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1. Introduction.
In 1970, J. Hájek published a remarkable result on the limiting distribu-

tion of “regular” sequences of estimates. This was done under the so called
LAN conditions that involve a Euclidean space R

k. For Hájek’s convolution
result, the abelian, locally compact additive group structure of R

k plays an
important role. Inagaki [1970] obtained a similar result but under consid-
erably more restrictive assumptions. A simplified proof was soon given by
P.J. Bickel. It was not published separately but appears in the book of G.G.
Roussas [1972].

Le Cam [1972] offered a different proof of Hájek’s result. It was based on
properties of limits of experiments together with an application of a theorem
of C.H. Boll [1955]. Le Cam’s result applies to locally compact groups that
admit almost invariant means. The Gaussian character of the special limit in
the LAN case is noticeably absent. It is replaced by a domination assumption.

Unfortunately the local compactness condition on the group does not al-
low direct extension to the infinite dimensional set-up of non-parameteric
or semi-parametric statistics. Extensions for that situation were given by
Moussatat [1976] and by Millar [1985]. These authors retained the Gaussian
assumption on the special limit. H. Luschgy [1987] does not use a Gaus-
sian assumption but conditions on the comparability of finite dimensional
projections.

Recently, several authors have proposed alternate proofs of the convolu-
tion theorem. Among them one should mention particularly by D. Pollard
[1990] and A. van der Vaart [1989] and [1991]. The tract by van der Vaart
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[1989] contains several extensions of Hájek’s result for the Gaussian case. As
already mentioned the paper by van der Vaart [1991] contains infinite dimen-
sional extensions for a particular case that includes the Gaussian situation.
However, van der Vaart [1991], end of page 104, says that the general case of
non Gaussian situations appears to be unsolved. The purpose of the present
paper is to state a result that applies to experiments obtained by shifting
general cylinder measures, as long as their finite dimensional projections are
dominated. That some sort of domination condition is necessary can be
shown by examples on the line, or on the plane. See Sections 5 and 9 below.

The problem itself is described in Section 2, which introduces the neces-
sary terminology and notation. In the remaining sections we have retained
the method of proof used in Le Cam [1972]. The argument is split into
three parts. The first involves connections between passages to the limit for
experiments and passages to the limit for distributions. A second part of
the proof, given in Section 4 is an application of the Markov-Kakutani fixed
point theorem in a form taken from Eberlein [1949]. This is where “almost
invariant means” are involved. At this point one is led to consider positive
linear operators that commute with the group shifts. The combination of
parts 2 and 3 of the argument contains a slight extension of a theorem of
C.H. Boll [1955]. This is stated in Section 5.

Section 6 introduce the relevant notation and terminology for cylinder
measures. The convolution theorem itself is stated in Section 7, with a brief
sketch of its proof. Section 8 retrieves from the general convolution theorem
a result of Millar [1985]. Section 9 contains various comments on the problem
considered here.

We have not given complete proofs because of lack of space. In particular
proofs of the results in Section 7 are only sketched. A complete proof will be
contained in a forthcoming technical report of the Department of Statistics
at Berkeley. This is a revision of Tech. Rep. No. 269, which unfortunately
contains a gap.

At the time of this writing, we believe that the sketch of proof given here
can be made into a formal proof, but cannot entirely exclude the possibility
that gaps may remain. That the situation may be somewhat delicate can be
seen from the examples of Section 9.
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2. Notation and terminology.
Blackwell [1953] has called “experiment” a system that consists of a set

Θ and of a map θ; Pθ to probability measures on a σ-field A of subsets of a
set X. For technical reasons, it is more convenient to use a slightly different
definition. One considers an abstract L-space L in the sense of Kakutani,
that is a Banach lattice in which the norm satisfies ‖µ+ ν‖ = ‖µ‖+ ‖ν‖ for
positive elements µ and ν of L. An experiment E indexed by Θ is then a
family E = {Pθ : θ ∈ Θ} where each Pθ is a positive element of norm unity
in L.

This definition covers in particular the case of cylinder measures that will
be encountered in Sections 6 and 7. Any experiment E defines a subspace
L(E) of L. It is the smallest closed subspace of L that contains all the Pθ,
θ ∈ Θ and all the elements of L dominated by convex combinations of the
Pθ. See Le Cam [1964] or [1986].

Let E and F be two experiments indexed by the same set Θ. A transition
from L(E) to L(F) is a positive linear map that preserves the norm of positive
elements. If E = {Pθ; θ ∈ Θ} and F = {Qθ : θ ∈ Θ}, the deficiency of δ(E,F)
of E with respect to F is the number

δ(E,F) = inf
T

sup
θ

1

2
‖PθT −Qθ‖

where the inf is taken over all transitions T from L(E) to L(F). One says
that it is stronger than F or F weaker than E if δ(E,F) = 0.

(Note the position of the letters. The T is placed to the right of Pθ.
This is in keeping with the notation Pθf for the expectation of f under Pθ
used by de Finetti or the notation Pθk for Markov processes when Pθ is the
initial distribution and (Pθk)(B) =

∫
Pθ(dx)k(x,B) for a Markov kernel k.

The notation will be used consistently in the sequel, so that, for instance, we
shall write θτ for the image of θ by a map τ ).

The “distance” ∆(E,F) between E and F is ∆(E ,F) = δ(E,F)∨δ(F , E).
One says that E and F are equivalent, or of the same type if ∆(E,F) = 0.

The “distance” ∆ defines a topology on the class of experiment types
indexed by Θ. It also defines a weak topology: A net or filter Eν converges
weakly to F if for any finite subset S ⊂ Θ the distances ∆(Eν,S ,FS) tend to
zero, Eν,S being Eν with the set of indices restricted to S ⊂ Θ.

Let Z be a set carrying a vector lattice Γ of bounded numerical functions.
Assume that the constant functions belong to Γ. A statistic with values in
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Z and available on E will be a transition S from L(E) to the dual of Γ (for
its uniform norm).

Let {Sν} be a sequence, or net, or filter of statistics with values in Z but
with Sν defined on some experiment Eν = {Pθ,ν : θ ∈ Θ}. The net {Sν}
is said to converge in distribution for Pθ,ν to a limit Fθ if for each γ ∈ Γ
the evaluations Pθ,νSνγ (of the images Pθ,νSν of the Pθ,ν in the dual of Γ)
converge to Fθγ.

3. Convergence of experiments and convergence in distribution
We shall apply the following theorem, for which see Le Cam [1986], Propo-

sition 1, page 100.
A set Z with a vector lattice Γ of bounded numerical functions such that

all the constant functions belong to Γ will be called a decision space.

Theorem 1. Let {Eν = Pθ,ν : θ ∈ Θ} be a net or sequence of experiments
all indexed by the same set Θ. Let (Z,Γ) be a particular decision space. Let
Sν be a statistic available on Eν and taking values in Z. Assume that

i) The Eν converge weakly to a limit E = {Pθ; θ ∈ Θ}
ii) The distributions Pθ,νSν converge to a limit Fθ for each θ ∈ Θ.

Then the experiment E is stronger than F = {Fθ : θ ∈ Θ}

Proof. See Le Cam [1986], page 100. However, since that proof is compli-
cated, here is a simple proof communicated by D. Pollard [1990].

Consider first the case where Θ is a finite set. The weak convergence
of Eν to E implies the existence of transitions Tν such that ‖PθTν − Pθ,ν‖
tends to zero for each θ. The transition Tν takes L(E) to L(Eν). Combine
it with the Sν obtaining that ‖PθTνSν − Pθ,νSν‖ ≤ ‖PθTν − Pθ,ν‖ tends to
zero. Transitions from L(E) to the dual Γ′ of Γ form a compact set for the
topology of pointwise convergence on L(E) × Γ. Take a cluster point B of
the {TνSν} for that topology. It will be such that PθBγ = Fθγ for all γ ∈ Γ.
Hence PθB = Fθ.

To obtain the theorem for general Θ one can apply the foregoing to the
experiments ES = {Pθ; θ ∈ S} and FS = {Fθ : θ ∈ S} for each finite subset
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S ⊂ Θ. This gives transitions BS such that PθBS = Fθ for θ ∈ S. These
transitions are defined only in L(ES) but they can be extended to transitions,
say AS, defined on the entire L(E). A cluster point A of the AS as S increases
in Θ will be such that PθA = Fθ for all θ ∈ Θ. Hence the result.

This result has been converted to “an asymptotic representation theo-
rem”, Theorem 3.1 of van der Vaart [1991]. It was an essential tool in the
proof of the Hájek convolution theorem given by Le Cam [1972]. Another tool
was an application of the Markov-Kakutani fixed point theorem, described
below.

4. An application of the Markov-Kakutani theorem
Let E = {Pθ; θ ∈ Θ} and F = {Qθ; θ ∈ Θ} be two experiments indexed

by the same set Θ. Let S be a set of pairs where S is a transition from
L(E) to L(E) and S ′ is a transition from L(F) to L(F). Let us say that S
leaves the pair (E,F) invariant if the following conditions hold for each pair
(S, S ′) ∈ S:

i) S restricted to the set E is a permutation,

ii) S ′ restricted to the set F is a permutation,

iii) if Pθ1S = Pθ2 then Qθ2S
′ = Qθ1.

We have emphasized the word “set” in (i) and (ii) to indicate that here
we mean the range of the functions θ ; Pθ and θ ; Qθ not the functions
themselves. For condition (iii) the functions are involved and for a pair (S, S ′)
the S ′ is a pseudo-inverse of S on the indices. Note that if T is a transition
from L(E) to L(F) then STS ′ is also such a transition

Theorem 1. Let S be a system of pairs (S, S ′) as described. Assume that S
leaves the pair (E ,F) invariant. Consider the transformations T ; STS ′ on
transitions from L(E) to L(F). Assume that E is stronger than F and that
the set of transformations T ; STS ′ admit almost invariant means (acting
on their left).

Then there is a transition T0 from L(E) to L(F) such that ST0S
′ = T0

for all (S, S ′) ∈ S and such that PθT0 = Qθ for all θ ∈ Θ.

5



For a proof see Le Cam 1986, Chapter 8, Section 2, Theorem 2. This
result will be applied in Section 7 in a case where there is no need to worry
about the existence of almost invariant means since they automatically exist
in abelian cases. It will also be applied below in connection with Boll’s
theorem.

5. Boll’s convolution theorem
C. Boll [1955] considers a situation describable as follows. One has a

locally compact group X and two Radon probabilities P and Q on X. Let
PSα be the measure P shifted by α so that if P = L(X) then PSα = L(Xα)
(or L(X +α) if the group is abelian noted additively). Similarly, let QSα be
Q shifted by α. Let E = {PSθ; θ ∈ X} and F = {QSθ : θ ∈ X}.

Lemma 1. Suppose that E is better than F . Let Sθ be the shift by θ and let
S

′θ be the shift by the inverse of θ. Assume that the transformations T ;
SθTS

′θ, θ ∈ X admit almost invariant means (acting on their left). Then
there is a T0 such that for all θ one has T0 = SθT0S

′θ and PSθT0 = QSθ.
This is a direct consequence of Theorem 1, Section 4. It leads to the

consideration of positive linear operations T such that TSθ = SθT , that
is transitions that commute with the shifts. Those are the object of the
following theorem.

Theorem 1. Let P be dominated by the Haar measure of X. Let E =
{PSθ; θ ∈ X} and let T be a transition from L(E) to Radon measures on
X. If T commutes with shifts, that is if TSθ = SθT , then T is obtainable
from convolution with a Radon probability m so that for µ ∈ L(E) one has
µT = m ∗ µ.

The combination of Lemma 1 and Theorem 1 gives C. Boll’s theorem.
Actually Boll had assumed some countability restrictions. A proof without
such restrictions is in Le Cam [1986]. There the proof makes use of the lifting
theorem of A. and C. Ionescu Tulcea [1967]. One can bypass this theorem
as follows. Let M(E) be the dual of L(E). Call a γ ∈ M(E) continuous
(under shift) if ‖Sθγ − γ‖ tends to zero as θ → 0. One can show that such
continuous elements of M(E) are equivalence classes of a well determined
uniformly continuous function on X. Then lifting is automatic.
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For many applications of Boll’s theorem to Statistics, see E.N. Torgersen
[1972], Hansen and Torgersen [1974], Bondar and Milnes [1981] and Torgersen
[1991].

Theorems similar to Theorem 1 above have been proved long ago in the
mathematical literature see Wendel [1952]. Bochner and Chandrasekharan
[1949] give results of the same type for operators on Hilbert space. They
also give a result analogous to our Theorem 1 for the line and Lebesgue
measure (see Remark, page 215). (For this reference, we are indebted to
David Brillinger). See also the paper by Brainerd and Edwards [1966] and
Paterson [1983]..

In Theorem 1, the Haar measure plays a special role. It turns out that
L(E) is stable in the sense that if µ ∈ L(E) then µSθ ∈ L(E) for all θ ∈ X. It
is also irreducible, that is it does not contain any stable sub-band different
from L(E) or {0}.

Even on the line, we do not know whether there exist stable irreducible
band other than the space of finite signed measures dominated by the Lebesgue
measure or the band of finite signed purely atomic measures.

This last band arises by considering R as a discrete group, with Haar
measure giving mass 1 to each point. It is covered by Theorem 1. If one takes
a P that is constituted by a purely atomic part and a part dominated by
the Lebesgue measure, then there are transitions satisfying the assumptions
of Theorem 1, but not the conclusion. One obtains such a T by convoluting
the absolutely continuous part with some measure m1 and the discrete part
with another measure m2.

6. Cylinder measures
Let X be a locally convex vector space. Cylinder measures on X can be

defined as follows. (See L. Schwartz [1973].)
Let C be the class of all closed linear subspaces of X that have finite

codimension. If F ∈ C the quotient X/F is finite dimensional and there is
a canonical projection ΠF of X into X/F . If G ∈ C and G ⊂ F , there is a
canonical projection ΠG,F of X/G onto X/F and ΠF = ΠGΠG,F .

Definition 1. A cylinder measure µ on X is a collection {µF ;F ∈ C} of
ordinary (σ-additive) finite signed measures with µF on X/F and satisfying
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µF = µGΠG,F for all G,F in C with G ⊂ F . A cylinder probability is a
cylinder measure where all the µF are probability measures.

Cylinder probabilities can also be defined differently as follows. Let g be
a real valued function defined on X.

Call g an F -invariant function if g(x1) = g(x2) whenever x1 − x2 ∈ F .
Clearly such a function can be obtained by a composition x; (xΠF)γ where
γ is defined on X/F . Let BF be the space of all functions defined in this way
for γ a bounded Borel function on X/F . Let B = U{BF ;F ∈ C}.

Definition 2. A cylinder probability µ on X is positive linear functional µ
defined on B, such that 〈µ, 1〉 = 1 and such that, if F ∈ C, the restriction of
µ to BF is σ-smooth.

Definition 1 and 2 are obviously equivalent. Let X′ be the topological dual
of X and let X

′∗ be the algebraic dual of X′. It is a theorem of Bochner [1947]
that every cylinder probability on X arises from a σ-additive probability
on X

′∗ equipped with the smallest σ-field that makes the elements of X′

measurable. Conversely a σ-additive probability on X
′∗ for that σ-field yields

a cylinder probability on X. Note that our projections ΠF of X onto X/F
admit uniquely defined extensions, projections of X

′∗ onto X/F . In that
sense, an experiment given by cylinder measures on X is equivalent to one
given by σ-additive measures on X

′∗.

7. A convolution theorem for cylinder measures
Consider two locally convex spaces X and Y and a continuous map τ

from X into Y.
On X let P be a cylinder probability. Let Q be a cylinder probability on

Y. Let E be the experiment E = {PSθ; θ ∈ X} and let F = {QSθτ ; θ ∈ X}.
Let us say that E is projection dominated if for each F ∈ C the image

PΠF on X/F is dominated by the Lebesgue measure of X/F .
We aim to prove the following theorem.

Theorem 1. Let E and F be as described. Assume that E is projection
dominated and stronger than F . Then there is a cylinder measure m on Y
such that

Q = (Pτ ) ∗m
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The proof is long and somewhat complex. We shall only sketch what it
involves. Possible steps are as follows

a) Consider L(E) with E projection dominated. Then, for F ∈ C, the
projection of L(E) by ΠF is the entire space L(X/F ) of finite signed
measures dominated by the Lebesgue measure of X/F .

b) Since E is stronger than F there exists a transitionK from L(E) to L(F)
such that PSθK = QSθτ for all θ ∈ X and such that SθKS−θτ = K
for all θ ∈ X.

(See Theorem 1, Section 4).

This K may not be uniquely defined, even if it is a convolution. We
shall assume from now on that a particular K has been selected.

c) Let C2 be the family of closed subspaces of Y that have finite codimen-
sion in Y. Let ΠH be the canonical projection of Y onto Y/H. Let K
be as in (b). Suppose that for every H ∈ C2 and µ ∈ L(E) the images
µKΠH have the form µKΠH = (µτΠH)∗mH where mH is some proba-
bility measure on Y/H. Then µK = (µτ )∗m for a cylinder probability
m on Y.

d) Assertion (c) shows that it will be enough to prove the theorem for
the case where Y is finite dimensional and the map τ is onto. By
convoluting PK with a Gaussian N (0, σ2I) on Y (finite dimensional),
one sees that it is possible without loss of generality to assume that Q
is dominated by the Lebesgue measure of Y .

From now on we assume that Y is finite dimensional, that τ is onto and
that F = {x : x ∈ X, xτ = 0}. Furthermore Q has been convoluted
with a small Gaussian measure.

The space X can be written as a direct sum, or cartesian product of F
with a subspace of X isomorphic to X/F . We shall just chose such a
subspace and still call it X/F . (This is to avoid an excess of notation).

e) Let V be the subspace of M(E) formed by elements ϕ ∈ M(E) such
that ϕ = Sθϕ for all θ ∈ F and such that ‖Sβϕ−ϕ‖ tends to zero if β
tends to zero in X/F . It is a vector lattice. Consider the experiment
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D = {P ∗Sβ ; β ∈ X/F} where P ∗ is the restriction of P to V . It would
be enough to show that D is equivalent to {PΠFS

β; β ∈ X/F}.
Remark that if G ∈ G , G ⊂ F decreases the experiments {PΠGS

β ; β ∈
X/F} = E(G) converge to {PSβ ; β ∈ X/F}. Thus, for any compact
C ⊂ X/F and any ε > 0 there is a G ∈ G, G ⊂ F such that for
parameter sets restricted to C

δ(E(G)C ,DC) < ε.

f) Let F be as specified and let G ∈ C be such that G ⊂ F . Call G-F -
shuffle an operation T carried out as follows.

One take a finite partition of unity {uj; j ∈ J} formed by elements
uj ∈ BG and, [µ ◦ uj] denoting the measure that has density uj with
respect to µ, one write µT =

∑
(µ◦uj)Sθj for points θj ∈ F . For a given

partition of unity and for given θj’s, this is a positive linear operation
on cylinder measures on X.

One can show that if µi are cylinder probabilities on X such that the
µiΠG are dominated by the Lebesgue measure of X/G, then for every
ε > 0 there is a G-F -shuffle T such that

‖µ1ΠG − (µ2T )ΠG‖ < ε.

A G-F -shuffle leaves all the elements of V invariant. Thus it does not
change the projections on X/F .

g) Given G ∈ C, G ⊂ F , using a compactness argument and parts (a) and
(f) one can show that if µ ∈ L(E), there is a ν ∈ L(E) such that µ and
ν agree on V and such that νΠG is the product of µΠF by a certain
probability measure on the complement of X/F in X/G.

h) The experiment D is unchanged if one replaces the restriction of P to
V by the restriction to a lattice that contains both V and a space BG,
G ∈ G, G ⊂ F .

i) The combination of (e) and (h) implies that D is equivalent to {PΠFS
β ; β ∈

X/F}.
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It should be possible to obtain a simpler proof of Theorem 1 of this section
by “lifting” the elements of V that are continuous under shift as in Section
5. However, the necessary argument keeps escaping us.

8. A theorem of P.W. Millar
Millar [1985] uses the situation described in Section 7. However, he uses

linear maps ψi, i = 1, 2 where ψ1 maps X into a space X̂ and ψ2 maps Y
into a space Ŷ in such a way that Pψ1 and Qψ2 become Radon measures on
X̂ and Ŷ respectively.

That his result can be obtained from Theorem 1, Section 7 is implied by
the following lemma in which R is the image by τ of P on Y or Ŷ as the case
may be.

Lemma 1. Let R and M be cylinder measures on Y (resp Ŷ), suppose that
R ∗M is a Radon measure on Y (resp Ŷ). Then there is a z in the algebraic
dual Y ′∗ of the dual Y ′ of Y (resp: algebraic dual of the dual of Ŷ) such that
RSz and MS−z are both Radon measures on Y (resp Ŷ).

This lemma is classical. It is an expression of Paul Lévy’s principle:
Convolution decreases concentration.

One cannot avoid the z ∈ Y ′∗ because (RSz)∗(MS−z) = R∗M . However
one can take z = 0 if, for instance, R is symmetric around zero, or Radon on
Y.

9. Final remarks.

Remark 1. Theorem 1, Section 7 uses the condition that all projections
PΠF , F ∈ C are dominated by the Lebesgue measure of X/F . It should
be noted that this is a condition that depends on the topology used on X.
For instance take for X the space of sequences x = {xn} where xn tends to
a limit as n → ∞. It can be given the norm ‖x‖ = supx |xn|, or it can be
given the topology of coordinatewise convergence: xν = {xν,n} converges to
x0 = {x0,n} if xν,n → x0,n for each n.

Let p be a probability measure on the line. Suppose that it is abso-
lutely continuous with respect to Lebesgue measure, has compact support
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and expectation zero. If Y1, Y2, . . . , Yn, . . . i.i.d. with distribution p, let
Xn = 1

n

∑n
j=1 Yj. Let P be the distribution on X where the coordinates

of X have the distribution of X1, X2, . . .. Then P is a cylinder probability
on X for either topology. However P satisfies the projection domination of
Theorem 1 for the coordinatewise convergence of X, but not for the topology
induced by the norm. To see this, note that if P is shifted by x ∈ X then
almost all sample path converge to limxn. That is continuous for the norm.

It follows from this that the conditions of Theorem 1, Section 7 need
further investigation.

Remark 2. The projection domination of Theorem 1, Section 7, cannot
be entirely omitted. An example is as follows. Let X be R

2 with coordinates
denoted x and y. Let C be the circle C = {(x, y); x2 + y2 = 1}. Take on C a
probability measure P dominated by the measure arc length on C . Take it
so that it projects on the x-axis on the measure that has density [1 − |x|]+
with respect to the Lebesgue measure on the line. To do this it is enough to
take a probability measure that has density proportional to [1−|x|]+√1 − x2

with respect to the arc length measure.
Now the shifts {PS(x,y), (x, y) ∈ R

2} give an experiment E that is perfect
in the sense that if (x1, y1) 6= (x2, y2) then PS(x1,y1) and PS(x2,y2) are disjoint.
The projections on the x-axis give an experiment F1 = {Q1S

x; x ∈ R} where
Q1 has density [1 − |x|]+ with respect to the Lebesgue measure.

Now let F = {QSx; x ∈ R} where Q is uniform on [−1/2,+1/2]. (To be
consistent with previous notation, we should write QS(x,y)τ with (x, y)τ = x).
This is certainly weaker than E , since E is perfect. However, there is no way
Q could be obtained as Q = Q1 ∗M for some probability measure M , since
the variances and the ranges do not allow this. On the contrary, with the
particular choice of P , we have Q1 = Q ∗Q.

It was not obvious at first sight that such misbehavior could not arise
under the conditions of Theorem 1, Section 7.

Remark 3. The sketch of proof used in Section 7 shows that Theorem
1 of that section is not really very far from Theorem 5.2 of van der Vaart
[1991].

Remark 4. Theorem 1 of Section 7 has a remarkable consequence as
follows. Let X, Y , τ , P and Q be as in Section 7, Theorem 1. Consider two
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other locally convex spaces X1 and Y1. Let ϕ be a continuous linear map
from X to X1. Let ψ be a continuous linear map from Y to Y1. Finally let
ω be a continuous linear map from X1 to Y1. Assume that ϕω = τψ.

In this situation, one obtains two experiments. One of them is E1 =
{P1S

θϕ; θ ∈ X} where P1 is the image Pϕ on X1. The other is F1 =
{Q1S

θτψ; θ ∈ X}.
It follows from Theorem Section 7 that if E is projection dominated and

stronger than F , then E1 is projection dominated and stronger than F1. If
one could prove this directly without appealing to Theorem 1, Section 7,
then the theorem itself would be immediate.

Remark 5. There are many situations in which one obtains limiting
experiments that are not Gaussian, but where the “natural” shifts do not
satisfy the conditions of Theorem 1, Section 7. See for instance Prakasa
Rao [1968] and Ibragimov and Has’minskii [1981]. In the LAMN cases of
Jeganathan [1981] one obtain transitions that are conditionally representable
by convolution.

For some other cases where the convolution result may be applicable, see
Le Cam [1975] or Chapter 8 Section 5, Proposition 7 of Le Cam [1986]. The
experiment considered there arises by looking at extreme values of a sequence
of i.i.d. variables. A multitude of other cases can be obtained from the stable
processes studied by C. Hesse [1991].
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