E X A M P L E A Let X_1, \ldots, X_n be a random sample from a normal distribution having known variance σ^2 . Consider two simple hypotheses:

$$H_0: \mu = \mu_0$$
$$H_A: \mu = \mu_1$$

where μ_0 and μ_1 are given constants. Let the significance level α be prescribed. The Neyman-Pearson Lemma states that among all tests with significance level α , the test that rejects for small values of the likelihood ratio is most powerful. We thus calculate the likelihood ratio, which is

$$\frac{f_0(\mathbf{X})}{f_1(\mathbf{X})} = \frac{\exp\left[\frac{-1}{2\sigma^2}\sum_{i=1}^n (X_i - \mu_0)^2\right]}{\exp\left[\frac{-1}{2\sigma^2}\sum_{i=1}^n (X_i - \mu_1)^2\right]}$$

since the multipliers of the exponentials cancel. Small values of this statistic correspond to small values of $\sum_{i=1}^{n} (X_i - \mu_1)^2 - \sum_{i=1}^{n} (X_i - \mu_0)^2$. Expanding the squares, we see that the latter expression reduces to

$$2n\overline{X}(\mu_0 - \mu_1) + n\mu_1^2 - n\mu_0^2$$

Now, if $\mu_0 - \mu_1 > 0$, the likelihood ratio is small if \overline{X} is small; if $\mu_0 - \mu_1 < 0$, the likelihood ratio is small if $\overline{X_{\mu\nu}}$ arge. To be concrete, let us assume the latter case. We then know that the likelihood ratio is a function of \overline{X} and is small when \overline{X} is large. The Neyman-Pearson lemma thus tells us that the most powerful test rejects for $\overline{X} > x_0$ for some x_0 , and we choose x_0 so as to give the test the desired level α . That is, x_0 is chosen so that $P(\overline{X} > x_0) = \alpha$ if H_0 is true. Under H_0 in this example, the null distribution of \overline{X} is a normal distribution with mean μ_0 and variance σ^2/n , so x_0 can be chosen from tables of the standard normal distribution. Since

$$P(\overline{X} > x_0) = P\left(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} > \frac{x_0 - \mu_0}{\sigma/\sqrt{n}}\right)$$

we can solve

$$\frac{x_0 - \mu_0}{\sigma / \sqrt{n}} = z(\alpha)$$

for x_0 in order to find the rejection region for a level α test. Here, as usual, $z(\alpha)$ denotes the upper α point of the standard normal distribution; that is, if Z is a standard normal random variable, $P(Z > z(\alpha)) = \alpha$.

This example is typical of the way that the Neyman-Pearson Lemma is used. We write down the likelihood ratio and observe that small values of it correspond in a one-to-one manner with extreme values of a test statistic, in this case X. Knowing the null distribution of the test statistic makes it possible to choose a critical level that produces a desired significance level α .