Bernstein-Bennett-Hoeffding inequalites
that i

Pr{ |Y*(S)] >x} < 2 exp{-%ﬁ% .

If two sets S, € U cut the same pattern on F then T*{Sl} = ?*ESEﬁa
Thus the number of binomial variables to be considered is at most M(F,D).

This yields the desired result.

In the expressions given below, quantities such as M(F,D), N(F,P) or
sup{ |Z(S)|; SEP} may or may not be random variables. The inequalities on

probabilities are then inequalities on outer probabilities.
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Take an ¢ € (0,1) and let m{c) and v(c) be numbers such that the
(outer) probabilities that M(F,?) > m(c) and N(F,P) > v(c) are both.no more

than /4.

LEMMA 4. Assume that L(Y) = L(Y*) and that Paul Lévy's sypmetrisation
inequalities are valid. Let D be such that sup{p(A); AED} < a. Then

(i) for x>0 one has
KE
Prisup[|2(S)]|; SEDP] >1+x} <& +4m{s}exp{-m}
(1) w(e) <201 +na+[2n Tog32 ME/BLY1/2
Froof. For any fixed m and v one can write, applying Lemma 2,
xE
Prisup[ |Y(S}|; S€D] >x} < Pr[M(F,D) >m] +P[N(F,P) >u] +2m exp{-7=) .

According to a result of K. Jodgeo and 5. Samuels [8], the median of Z(S)
always belongs to the interval [-1,41]. Thus, applying Paul Lévy's symmetri-

zation inequalities one obtains
xE
Prisup[|Z(5)]|; SEP] >1+x} < 4m exp[hﬂ] +2 Pr[M(F,P) >m] +2 Pr[N(F,P) >v] .

The first assertion follows immediately.
For the second inequality, note that v <n, always.
Use the one-sided version of the inequalities written above. Then one

can write
xE
Prisup[Z(5); S€D]>1+x} < 2m exp{-z—n} + 2 Pr[M(F,P) >m] .

The inequality Z(S) <1+x implies that the cardinality of $NF, does not
exceed 1+x+na. A similar argument applies to 2'(S), giving a bound

2(1 +x+na) for card Sf"I[F.| UFE]. This bound is valid with probability 1 -¢'



1

with
é
e' = 4m exp(-5-} + 4 Pr[M(F,D) >m] .

One can make &' = ¢/4 by taking m = m(e/8) and 12 = 2n 1ug[32mi%§§lﬂ.

This gives the desired bound on w(e).

The results of Lemmas 1 and 4 can be combined to yield an approximation

result for the process X itself. MNote that X =-J~2. Let m{e) and w(c)

LS

be the values obtainable for the class = Fu. with o =¢e4"™ as in Lemma 1.

2

PROPOSITION 1. Let € € (0,1) be such that EHﬁ{eE] > ee” and let a be

such that 4a'1LE[n] < n. Then there i a map T from En to F 2 such
4N
that, except for cases of probability at most Be onme will have

£f2

sup [X,(S) - X [1($)]15 S€8,} < 24 "L (F)ax + £01 4 [2u(e) 109 8ER2)
n

0
Proof. To obtain this one applies Lemma 4 to the class ﬂu of sets of the
type SAF(5) or f(S5)\S. Then xn{SJ -X [f{S)] differ little and

f(s) € F. o~ Then one maps f(S) to F 5 bv the map T of Lemma 1.
2 E ,N

REMARK. HNote that this proposition will yield usable bounds only when the
term T = %u{a} 1ngﬂﬂ%5j- is small. The bound given in Lemma 4 gives a value
T=T, +T, 4T, with T, = %—10953551, T, = Za lngiméil and
Ty = {Z10g [320e/8) )1/ 2 ggpinle)y

However, it is possible to improve the bound on w(e). An argument
entirely similar to the second part of the proof of Lemma 4, but using the

first inequality of Lemma 4 directly, yields the bound

w(e) < 201 +ma) +2[20(5) Tog Zm(:£)1/2 .

This may be a substantial improvement on the bound given in Lemma 4, since




0 12
v{ z) < 201 +na +[2n 1ng—gglﬁjl§lm{ c/128)1'/%)

by Lemma 4 itself. We shal1‘u5e these bounds below when the function m(c) is
easily bounded.

To terminate the present section, here are some remarks 1inking the
variables M(F,P) to the intersection numbers of Vapnik and Cervonenkis.

Suppose F = {Zyslps-nnal iflqsfys...on ) fixed. For a class D, let
J(F,?) be the number of distinct sets of the type FNS, SETDP. We claim
that M(F,p) < J(F,P). Indeed if Srﬁ{F1LJFE] is given, one can determine
from it the pairs {;j,nj} such that ;j €5 and ng 5% and the pairs
such that L5 e s° and n; € 5. Thus each intersection Sfﬁ[F]LJFE} yields
only one pattern cut by S5 on F.

Dudley [1] has shown that if Sn is a Vapnik-Cervonenkis class of expo-
nent Vs such that J{F,Sn]_g {En}un, then each ﬂh satisfies J{Féﬁnl 3
(2n) M. 1In such a case, for every € > 0 one will have m(e) < (2n) "

Thus 1!2
vle) < 2{E3+na]+{2u{734[1ug -rﬁhlcgzn]}

with

512 1!2

‘{Wﬁj < 2{1 +nx +{2n[l0g +2u log 2n]}

4. A 1imit theorem

In this section we retain the objects Xy An, Sy {pj’n; J=1.2,...,nl
of Section 2 and let the number n of observations tend to infinity.

We ehall aseume throughout that the eymmetrization argument of Seetion 3
ig valid. We ghall alsoc assume that the functions '-n ars guch that for cvere.
€' >0 there iz an € independent of N such that _[:Ln{xz}d“ < &', This

will be called assumption (A1).
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budley.[1] Has shown that this 3ast condition on L~ is automatically
sﬁtisfied if s is a fixed Vapnik-Cervonenkis class. The condition on
J1Ln{12}dx insures that if Hn is a centered Gaussian process defined on Sn
w?th the same covariance structure as in. then W_~ admits a version with
bounded continuous paths, [9]. The equi-integrability condition yields an
equi-continuity statement for the paths of the successive Hn' "Continuity"
refers to the class Sn metrized, as described, by the expressions ﬁntnlzxnzl.
The application of Lemma 1 to this situation requires the choice of a
number a(n) such that ﬂuf‘[n}[i[u{n}] <n. Since x'1LE{x} increases as
x decreases, as soon as n > 4 there will be a number o'(n) such that
axNE(x) <n for x>a'(n) and 4x7'WE(x) >n for x <a'(n). If the
desired first inequality holds for x = a'(n), take aln) = a'(n). Otherwise

take o(n) = (142 M)a'(n).
LEMMA 5. [Let condition (Al) be satiafied. Then +n aln) —0 as n—e,

B
Proof. 0One can write IDLExE]dx g_EL{EE}. This Hi]l Emplj that the term

1 ][a‘{n}] /

a'(n) satisfies the inequality o'(n) < — Lix?}dx. Hence the

vn ‘0
result.

Having chosen the cut-off point o(n), one selects a subclass

c . .
Fu[n}_n S, and a function § from S = to as in Section 3.

Fﬁ{ﬂ].ﬂ
This yields a class D, of sets of the type Sﬂﬁn{ﬂl or ﬂn{S}\S. Let F_
be the combined sample Fn = [al.n’tz,n""'En,n;n1,n""'nngg and let

M, = H{Fn.ﬂn} and N = "{Fn’pn} be defined as in Section 3.

PROPOSITION 2. Let condition (Al) be satisfied. Then, the segquence of
processes K. admite finite dimensionmal approximations whenever the fumetions

21 S
Tn - Hn 'Ingﬂ-l"'ln tend to zero in probability.
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Proof. This does not quite follow from Proposition 1, but almost. -To obtain

it in this form, return to Lemma 1 which says that for B > 0, we can write

ZN
Prisup[ |Y*(S)|; S€D] >a/n} < 2 Exp{--za—n[EE - n" logM 1} .

M
If T"—+D in probability, so does T” since log 4Hn > 1. Thus, given

e >0, there will be an n{c) and sets An such that if n > n(e),

N N

pr{.q‘:‘]. < g, and on An one will have both T"-: £ and E—ﬁr'-]ngﬂn < E‘.EE.

The argument of Lemma 4 then yields the inequality
Prisup[|Z(S)|; S€p 1>1+s¥n} < 4 exp{-l'rsﬁz} +2 Prl[-"tﬁ} .
Hence the result.

REMARK. The condition that ‘Iﬁiogﬂn tend in probability to zero is analogous
to the condition used by Vapnik and Cervonenkis to prove a law of large numbers.
We do not know what is the "best" speed achievable here. However, here is a

result involving only Tlog r-'In.

PROPOSITION 3. Let condition (A1) be satisfied. Assume that there is a

Y < /2 such that n ' TDQH tende to sero in probability. Then aid

|v“—.liT'I
n
T, both tend te szero in probability.

Proof. Fix an ¢ > 0. According to Lemma 4, one has w(e) < 2[1 +nu(n)])

"I‘:l]'h"?

+ [E'n{C.l +Con where C.I is constant and CE tends to zero. Since

+
a(n)¥n —0, this means that w(e) 1s at most of order TﬂEUtI[1 T—El]l
However, one can also use the remarks which follow Proposition 1 and the

relations

'HE]I i:'-] {16}
32,1/2

+ E{H[E?EEE—TJ1DQ -



o
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- -

App1yin§'the5& relations recursively, starting with k=0 to k =r,

" one obtains a bound

vle) < 2[1 +nxfn)] + E1bkn5[k]
k=

where the maximum value of &(k) s at most

§ = T{%+l+"'+lr} 43 .

4 2 42"

For v < 1/2 there exists a value r such that & < 1/2. It follows

that v(e)/¥n tends to zero. This implies the desired result.

Such a result suggests that it may be sufficient to assume that n']'IIrE

1ugMn
tend to zero in probability. However, refinements of the method of proof

seem necessary to obtain such a result, if true.

COROLLARY. [Let condition (A1) be satisfied and let Sn satisfy the V.C.
v

condition J{F,S“} < (2n) 41 for sets F of eardinality 2n. Then, if

-Y

n ‘v etaye bounded for some ¥y < 1/2, the variables T_ tend in probability

n n

to zero and the processes Hn admit finite dimensional approximations.

There are classes S which satisfy the conditions (A1) but are not V.C.
classes. Thus the corollary could be applied to subclasses Sn C S becoming
larger as n increases. This can be done even in the i.i.d. case and shows
that the corollary is not empty.

One can transform Proposition 2 into something resembling a central limit
theorem in a variety of ways. One possibility is to work in the smallest space,
say E., of bounded functions defined in S, such that E_ contains the
continuous functions and the trajectories of the processes X, - One can give

E, its uniform norm and define the distance d{P],PE} of two probability
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measures Pi and PE* (defined on an unspecified (but sufficiently righ)
n-f%e]d of subsets of En} by Euplj ﬁdP1 -JtﬂdFE| for functions satisfying
|§(x)-¢(y)| < Ix-yl and [§] < 1.

Let then P~ be the distribution of the process X and let Q  be
the distribution of the centered Gaussian process W, which has the same
covariance structure as In. Then Proposition 2 implies that if (A1) holds
and if T —0 in probability the distance d(P ,Q ) tends to zero.

Another possible statement is that one can construct both X and L
on the same probability space in such a way that 5up[[!n{S}-H"{5H; EESn} —0
in probability. (The lack of separability of En is no great obstacle if one
uses the technique of proof of Dudley in [10].)

Proposition 2 and the above remarks admit a variant where one does not
assume that the integrals J;Ln{xz}d: are finite.

ef2

Indeed the bound given in Lemma 1 uses only the integrals J Ln{xE}dx.

As long as these can be made arbitrarily small for n large the r:szlts will
remain valid. However, in such a case one may need to modify the processes
Hn' for instance by replacing HH{S} with Hﬂ[rn[S]].

One can also obtain analogues of Propositions 2 and 3 in which the class
of sets Sn is replaced by a class of functions. The result given below does
not encompass those of Dudley [3] or Pollard [5]. However, it is an easy
consequence of the results available for classes of sets.

Let F be a class of measurable functions defined on {xh,An]. Az
that § € Fn implica 0 < § < 1.

For each § Tlet S, be the set {(x,t); 4(x) <t} in X =[0,1]. The
sums obtained from a sample Ej* j=1,2,...,n would be EHEE} = g[g{;j}—Eﬁ[;j}}.
Lemma 1 of Section 2 is directly applicable to such sums. The class corres-

ponding to ﬂn would be a class of functions F; of the type {ﬁ]-ﬁzj+ with
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-£+ €F and 'JL51-5E|dEn < a(n). Thus, to obtain an analegue of Proposition,2

it is sufficient to obtain for this class an analogue of Lemma 4. To do this
consider anutﬁEr process 7 defined as follows. Select independent variables
Uso j=1,2,...,n independent of the nj with uniform distributions on [0,1].
Let Z() +;£EE|:EJ] be the number of pairs [gj,uj] such that (r,u) € 55.
Then, conditionally given {.::j; j=1,2,...,n}, the variables ZI(§) have
expectation En{ﬁ] and a median m(4) such that ]Inij}—m{5}| < 1. If the

Lévy's inequalities are valid, one can assert that
Prisup|z,(§)] 251} < 2 pr{sxﬁ-miun >x} .
Thus an analogue of Lemma 4 will hold for F; and In if it holds for the

. .
class [Sﬁ, 5EFn] and Z.

5. Measurability considerations

The arguments of Sections 3 and 4 rely heavily on two assumptions: the
equality L(Y) = L{Y") and the validity of the Paul Lévy symmetrization
inequalities. These two assumptions are certainly valid if Sn is countable
or if all the processes involved satisfy separability conditions in the sense
of Doob. That may seem satisfactory, however, when {xn,A“} and the variables

; are given, the process In is perfectly well determined on S, and one

Jsn
may wish to preserve it in that form instead of having recourse to separable
modifications.

Dudley [1] has given conditions which allow direct consideration of In'
We shall give similar conditions below but discuss only the validity of the
Lévy inequalities. As already mentioned in Sectionm 3, there is no need to

bother about making the functions M, or N random variables. The equality

L(¥) = L(Y*) appears to be a fairly simple matter. However, Dudley's approach
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to the Lévy argument is imbedded in many other things. Thus it seems reasonable
to give it separately, with a ﬁrnof slightly different from the one used in [1].

To start with, let us recall a result on images of Radon measures.

DEFINITION. A subset A of a Hausdorff space ig called K-analytie if there
exists a sequence of compact sete K. and a continuous map from

B=nu onto A,

PROPOSITION 4. Let X and Y be two Hausdorff spaces. Let ( be a proba-

bility measure which 18 a Radon measure on Y and let { be a continuous map
of X onto Y. Then there is a Radon probability P on X such that ( s
the image of P by 4§ <f and enly if @ is earried by a eowuntable number of

imagee by § of compacts of X

This is a result of L. Schwartz, see [11]. Roughly, the argument consists
of proving the result in the case where X and ¥ are compact by an applica-
tion of Hahn-Banach and proceeding to put together the pieces obtained from a

sequence of compacts.

PROPOSITION 5. Let X and VY be K-gnalytic and let § be a continuous map
of X onto Y. Then every Radon probability Q on Y 418 the image of a

Radon probability P on X,

For a prun.f see [11]. Its general 1ines follow closely the standard proof
of universal Radon measurability of K-analytic sets.

Returning to processes, let 7 be a process defined on a probability
space (0,P) and set of indices S. That is, I s a function (w,5) -+ Z(w,$)
on 2x5. Let (Z2',2',P') be a copy of the system (Z,R,P) (with the same 5).

Make Z and 7' dindependent by using the product measure P xP',
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PROPOSITION 6. Asowme tHat both @ and 8 -are Hausdorff spaces. Assumec,
also that for éach x > 0 the sets of pairs {(w,5); Z(w,5) >x} and
{{w,5); Z(w,5) < -x} are K-analytic. Finally, assume that a median of 1(5)

belangs to [-1,41]. Then
Pr{s;ptztsl; 5€8]>x+1} < 2 Prisup[Z(S)-2(5')] > x}

Proof. Let A be the sets of pairs (w,5) such that Z(w,5) > x+1. The
projection B of A on & is K-analytic. Suppose that P(B) > 0.

Let w be P restricted to B. There is a positive Radon measure m
on A whose projection on B is u. Let Z* be the process Z(w,5) with
(w,5) € A having (sub)-distribution m. Consider the set V = {({w,5,w');
I*(w,5)-2"(w',5) >x} in Ax{'. It contains the set W = {(w,Ss W' )3 (w,5)eA,
I'(w',S) < 1}. Given (w,S), the probability that I'(w,5) <1 is at least
1/2. Thus (mx=P')(W) > %Irnl = %P'[B}. The projection of V on (ax0') is
contained in the set of pairs (w,u') such that sgp{[l[m,S}-I'{m',S}}] >x}

and w € B. This yields
P(B) < 2(u=P"Msup[Z(w,5)-2"(w',5)] >x} .
8
Hence the result.

From this result one can deduce that the symmetrization inequalities will
hold in our present situation, at least whenever the system xn, A“, En, pj.n
is {pj,n’E]“5"5]1" in the sense of [1] for each j (Suslin sets are the con-
tinuous images of metric Kﬂ,ﬁ}'

classes ﬂn instead of directly to Sn. However, the class ﬂ“ consists of

It is true that here they are applied to the

sets SVE(S) or §(S)I\S where {(S5) takes only a finite number of values.

It is not difficult to check that if X, A, S, p,

5.0 is Epj‘n,E}—Suslin then
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for an}.measurable- A, ‘the system kn' Ans {SIﬁA, Sfésn},,pjjn* is equivalent
to a {pj,n‘E]'5"511“ system by removal of one set of measure zero.

In this connection, note that the arguments of Dudley [1] concerning
families of closed sets in a complete separable metric space can be simplified
to a certain extent by reducing all consideration to classes of closed sets in
a compact metric space.

The necessary remark is as follows.

Let 5 be a class of closed subsets of a compact metric space X. Assume
that S topologized by the Hausdorff metric is Suslin. Let A be an arbitrary
p-measurable subset of X. Let S8' = {SNA; SES8}. Then the system (A,5',p)
becomes a (p,€)-5uslin system by removal from A of one set of p-measure zero.

According to this, it is possible to avoid the use of Effros' results,

since the closed subsets of a compact metric space form a compact space.
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