An elementary proof of the converse of the Lindeberg-L&vy Theorem

I. Introduction

This is about the classical Lindeberg-Lévy-Feller Central limit theorem for
independent random variables. One considers a double-array {X J;j=1,2,*..,kn;n=l,2,...}
with the negligibility assumption

(1) s;p F{Ilnd|>s } -0

“for each e >0 as n=+«.

Lindeberg (1920) (1922) gave sufficient conditions for the convergence of the
distribution of En = £ }Im to Gaussian .#(0,1) . His proof, relying only on a simple
Taylor expansion argument, is very elementary.

The converse theorem was pm?ed, in a pariﬁicular case, by Lévy in 1935. lévy's
proof 1s also "elementary" in the sense that no Fourier transforms are used. For the
particular case of normed sums, Feller (1935) gave a proof that relies heavily on
Fourier transforms. According to Lévy (1937) Khintchin had an elementary proof.

The present paper gives a proof that does not use Fourier transforms in any marner,
.even where their use would be effective and simple.

2. A Baslie Tnequality

The present section contains a basic inequality on fluctuations of sums of inde-

pendent variables in terms of second and fourth moments.

Let the X ; be as described and assume in addition to the negligibility hypothesis

(1) that

(2) S =L X has a distribution that converges to £(£) where

-0, EE=1, ad EE' =3 .
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(3) P {sup|X ,|>e} +0 as n+=
j nj .

For the square integrable case with convergence of second moments, the usual
Lindeberg condition follows easily from (3).

Let {Xl[jj;j=1,2,...kn_;ﬂ=1,2,...} be an independent copy of the xnj . Consider

Y = ‘,}5 Oy Xy) -
Safe:fi

Then the Y . wabie by the negligibility condition (1) and the limit requirement (2).

nj
Tt is sufficient to prove (3) for the Y nj - Indeed, according to Ie':ry’s sVimme—

trization inequalities, if m " is a median of xn,j one has

P{sup|X .-m .|>e} < 2 P{sup|Y |>€}
5 o nJ

Hence, by (1)

P{sup!}{njlbh:} <2 P{supifnj1>5} + 2 sljnp P{llmib:-:}

whenever the last term on the right is less than unity, hence always.

Mow take a fixed integer m and partition the sum En = EY n into m parts

s,(1), snizj, ...,'sn{m} with

S.(1) = ? ¥ 3K, <3R40 0}

Taking subsequences, if necessary, assume that

2{s_(1)!3=1,. .. ,m} » (2,511, ..,m)

-



Then EIZ, =0, E(z2,)° =1 and E{zzi}" =3

i i
Note that E’{Ei} =s?(-zij by the symmetry of the Yn,j . Hence E 21 =0 for
all i*Fm*thenmre,EEf=vi<¢arﬂEzi{m.

-
Lerma 1. Under the conditions (1) (2) the ml;ables Zs satisfy the relations

y 2
(4) EE21=3£vi ,
3Ev§
(5) ) FHEi]}E.} <
€
_ Henee, for n sufficiently large,
3E vi
(6) L P[ISn[iLH:-EE] et —p—
£

Proof. Statement (5) follows from (4) by Markov's ineguality. Statement (6) follows
then fmm Lo Sn{tl]] +f{zi] . Thus it is enough to prove (4).

Tet W(k) = E Zi . 'Then
i<k

EM0+2,)" = EWO0TY + 6 EMOOP E 7] + E 2!

Thus, summing up and writing vy = E Zi one has

4

3= E{IZi] =L E 21

53‘“’2 EvE

7 14l jei 3

] 2 2
LEZ + 3{{Evi} -~ {Evi}}

4=

Now E vi = EIIEE'.i}2 =1. Twus I E 32 =3I vi . Hence the result.




It is clear that statement (6) in Lemma 1 is a step towards (3). In fact to get
"(3) from it, it will be sufficient to (a) show that the L v§ can be made small and

(b) apply once more Paul Lévy symmetrization inequalities in the form

(7) P{supi{LlY ;kif‘jcs.];kif_sﬂiﬂ}}} <2 P{|Sn(1}1ht}
s ]

We shall now proceed to show that L v§ can be made arbitrarily small, first in

the square integrable case and then in the general case.

3. The Square Integrable case

Suppose that the Yn,j are as in Section 2, but assume further that ﬁij =E Yij

- exists and that

(8) E;lpﬂﬁijic-:m mﬂnzsgp'}fﬂ*ﬂ'

In this case one can take for value of kjn the first integer such that

A

E[ﬁij;.jj_km] 191:_:— e . ' ")f{,-'

The varlance of the sum En{i} is then at most :"—ﬂ+ En . Thus the variance vy of

the 1imit variables Ei does not exceed % and Ev§ < *5 . 'Therefore the assertion

(3) follows for thls case.

y, The General Case

Suppose again that the Yn,j are as in Section 2 with f{ﬂnj) + ¥(E) ,

Ec=0,E2=1,Ef =3.

We elaim first that

(9) For e >0 there is an n(e) and a b(e) such that n > n(e) Implies

L P{|Y

|>b(e)} < €
"R



(10) For any Tixed number a

2
sup I E{|Y . |°I|Y ,|<a} <=
n j In.i In.i

To prove statement (9) note again by Lévy's inegualities

P{sup]E[Ym5jf_s]]}h} < 2 P{|8_|>b}
5

with En=§‘i'm;.jik . Thus

P{sup|Y .|>2b} < 2 PL|5_|*b} .
{JPIHJ] } < {Inl}
- This gives (9).
To prove (10), assume the contrary. Tnhen taking a subsequence if necessary one
can assume that, for some fixed a ,
TE Y, T[]y .|<a) > b
nj nj'="—"n
with hi + e, Thus we can assume b_ > a .

n
Consider then the varlables

v, =1

g = b Ing [I|'1’m]f_bn]

I
They are bounded by unity. The sum of their variances is larger than bﬁ . Thus, by
the direct Lindeberg theorem L(EV. nj)hﬂn,n . However, by (1) (2) and statement (9)
Lo,V ) »L(E) with E £2 =1 . This is a contradiction. Thus (10) must hold.

Now fix a value of a , say a=1. lLet

2 _ oyl
503 EYHJ I[|Ym1_~:_a]
and
%3 PHYnjl}a]



Partition the total sum as before, considering integers kin such that

2 c
E{ism%]; kip £ < k1+1,n} ‘m
and let

S_(1) = DIY 5k <I<Kyyy 1)

Taling subsequence if necessary one can assume that
flsn(i}l +.*.E’{Zi) .

Since g(zzi} =%(g) with E E” = 3 , one must also have E Zﬁ <3.

However, by Chebyshev

. s 1) <&8 £~ £
P{.E[YHJIHYﬂJlial,ki SKy 4y ) 27 e ' meb
Also
P{{E[YHJI]YHJ|>31# 0} < Lla ;kinfjfki+1,n1}
L 21¢ L i !
Rence . PSPt} <==5. , 7 T E
=
Hence P{lz,|>} <
2 2 1 4
Also, E 2 < E 27 I[]Z;]<t] +t—2 E Z, I[]Z,]>t]
< 2+t plz|>11+ LEZ
- i 2 i
I one takes
3
t2=%, T2=£,and g'mi-cf,w £

this becomes at most 3e
Thus the partitioning of Section 2 is still possible, with Evi as small as

desired.



_ 5. Additional Comments on the General Case

Once can glve a different proof using an argument of Lévy as follows. The

variables Y , bave the same distribution as
Y5 = O¥ng) Ung * By Yoy * gy ng
where the £, y, U and V are ail independent and where
(12) Enj=£ij’ynj=yij’
Gy = P[infll = P[ynj=1] = P[|Ym1:~al

(13) £(0_.) =E{Ynj | |Ynj|ia}

nJ

(1) .‘E’an} =2’{Ynj'| 1Ynj |>al

2
i = -+ & .= EU .
Here, o s;xp S 0. The vnriancz of ‘J{.{ym E‘NJ;UI'H is at most E::n(l-un] L i
Ti f - - E IE .
nat of E(1 Fnjmnj is ZI(1 c:m]l UI'JJ > (1-a) Un,j
Thus, the term ZI(¥ n,j'in,jm 3 is always negligible compared to the rest. Indeed,
if EEU2 stays bounded that term tends to zero in guadratic mean.

nj

If var 3(1-y, U4 = o2 tends to infinity, the term E(1-y, ), hes a distri-

bution elose to (0 ,aﬁ} in Kolmogorov distance (by the CLT). Thus
P{x < 3”1‘1"1]33”115*%%1 <x+ 10}

vop will eventually be smaller than e+ 7;,—- . By Chebyshev
fi

o 4

P”E(}"nj";njmn.ﬂiwn] < ?“-L

However, for any two variables X and Y (not necessarily independent)




8-

|P[x+¥<t] - P[X<tl] < P[|Y|>t] + sup P [x<X<x+1)
X

Thus, removing the cross term EI(y nJ'En:j}U b will not change the limiting distribution.

It follows that if E(E’fm) +@(E) , the sum urz; mist be bounded because the
limiting distribution is that of a sum of two independent terms, one U , from
E{l-ynj)U , the other, V from I Enj ?n;j .

By the same caleculation as in Section 2 ,
E |E(1-y_.)U |ll < I E|(Q-y_ .)U |u + 3 Uu
nj nj - i t'lj nj n

<32g2+3ﬁll
- n n

This is bounded. Hence the I.T..{l—jm }Iln'j'|E are uniformly integrable and

1im -:;:5l < E :;‘,2 =1 . This is true for every a . Hence one can find a sequence {an},

a_+ = for vhich the corresponding o2 are still bounded.

For the corresponding E(l—ynj yu n3 Statement (9) says that
E’[Ifl-lfnjmm] + Z(E)

and the argument of Section 3 is applicable.
Using the fact that
ik -~ ST v
(15) &.”{z‘fm} behaves 1ike 2{E(1 ynjjum rt»;m nJ}

one can also proceed differently.

The argument that gave Statement (9) in Section i shows also that for a value of
a, that is large enough, but fixed, i P{ IYn.jl}aﬂ} remains bounded.

Therefore, because of the boundedness of the variances (as above)
T PI|Y_;|>al
i nJ

remains bounded for every fixed a , however small.




R: o

In such a case it is a very simple matter to prove that E’(H’m) can be approxi-

o E J/

Y
noojg= MK

mated by a Poissonized sum

vhere all the variables are independent, vj is Poisson, E v.j =1 and
L ) =L )
(Take a small, apply Lindeberg's technigue to T(1-y g Ju PRIk For the part
L Enj vnj use the fact that if p is small one can find a pair of variables M, N
where P(M=1) = 1 — P(M=0) = p , where N is Poisson, EN=p and P (I¥N) <p°).
N

Ancther simple fact is that if N is Folsson, E N=2X asum L YﬂJ Kk has a

distribution EL
K
b
k
where Q) is the distrivution of a sum ERT

i=l

Multiplying series one sees that a sum such as

N A
Pk ¥ E Yok

N
has the same distribution as I T‘k when N is Poisson EN =2 ad ){k has for
X .

distribution the average of the distributions:

ESERICCRERET L ge)

(In other words exﬂ" = e* e’ ). Now note that the distribution of Tn is the same as

that of

N k

: X)) =L T @)
z with P =¥ = =
Kk xk 2 n x‘l{ kn j nj




N Poisson, E N, = k. {kn is the range Jj = 1,2,...,k for ?'f .
Note also that if E(Tn} +2(E) with E Eu = 3 , one can truncate the P to a
FI"_‘ carried by I:—an,+an‘,l so that if .2’{)[1‘::} = P;I the Poissonized sum has fourth
moments converging to that of £ .

However, the Poissonized sum has fourth moment
2 U
Kn ¥y + 3 Ky O

4 2 2
(easy, fram Section 2 for instance), where “n,l-i = E{X]j:} s o= E{XI::) . Here

1{" nfl +1 . So for the fourth moments to tend to 3 it 1is neceésa.w that

- k| un,u=EEY:_tJ I{IYHJI'CEH)
ter-'xi to zero.

Now it is elear that the argument about multiplying exponential series is equiv-
alent to that where one multiplies characteristic functions, but it is not at all
necessary to use characteristic functions for it.

My feeling is that, all ready in 1934, Lévy knew all the relevant facts such as

(9), (15), the possibility of Poissonizing ete. but somehow he did not use them.




