To find the value of n that maximizes L_{n}, consider the ratio of successive terms, which after some algebra is found to be

$$
\frac{L_{n}}{L_{n-1}}=\frac{(n-t)(n-m)}{n(n-t-m+r)}
$$

This ratio is greater than 1, i.e., L_{n} is increasing, if

$$
\begin{aligned}
(n-t)(n-m) & >n(n-t-m+r) \\
n^{2}-n m-n t+m t & >n^{2}-n t-n m- \\
m t & >n r \\
\frac{m t}{r} & >n
\end{aligned}
$$

Thus, L_{n} increases for $n<m t / r$ and decreases for $n>m t / r$; so the value of n that maximizes L_{n} is the greatest integer not exceeding $m t / r$.

Applying this result to the data given previously, we see that the maximum likelihood estimate of n is $\frac{m t}{r}=\frac{20 \cdot 10}{4}=50$. This estimate has some intuitive appeal, as it equates the proportion of tagged animals in the second sample to the proportion in the population:

$$
\frac{4}{20}=\frac{10}{n}
$$

Proposition B has the following extension.

PROPOSITION C

The number of ways that n objects can be grouped into r classes with n_{i} in the i th class, $i=1, \ldots, r$, and $\sum_{i=1}^{r} n_{i}=n$ is

$$
\binom{n}{n_{1} n_{2} \cdots n_{r}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}
$$

Proof

This can be seen by using Proposition B and the multiplication principle. (Note that Proposition B is the special case for which $r=2$.) There are $\binom{n}{n_{1}}$ ways to choose the objects for the first class. Having done that, there are $\binom{n-n_{1}}{n_{2}}$ ways of choosing the objects for the second class. Continuing in this manner, there are

$$
\frac{n!}{n_{1}!\left(n-n_{1}\right)!} \frac{\left(n-n_{1}\right)!}{\left(n-n_{1}-n_{2}\right)!n_{2}!} \cdots \frac{\left(n-n_{1}-n_{2}-\cdots-n_{r-1}\right)!}{0!n_{r}!}
$$

choices in all. After cancellation, this yields the desired result.

