We have

$$
\begin{gathered}
R=g(I)=\frac{V_{0}}{I} \\
\left.g^{\prime}\left(\mu_{I}\right)=-\frac{V_{0}}{\mu_{I}^{2}} \delta \overline{\overline{\overline{<\pi}}}_{I}\right)=\frac{2 V_{0}}{\mu_{I}^{3}}
\end{gathered}
$$

Thus,

$$
\begin{aligned}
\mu_{R} & \approx \frac{V_{0}}{\mu_{I}}+\frac{V_{0}}{\mu_{I}^{3}} \sigma_{I}^{2} \\
\sigma_{R}^{2} & \approx \frac{V_{0}^{2}}{\mu_{I}^{4}} \sigma_{I}^{2}
\end{aligned}
$$

We see that the variability of R depends on both the mean level of I and the variance of I. This makes sense, since if I is quite small, small variations in I will result in large variations in $R=V_{0} / I$, whereas if I is large, small variations will not affect R as much. The second-order correction factor for μ_{R} also depends on μ_{I} and is large if μ_{I} is small. In fact, when I is near zero, the function $g(I)=V_{0} / I$ is quite nonlinear, and the linearization is not a good approximation.

E X A M P L E B This example examines the accuracy of the approximations using a simple test case. We choose the function $g(x)=\sqrt{x}$ and consider two cases: X uniform on $[0,1]$, and X uniform on $[1,2]$. The graph of $g(x)$ in Figure 4.9 shows that g is more nearly linear in the latter case, so we would expect the approximations to work better there.

Let $Y=\sqrt{X}$; because X is uniform on $[0,1]$,

$$
E(Y)=\int_{0}^{1} \sqrt{x} d x=\frac{2}{3}
$$

FIGURE 4.9 The function $g(x)=\sqrt{x}$ is more nearly linear over the interval [1, 2] than over the interval $[0,1]$.

