THEOREM A

Suppose that $U=a+\sum_{i=1}^{n} b_{i} X_{i}$ and $V=c+\sum_{j=1}^{m} d_{j} Y_{j}$. Then

$$
\operatorname{Cov}(U, V)=\sum_{i=1}^{n} \sum_{j=1}^{m} b_{i} d_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

This theorem has many applications. In particular, since $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$,

$$
\begin{aligned}
\operatorname{Var}(X+Y) & =\operatorname{Cov}(X+Y, X+Y) \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

More generally, we have the following result for the variance of a linear combination of random variables.

COROLLARY A

$\operatorname{Var}\left(a+\sum_{i=1}^{n} b_{i} X_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i} b_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$.

If the X_{i} are independent, then $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for $i \neq j$, and we have another corollary.

COROLLARY B

$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$, if the X_{i} are independent.

Corollary B is very useful. Note that $E\left(\sum X_{i}\right)=\sum E\left(X_{i}\right)$ whether or not the X_{i} are independent, but it is generally not the case that $\operatorname{Var}\left(\sum X_{i}\right)=\sum \operatorname{Var}\left(X_{i}\right)$.

EXAMPLE B Finding the variance of a binomial random variable from the definition of variance and the frequency function of the binomial distribution is not easy (try it). But expressing a binomial random variable as a sum of independent Bernoulli random variables makes the computation of the variance trivial. Specifically, if Y is a binomial random variable, it can be expressed as $Y=X_{1}+X_{2}+\cdots+X_{n}$, where the X_{i} are independent Bernoulli random variables with $P\left(X_{i}=1\right)=p$. We saw earlier (Example A in Section 4.2) that $\operatorname{Var}\left(X_{i}\right)=p(1-p)$, from which it follows from Corollary B that $\operatorname{Var}(Y)=n p(1-p)$.

EXAMPLE C Random Walk

A drunken walker starts out at a point x_{0} on the real line. He ta ${ }_{\text {th }} X_{1}$, which is a random variable with expected value μ and vari $\sqrt{2}$, and his position

