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I. Introduction. In a recent paper [1] J. H;jek proved a
T e
remarkably simple result on the limiting distributions of

estimates of a vector parameter & .

The present paper gives an alternate proof of the same
result. The proof given here cannot be called simple or
elementary. It relies on some general facts where are them-
sczlves consequences of results in [2]. The reader less
inclined to abstraction may find another approach in [3].
However, if these general facts are granted the proof of the
result itself becomes immediate. Since these general facts
appear to be of interest by themselves and not widely known

we have emphasized them.

A direct simple proof of Hajek's result has been given by

P. Bickel in [4].

The present paper is organized as follows: Section 2

recalls a number of definitions and theorems which are variations

E
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on those given by the present author in [2]. The third

section considers more specifically the behavior of experiments
under passages to the limit, The main result there is that when
distributions converge the experiment formed by their limits

is weaker than the limit of the experiments the distributions
defined on their way to the limit. This 1s intuitively obvious

but requires proof.

An application of this to the case where one statistic has
limiting distributions whose experiment coincides with the
limit of the mxperiments give a Markov kernel statement, Shift
invariance of the limit experiments allow this Markov kernel

to be a convolution kerncl. This yields Hajek's result.

1I. eriments indexed by a given set. Recall that an abstract
L-space (hereinafter called L-space) is a Banach lattice whose
norm satisfies the relation |fu + v|| = ||ul] + ||v]| 4if

H>=0,v>0. Let © be a set.

Definition 1. An experiment £ indexed by @ 1is a function

8 ~n Pg form @ to an L-space L such that Pgiﬂ and

eIl =1 .

We shall say that £ generates L if L 1is the smallest

L-space containing the family (P.; @ € 8] .

Definition 2. Let Ll and LE be two abstract L-spaces.




3

A transition A from L1 to LE is a positive linear map

fron L, to L, such that | |aut]] = [1uF]| for all u e L, .

Definition 3., Let © be a given set. Let £ : @ ~ns Pg be

an experiment generating a space 1.1 and let T : @ ~ns Q9 be

an experiment generating a space L.E :
The deficiency 4(€,5) of € relative to § is the

number

6(E,8) = inf AP -
(€,9) :ﬂ:pil o = Yl

where the infimum is taken over all transitions from L1 to L

Definition 4, The distance between the axperiments £ and ¢
is the number

a(e,¥) = max[6(€,¥), 8(%,8)] .

Definition 5. Two experiments £ and ¥ , both indexed by
@ are called equivalent if a(€,8) =0 , If &(&,8) =0
then £ 1is called better than ¥ and § 1is called weaker
than £ .

Let € : 0 ~~> P, be an experiment generating an L-space
L . This Banach space L has a dual M which is an abstract
M-space in the usual sense {I}f+Vg+|] = 1Lf+|[ v |tg+|i i)

Furthermore M has an "identity" 1 defined by <I,u> =

B I

E_ "



It is possible to define on M a multiplication
(£,g) = fg . This is the unique bilinear function from MxM
to M such that If = fl = £ and f£'g' > 0 . For this, M
becomes a real Banach algebra isomorphic to the space C(Z)
of continuous functions on a certain compact Hausdorff space
Z . This space is the Kakutani space of M . The isomorphism
is an isomorphism for the vector lattice, algebra and Banach
space structures of M and C(Z) . Under the isomorphism the
space L becomes a band in the space of Radon measures on
. A
The above formulation differs some from the usual one of
[3] and from the formulation used in [2]. In this latter paper
an experiment indexed by € 1is defined as:
1) a vector lattice E with a unit I
2) a family (P, ; © € ®] of positive normalized linear
functionals on E
3) The vector lattice E is a vector lattice (for the point-
wise operations) of bounded functions on some set & and
1 is the function identically unity. Furthermore E is

complete for uniform convergence.

It can easily be shown that condition (3) does not have
any essential bearing on anything proved in [2] . It was

thrown in there for convenience. With condition (3) removed



)
the present definition agrees with that of [2] except for the
fact that no particular sublattice E of M need to be singled
out,
The more customary definition of an experiment is that it
is a family (P

e
# ecarrying a g-field a .

: @ € 8} of probability measures on a set

This is rather inconvenient for many purposes. However
an "abstract" experiment £ does admit at least one and usually
many representations of this type.

Among the results established in [2] figure the following.
Define the deficiency ﬁs{E,ﬁ] of £ with respect to ¥ on
the set SC @ as

bo(&,8) = inf sup||TP.-Q.]||
8 T 0eS "%

= [P : 0€S)

where T is a transition from the L-space of & o

S
to the L-space of T (or FE} .

Theorem 1 (See theorem 3 of [2]).

For any arbitrary @ the deficiency &(£,3) 1is the

supremum of ﬁE[E,E} as S runs through the finite subsets

P_f. B -
Let £ be an experiment indexed by © and generating a
space L . Let H be a W(M,L) closed subalgebra of M such

that I € H . The restrictions of elements of L to H form



another L-space, say L, , quotient of L . One calls
H "sufficient" if the experiment (S ~»> By) with
Pé = [PEt!H] equal to i’ﬂ restricted to H 1is equivalent to

E L 3

Theorem 2 (Proposition 10 of [2]) . For each experiment &£

there exists a unique minimal sufficient subalgebra H .

I
The function 8 o By = Py ostriccad to the adoimal

H 1is called the minimal form of €& .

Theorem 3 Let & and ¥ be two experiments, &£ = [PG: Qed)

indexed by 8 . The following are equivalent:

a} a(e,® =0

b) For the minimal forms (H(€), L(€,)) and [H(®) , L (7)]

there is a positive isometry between LH(EJ and LH{ﬁ}

which extends the correspondence

[P |H(E)] <~—> [Q |H(E)] .

¢) There is a positive isometry between the linear spaces

spanned by {Pg : 9eB) and (&

—— Q

: 8e@) which extends the

correspondence Pg < Q@ .

Proof (See [2] proposition 12 and corollary.)
The usual definition, with a space & carrying a o6-field
@ , allows the definition of "statistics" with appropriate

randomizations when needed. The following definition gives



an appropriate replacement for this concept.

Definition 6 Let Z be a completely regular space with space

of bounded continuous functions Gb{Z} . Let £ be an
experiment generating an L-space L(£) .
A statistic (randomized!) defined on £ is a transition

from L(E) to some other L-space L-space Lf .

A statistic T with values in Z is a transitiom T
from L(E) to the space of bounded linear functionals om Eh{E} .
The law (or distribution ) of T if @ 1is true is the image

angb}rT.

When @ 1is finite a particular representation used by
D. Blackwell [5] is of interest, Let £ =(P_; @e®)] generate
L. Let pu=35 Pﬂ . There are elements u, in the dual M
of L such thit <V, > = {v,Pg} for every v € M . These
elements are such that u, > 0 and gug =1. Let Z be
the Kakutani space of M. The map 2z ~~s [uﬂ{z} ; 0e®] sends
Z into the finite dimensional space E,B . In fact the range
of this map is in the unit simplex U = {[xgl ; @ € 8) , X, = 1 G2
Exg = } of Ra . The image v of p by this map is called
the canonical measure of £ . It is such that [ xdv =1

for each © € ® . Conversely any positive measure v on the

Borel sets of U such that [ xgdv = 1 for all © defines



an experiment € = (Q,; 6e8) , with dQ, = x dv .

It is convenient to make r® into a Banach space by the

maximumm coordinate norm. If =x ¢ RE and x = [xQ] ; @ e @

then |x| = max|x | .

Let A be the space of functions £ defined on the
simplex U and such that |f| <1 and |f(x) - £(x")| < |x-x'| .
For any signed measure yu of U define its Dudley norm

Alulty by
| lully = supllS £du| 5 £en) .

The following proposition is proved in [6]. See also [T].

Proposition 1 Let © be a finite set. Let € and ¥ be
two _experiments indexed by & . Let vy and Vo be_the
corresponding canonical measures on the simplex U of RE .
Then

a(g,8) = |lvytvolly -

In addition A(€,8) = 0 if and only if vy = v, - TIhe distance

& and the Dudley norm of the difference of canonical measures

are uniformly equivalent.

Let us remark that the simplex U is compact (for its norm).
Therefore the set of all canonical measures is compact for the
Dudley norm. Let us remark also that for a given experiment

£ the associated canonical measure can be obtained from any



arbitrary equivalent representation in the form of an
"experiment" as defined in [2] or any equivalent representation
in the form of an "experiment" of the customary "set, g-field
g-additive measures" limit. The "canonical measure" cbtained
from these representations is always the same if "measures on U"

are defined to be Radon extensions of linear functionals on

c(u) .

Definition 7 Let © be a set. Let £ be an experiment

indexed by ® . The class of all experiments which are indexed
by © and equivalent to £ will be called the type of € ,

This type will often be denoted e

Consider an arbitrary set @ and an experiment € : @ an, Pb

indexed by ©® . For each finite subset Fc @ , let EF be
the experiment (0 ~n~. Pg ; 0eF) , 1let RF be the correspond-

F Each EF

These measures are

ing finite dimensional space with unit simplex U

defines a canonical measure Vg -

"compatible" in the following sense. 1If Fl = FE a

subsets of @ , let s be the function defined on U by the

sum of coordinates s(y) = QEF Yo Let NI be the traﬁsfﬁrmation
E

b VPR || from part of U t% U defined by
y F F1

re two finite
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if @ ¢ F, and s(y) >0 .

1
1f vFE and -.-Fl arise from the same experiment then
uFl is the image of vFE by the following transformation.
First mulciply vFE by s getting a measure s—vFE . Second

take the image of this by the transformation I . More generally
let us call two signed measures Ky and Mo carried respectively

by UFl and UFE compatible" 1if by = Hlﬂ'uel .

Proposition 2 Let €@ be an arbitrary set. For each finite

subset F of ® let v_ be a measure on the corresponding

F

simplex UF . Assume that each Ve is "canonical", that is

vg 2 0 and [ xng{dx} = 1 for each coordinate © € F .

Assume that the measures are "compatible" in the above described

SEnse.

Then they are the measures induced by an experiment £

indexed by © . Furthermore the type of £ 1is well determined.

Proof Order the finite subsets of @& by inclusion. For
each finite set a C © consider the corresponding unit simplex

U, + Let I:“:1 be the space C{Uﬂ} of continuous functions on

l.l._:t « If acCcp are two finite subsets define a function

¥ s sﬂ:,ﬁ{ﬂ on Uﬂ by the sum of coordinates Bu,ﬂ-(ﬂ =

=y, 3 eea}l . Define a map m, by

B

(I, g¥)g = [su,ﬁir}l’lﬁ'g
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if @ e and Eu,ﬂ{y} >0 ,

If o ¢ Cﬂ let mﬁh,ﬂ be the function defined on Uﬁ by

(oA, o) (3) = 8, 5(3) oln, 4(]

One can verify that the operation so described is a positive

linear map of C_ inmto Gﬁ . Furthermore (9A ,E]AB,T

ni
1f o C BC vy

Define a set E as follows. An element of El consists
of a continuous function ¢ belonging to scome Eu and all its

transforms PA 8 for ac p . Identify two such elements, say
»
¢ coming from CE and ¥ coming from ET if mﬁB . = *&T,

for ¢ = pUy and therefore for all [ o> p U vy . These classes
form a set E. On E we can define a order structure: f ¢ E
is > 0 if a function ¢ giving it birth is non-negative, Also

one can define a vector structure.

I1f o9 ¢ Eu , ¥ € GE

to mean ﬁﬂa,ﬁ + iﬁﬁ,? . Upon checlking that the class so de-

and y> a UpP one can define o4y

fined does not depend on the choice of v one can verify that
E 1s indeed a vector space and in fact a vector lattice. For
each acCc @ let R, be the space of (signed) Radon measures

on the compact Uu . If acp the may A has an adjoint

a,p

1
Ah,ﬁ defined by {Tﬂh,ﬁ*u} <P, A Bu} which map ﬂB into Ry -
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It is clear that the transformation £ ~~- ﬂ;,ﬁp is precisely
the transformation described previously between canonical
measures. Note that the coordinate functions are compatible

by the transformations A, That ig if ¢ e and ¢ is

E -
3

the function x, on Uu then m{ﬂﬂiﬁyjsa’ﬂ(y} is the co-
ordinate Vg in Uﬁ .
This implies the following relation: For a and £ such

that aC pf let ey and Hy be canonical measures such that

W

1
. = A a8 Let © € a be a particular point and let xh{ﬁ}

(resp xﬂ{ﬁ}j be the corresponding coordinate functioms. Let
P, be the measure dP = xﬁ[g]dun and let dPﬂ - xE{Q}dHE .

1
Then Pﬂ = ﬁu,ﬂ Pﬂ .

One can define a class of linear functionals E' on the
vector space E by taking all families p = {ua] with acC @
running through all finite sets larger than some a, and

1
with W, € ﬂn such that by = ﬂﬁ,ﬁ“ﬂ if aCp and

| Tull = supllu || < :
X

Any compatible system [va} of canonical measures gives
for each 2 € @ such a family cf measures Pg = [PEI u] which
b ]

are positive and such that ||Pg[{ =1,

With the obvious definition of positivity and with the

above definition of norm the space E' can be completed to an
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abstract L-space L .
In summary each compatible family of canonical measures
can be used to define a map @ ~~> P

=
The experiment so defined has the appropriate type for each

into a suitable L-space.

finite subset of € . Therefore its type is well defined.

This concludes the proof of the proposition.

Proposition 3 Let © be an arbitrary set. Let € = £(8)

be the class of experiment types indexed by ©® . Then €

ig a set. With the metric A the space {E,ﬂ} is a complete

metric space. If £ is an experiment type € ¢ €(8) and F

ig a finite set F c @& define EF by restricting the set of

indices to F . Let W be the weakest topology on £(8) for

which all the maps £ ~~e E-F

Then E{B} is a compact Hausdorff space for W .

are continucus (for A on E&(F)) .

Proof That €(8) is a set follows from the construction
of proposition 2. Similarly [E[E] ,W] 1is compact because each
of the [E(F),W] , FC® and F finite is compact. Finally
[E(@),a] is complete because the structure induced by & is
stronger than that of W and because the set of pairs &%

such that A(€,¥§) < & 1is closed for W .

Remark 1 Although the above propositions 2 and 3 do not have
direct bearing on the remainder of this paper we have included

them to indicate that the present definition of experiment is
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as general as need be for most purposes. It would be unfortunate
if a Cauchy sequence of experiments did not have an experiment

for limit.

Remark 2 Consider two experiments & ~ns Pg and @ ~ne Qﬁ

with Pg in an L-space F and Qg is an L-space G . 1In the
usual circumstances where the Pg are a dominated family of
measures and where the qg are Borel measures on a Polish space
a transition T as defined in definition 2 is representable by

a Markov kernel transition. However this need not be the case

in general.

In fact Jack Denny has pointed out to us the following
theorem. Let & = {Pg ; @e8] be an experiment given by prob-
ability measures Pg on the Borel sets of the real line. Let

"™ be the direct product of & by itself n-times (that is e”

&

corresponds to the usual product measures). Assume that Pg

non atomie. Then there is an experiment ¢ = [Qg ; Ped@) |

where the Q, are g-additive measures on a suitable 6s-field

of subsets of the real line, such that

1) For each integer n the experiments £" and 8" are
equivalent,

n

2) For © the sum of the observations is a sufficient statistic.

To obtain the Qg one just restriect Pg to a Hamel base

which has points in each perfect set.
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IIT. Limits of EEEEIiMEntE.

Let @ be a set and let Z be a fixed completely regular
space. Define integrals or measures on Z as linear functionals
on Cb{Ej . Call a filter {uu} of measures vaguely convergent
to  u, if for each f ¢ Eh{E} the integrals [ fduu converge

to | fd""o .

Proposition 4 For each integer n let En be an experiment

indexed by © and defined by measures Fg a o the space Z .
k]

Assume that for each © the Fb o converge vaguely to a limit
¥

Fg . On the space E{E) of experiment types let £ be a

cluster point of the sequence of types én for the weak topology

of €(®) . Let T be the experiment § = {6 ~n~o> Fl .

Then % is weaker than £ . That is &(&,8) =0 .

Proof The proposition remains true if filters are consider-
ed instead of sequences. In either case there are cluster points
because of proposition 3. According to theorem 1 it is enough
to prove the result assuming that @ is finite. This will be
assumed henceforth.

In this case one can also assume that ﬁ{En'E}'* 0 since
this is certainly true for some suitably chosen subsequence.

Let C be a compact convex subset in some Euclidean space
and let W be a loss function defined on ExC . Assume that

IW| <1 and that for each © the map t ~w W (t) 1is
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continuous. For any procedure ¢ let R(S,d) = R(9,6;%)

be the risk at @ in the experiment % .

Take an ¢ > 0 and suppose N so large that n > N

implies ﬁ{Eh,ﬂ} < g ,

According to theorem 1 of [2], for any fixed ¢ there

is a decision procedure p which is continuous and such that

sup|R(9,6) - R(6,p)] < € . This procedure p may also be
=
applied to ﬂn giving a risk R“{G,p] = ngF - Since W.p

e,n
is an element of Gb{z} there is an N(g,6) such that
n > N(g,6) dmplies !Rn{:a,p} - R(e,p)| <= e . This gives
Rh{ﬂ,p] < R(e,6) + 2¢ . However since ﬂ(&n,E) < g for
n > max[N,N(e,6)] , this implies the existence of a procedure

' of & such that

R(9,6 ; €) < R(9,6; 3) + 3¢ .

Since this is true for every W and every & one concludes
that &(€,3) < 3¢ by application of theorem 3 of [2]. This

proves the desired resulrt.

Remark It is easy to construct examples where &(%,8) = 2 .

In other words it may happen that ¥ isg trivial but &€ 1is
perfect. However our next proposition shows that under special
circumstances one can obtain equivalence between £ and ¥ .

Suppose © finite, For each integer n let
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£ = (P =3 8c8] be an experiment, Taking a representation

n e,

of the Pg - by probability measures on a set ):n carrying

¥

a o-field @ one can define Radon Nikodym densities

dp
e,.n
B e————
“E,n an and a corresponding map Sn to the unit simplex
of R9 . More abstractly this Sn is a transition from the

L-space of €  to the L-space dual of Gb(RB} . The
experiment [EnPG,n; ee®} 1is the standard representation of En
on the unit simplex.

Let 'I'n be any statistic from En to a completely regular

space Z . (See definition £).

Proposition 5 With the notation just described assume that for

each © € & the distributions L{Tnfg} - T“Pg = converge vaguely
- ¥

to a limit Fé . Assume also that the experiment En converge

to a limit € . Let ¥ be the experiment ¥ = {F.; ©e®8)} . The

following conditions are equivalent

a) A(g,¥) =0

b) For each ¢ = 0 there is a transition PE whose transpose

b
maps C {RE] into ch{z} and for which 1lim sup supllSnPIEI o
n & *

FETnPQ,nIJD-i e for the Dudley norm |||,;||'D .

If these conditions are satisfied then afﬂn,ﬁnj-q-n

for En = {Tﬁpé,n; Qed@] .
Proof Let Gq,n = SnPG,n and let Fé’n = TnEG,n . Since

e = (G

i o,n’ @e@) 1is the canonical form of €, on the simplex
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of Ra » convergence of ﬂn to a limit &£ dimplies convergence
in Dudley norm of Gé,n to a limit G, - Also TEFG.n-n-PEFG
since the transpose of r_maps continuous functions into con-

tinuous functions. Thus (b) may be replaced by

lim sup supltGQ-F FGHD < g
n 2 e

In particular G, = lim I' F. . Therefore by proposition &4
a o g B
the experiment £ = [Gg; 0¢8] 1is weaker than {rEFQE eee) . This
is in turn weaker than ¥ . Thus &(%,8) = 0 . Since

6(¥,€) = 0 by proposition 4 again we have obtained A(E,8) =0 ,

Conversely, assume A(£,%) = 0). There is then a transition
' such that Gy = FFg for all © . The set A of Lipschitz
functions bounded by unity on the simplex U 1is a compact set
for the uniform norm. Thus by theorem 1 of [2] there is a
"special" tramsition FE which sends Gh{U} into Gh(E] and
is such that |ng - EFEng < g for all f e A and all @ , This
gives (b).The last statement is a consequence of the fact that
ﬂ{ﬂn,ﬁ} -+ 0 and ﬂ.{ﬁn,ﬁ} — 0 implies ﬂ{E“,%]n} -0 if

A(E,T) =0 .

Consider now an arbitrary set © and two fixed completely
regular spaces Z, and Z, with then spaces Gh{Ei} . Let

Tn be a statistiec from ﬂn to Z and let vn be a statistic

1

from £ to Z. .
n 2
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For any subset AT @ , let € be the experiment

s &

[P, _; @eA]l so that E:“ = g

8,n n,8

Proposition 6 Assume that for each finite set AcC &, the

experiment types En A have a limit. Assume alsoc that for © € @
¥

the distributions L{Tnkﬂj converge vaguely to a limit F, and

the distributions £(V {(6) converge vaguely to a limit Gy -

Finally, assume that for each finite subset A C & the statistics

Tn satisfy condition (b) of proposition 5. Then there is a

transition M such that HE'Q = Gg for all © e & .,

This is an immediate consequence of propositions 4 and 5
and theorem 1.

To obtain Hajek's result from this proposition one can proceed
to an argument by invariance as follow, Let ¥ = [F.; e8] and
b - (G,; @@} . Let L(S) be the L space of & and let

M(8) to itself. Let A, be a positive linear map of M(%)

1

into itself such that 1A1 = 1 . One says that the pair [ﬂ,al}

leaves § invariant if

1) A restricted to [Fg;

2) For each p ¢ M(F) and each © one has {|.|.A1} {AFQZI = uF,

@e@} is a permutatien.

Suppose that (B,B is a pair of transformations analogous to

1)
{H,ﬁlj which leaves & invariant, We shall say that] I[A,Alj,l[ﬂ,ﬂgl

leaves the pair 3, invariant if in addition



3) AF, = F,, implies BG,, =G, ,

Let K be a transition from L(¥) to L(+) . Then BKA is
also such a tramsition. Furthermore if KFQ = Gg then {BKﬁ}Fg =

Gg by condition (3) above. Let 7« be the set of all transitions

K such that EFG = Gg for all & . The system ;f = [A,A

{B,Blj] maps 77 into itself by the operation K ~~> BKA .

1:}!

Consider not only one system » but a family {# ] of such
systems and the induced family of transformations of #¢ . It
has been shown in [2] that, if the induced family of trans-
formations is either abelian or a solvable group, there is an
clement M of 77 which is invariant in the sense that EMA =
M: for all the transformations of.the family.

Thus we can add to proposition & the following corollary:

Proposition 7 Assume that all the conditions of propesition &

are satisfied. Assume in addition that the pair of experiments

[ﬂ,ﬁ ) , ¥ = ([F,; 0eB} , S = {Gg; @e®] is invariant by a solvable

or compact group of transformations, Then there is an invariant

transition M such that HFG = GB g

In ceveral probleme one eéncounters an even more restricted
situation as follows. Consider the situation described by
proposition 6 but assume in addition that the two spaces 21 and

EE in which In and "Jn take their values are the same space

Z . Assume also that Z 1s a locally compact group and that the
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wxperiments ¥ = Fg; 8e@] and A - [Gg; @e®] are invariant

by the shift operations of the group. More precisely, if g 1is
a finite measure on Z and a € Z let au be the measure

defined by

J £(z) (au) (dz) = [ glaz)u(dz) .

One can say that § is "invariant" if the operation Fg > aF

is for each o € Z a permutation of (F.; €¢8} . Let us assume

o’
that this is the case for § and </ both,and that in addition
aF, = F,, implies aGy = G,, . A transition which is invariant
by the operations of the group can then be described as follows.

Let Z be a topological group. Let ¥ and 4 be two
experiments which are invariant by the group shifts. Let L(%)
and L(+) be the corresponding L-spaces. A transition M from
L(5) to L(¥) is "invariant" if it commutes with the shift
operations., That is for every a € Z and u € L(%) one has
(aM)p = (Ma)p . Note that if the pair (9,7 ) is shifc

invariant then p € L(%) d1mplies ap € L(¥) for all a e Z .

It is to be expected that such transitlons will in fact turn
out to be convolutions by a fixed measure. However, we have
been able to prove this only in special cases.

Assuming that Z is locally compact and that the Fo and

GG are Radon measures one can show that a transition from

L(%) to L({f) which commutes with shifts is the convolution
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operation for some suitable probability measure at least in the

following cases.
a) All the Fg are discrete.
b) The transpose of M transforms cb{z} into c"{z}.

c¢) All the F, are absolutely continuous with respect to the

=]
left Haar measure of the group.

Case (a) is rather trivial. For case (b) let g ¢ Eb{z} '
Consider the transpose operations, By assumption {ut{Htg],v} =
ﬂ{t{utg},v} for all v € L(¥) . Since the transformed functions
are still in C°(z) this equality implies that [a'M‘g](z) =

[Htutg]{z} for every z € Z and every a € Z .

Apply Ht to the space ; of functions with compact support
on Z. Forech ge s and z € Z evaluate Htg at z .
As function of g this gives a positive linear functiomal P,
on 4 . The equation ututg = [Htut}g everywhere can then be

written u'lPuz - Pz . This implies the desired result.

For case (c) note that according to [B] the equivalence
classes of the bounded measurable functions admit a 1lifting which
commutes with the group operations., Considering again the
equality <a®(Mg),v> = (a"g),v> valid for v ¢ L(¥) , take
a representative f of Htg in the lifting. Then cr—tf = Ht{u;r'g]
everywhere since a'f is also in the lifting. Thus we are in

the same situation as in case (b).
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A particular situation, with additional countability

assumptions, of case (c¢) appears in [3]. We have included case

(b) since the condition given there is also necessary.

IV Some aEEIicatinns.

An application of the preceding arguments is a proof of the
theorem given by J. Hajek in [1].

One considers there a sequence of experiments indexed by
some open set U of a Euclideanspace and a sequence [&n] of
numbers 6 > 0 which tend to zero. The experiments which have

limits are experiments of the type {'En = {P : |e| < b)

Qﬂ+énﬁ , T

for a fixed 6 e U . 1In fact Hajek considers a slightly more
general situation involving matrices instead of the sequence ﬁn
but this does not change the essential features of the argument.

Under the assumptions given there, one sequence of statistics
T_ is such that for each @ L[ﬁ;I{Tn-Gu-ﬁ“Q}IGn+6nF} converges
to a given non-degenerate Normal distribution F the other

-1
sequence V is such that t[&n (‘ifn-@ -6_8) |EIEI+}nG] converges

0
to some distribution G . The particular relation assumed

between Tn and the likelihood ratios shows immediately that the
conditions of proposition 5 are satisfied., It follows then from
proposition 4 and 5 and the invariance argument that G 1is con-

volution of F by some measure Q .

To show that the present argument is not limited to the
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Normal case consider independent identically distributed

observations KI,IE,

the interval [0, l-l-ﬁnf;] with @ such that 1+6 @ > 0 and

5 ==
n n

---,xh which are uniformly distributed on

. Let Yn be the maximum of the observations. Then

£(n[(1+s 8) - x) |1+.5nu}

converges to the exponential distribution which has density
e”™ on the line.
Let T be the statistic I, =n(l-Y ) . For fixed ¢ this

has a limiting distribution F, which has density hg[x] = E-{x+9}
for x> - @ and zero otherwise. Let [v“] be another sequence

of statistics such that L[n[1+ﬁnﬂ} - ?n|l+ﬁnﬂ] has a limiting
distribution G for each fixed @ . We are again in a shift
invariant situation. Hence G will be the convolution
G=FeQ of F with some probability measure Q provided we
can show that T“ satisfied the conditions of proposition 5.
For this purpose, let GI,DE,---,QE be k wvalues of @

written so that 91 < GE < 48w 2 Qk . Let fg be the uniform

density from 0O to 1+ﬁn9 - Consider the integral mn{uj =
S(n f:?}dx for values of iy such that = uj =1, uj_: = B
Thg :ngrespunding Hellinger integral for the experiment E“ is
simply {wn{u}]n . It is almost immediate that this tends to

.
pla) = [ [thj}dx . Hence the result,
j
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