Overlap of fragments is important when trying to assemble them. Since W is a binomial random variable, the expected number of fragments that cover a given site is $N p=N L / G$, precisely the coverage.

We can also now answer this closely related question: How many sites do we expect to be entirely missed? We will calculate this using indicator random variables: let I_{x} equal 1 if site x is missed and 0 elsewhere. Then

$$
E\left(I_{x}\right)=1 \times P\left(I_{x}=1\right)+0 \times P\left(I_{x}=0\right)=e^{-N L / G}
$$

The number of sites that are not covered is

$$
V=\sum_{x=1}^{G} I_{x}
$$

and from the linearity of expectation

$$
\left.E(V)=\sum_{x=\sqrt{\bar{\sigma}}}^{\bar{\sigma}} I_{x}\right) \approx G e^{-N L / G}
$$

The length of the human genome is approximately $G=3 \times 10^{9}$, so with eight times coverage, we would expect about a million sites to be missed.

E X A M P L E B Coupon Collection
Suppose that you collect coupons, that there are n distinct types of coupons, and that on each trial you are equally likely to get a coupon of any of the types. How many trials would you expect to go through until you had a complete set of coupons? (This might be a model for collecting baseball cards or for certain grocery store promotions.)

The solution of this problem is greatly simplified by representing the number of trials as a sum. Let X_{1} be the number of trials up to and including the trial on which the first coupon is collected: $X_{1}=1$. Let X_{2} be the number of trials from that point up to and including the trial on which the next coupon different from the first is obtained; let X_{3} be the number of trials from that point up to and including the trial on which the third distinct coupon is collected; and so on, up to X_{n}. Then the total number of trials, X, is the sum of the $X_{i}, i=1,2, \ldots, n$.

We now find the distribution of X_{r}. At this point, $r-1$ of n coupons have been collected, so on each trial the probability of success is $(n-r+1) / n$. Therefore, X_{r} is a geometric random variable, with $E\left(X_{r}\right)=n /(n-r+1)$. (See Example B of Section 4.1.) Thus,

$$
\begin{aligned}
E(X) & =\sum_{r=1}^{n} E\left(X_{r}\right) \\
& =\frac{n}{n}+\frac{n}{n-1}+\frac{n}{n-2}+\cdots+\frac{n}{1} \\
& =n \sum_{r=1}^{n} \frac{1}{r}
\end{aligned}
$$

For example, if there are 10 types of coupons, the expected number of trials necessary to obtain at least one of each kind is 29.3.

