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Lecture 12: Subadditive Ergodic Theorem
Lecturer: Jim Pitman Scribe: Songhwai Oh <sho@eecs.berkeley.edu>

12.1 The Subadditive Ergodic Theorem

This theorem is due to Kingman and also known as Kingman’s subadditive ergodic theorem [4]. Let
(Ω,F , P, T ) be a probability space with a measurable map T : Ω → Ω which preserves P. The set Ω is
defined such that there is a two parameter family of random variables, (X(m,n), 0 ≤ m < n < ∞). Each
X(m,n) is integrable with respect to P for 0 ≤ m < n < ∞. If X(m,n) satisfies:

I. X(m + 1, n + 1) = X(m,n) ◦ T and

II. X(0, n) ≤ X(0,m) + X(m,n),

then there exists an a.s. limit

lim
n→∞

X(0, n)
n

= Y (12.1)

where Y ∈ [−∞,∞) and Y is T -invariant.

Notice that Y can be −∞. With additional assumptions as shown in Durrett [1], we can say more about Y .
For instance, if T is ergodic, then Y is a constant.

12.2 Proof

The following proof is due to Steele [5]. The first step is to consider

X̃(m,n) = X(m,n)−
n∑

k=m+1

X(k − 1, k). (12.2)

The first term is subaddtive while the second term is additive so X̃ satisfies the subadditivity conditions (I)
and (II). Since the subadditivity condition (II) holds,

X̃(0, 2) = X(0, 2)−X(0, 1)−X(1, 2)
≤ 0

X̃(0, 3) = X(0, 3)−X(0, 1)−X(1, 2)−X(2, 3)
≤ X(0, 3)−X(0, 2)−X(2, 3)
≤ 0

. . . (12.3)
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Thus X̃(·, ·) ≤ 0. Hence

X̃(0, n) = X(0, n)−
n∑

k=1

X(k − 1, k)

1
n

X̃(0, n) =
1
n

X(0, n)− 1
n

n∑
k=1

X(k − 1, k)

1
n

X(0, n) =
1
n

X̃(0, n) +
1
n

n∑
k=1

X(k − 1, k)

1
n

X(0, n) =
1
n

X̃(0, n) +
1
n

n−1∑
k=0

X(0, 1) ◦ T k. (12.4)

By Birkhoff’s ergodic theorem the last sum in (12.4) converges a.s. to a limit E(X(0, 1)|I), where I is the
T -invariant σ-field. So it is enough to show that X̃(0, n)/n has an a.s. limit and, without loss of generality,
we can assume X(·, ·) ≤ 0.

Lemma 12.1 Let Y = lim infn→∞
1
nX(0, n) where X(m,n) is defined as in the theorem. Then Y is a.s.

invariant, i.e. Y = Y ◦ T a.s.

Proof: Observe that

X(0, n + 1)
n + 1

=
n

n + 1
X(0, n + 1)

n

≤ n

n + 1

{
X(0, 1)

n
+

X(0, n) ◦ T

n

}
→ X(0, n) ◦ T

n
(12.5)

since n
n+1 → 1 and X(0,1)

n → 0. Thus

lim inf
n→∞

X(0, n)
n

≤ lim inf
n→∞

X(0, n) ◦ T

n
Y ≤ Y ◦ T for all ω ∈ Ω. (12.6)

Then for any rational α, we have (Y > α) ⊂ (Y ◦ T > α) = T−1(Y > α). But P (Y > α) = P (Y ◦ T > α) so
(Y > α) = (Y ◦ T > α) a.s. for all rational α. Hence Y = Y ◦ T a.s. �

Now fix ε > 0 and M > 0 and let YM = Y ∨(−M) where Y is defined in Lemma 12.1 and (x∨y) = max(x, y).
Define two sets as following:

BM (L) =
{
ω ∈ Ω : X(0, l)(ω) > l(YM (ω) + ε) for all 1 ≤ l ≤ L

}
GM (L) = BM (L)C

=
{
ω ∈ Ω : ∃l ≤ L s.t. X(0, l)(ω) ≤ l(YM (ω) + ε)

}
.

We then do a recursive cutting up of the orbit for each ω ∈ Ω. We decompose [0, n) into three types
of sets as shown in Figure 12.1. The set E is a collection of singletons σj where T σj (ω) ∈ BM (L) for
1 ≤ j ≤ v. The set F is a collection of intervals [ai, ai + li) for 1 ≤ i ≤ u such that T ai(ω) ∈ GM (L), i.e.
X(0, li) ◦T ai(ω) ≤ li(YM (T ai(ω))+ ε). Lastly, the set H contains the remaining singletons in [n−L, n). Let
w = |H|. Notice that u, v, w are r.v.’s.
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Figure 12.1: An orbit of ω, {ω, T (ω), T 2(ω), . . .}

Using the subadditivity,

X(0, n) ≤
u∑

i=1

X(ai, ai + li) +
v∑

j=1

X(σj , σj+1) +
n∑

s=n−w

X(s, s + 1)

≤
u∑

i=1

X(ai, ai + li)

≤
( u∑

i=1

li

)(
YM + ε

)
≤ YM

( u∑
i=1

li

)
+ nε, (12.7)

where the second inequality holds since the last two summations are less than 0 (recall that X(·, ·) ≤ 0).

On the other hand for all ω,

u(ω)∑
i=1

li(ω) ≤ n−
n∑

i=1

1BM (L) ◦ T i(ω)− L. (12.8)

So by Birkhoff’s ergodic theorem,

lim inf
n→∞

1
n

u∑
i=1

li ≤ 1− E(1BM (L)|I)

= 1− P(BM (L)|I)
= P(GM (L)|I). (12.9)

Now because of the way we have defined BM and GM , for any fixed M > 0, P(GM (L)|I) ↑ 1 as L → ∞.
Combining it with (12.7) gives

lim sup
n→∞

1
n

X(0, n) ≤ YMP(GM (L)|I) + ε

a.s.−→ YM + ε as L →∞
−→ Y as M →∞, ε → 0 (12.10)

and the proof is complete. �
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12.3 Examples

12.3.1 Birkhoff’s Ergodic Theorem

If X(m,n) =
∑n−1

j=m X ◦ T j where X is an integrable r.v., then X(0, n) = X(0,m) + X(m,n) satisfying the
conditions for the subadditive ergodic theorem. Then the conclusion from the subadditive ergodic theorem
is exactly the same as that of Birkhoff’s ergodic theorem.

12.3.2 Percolation

Consider an integer lattice Zd in which edges x, y ∈ Zd are connected if |x− y| = 1 (see Figure 12.2). Each
edge e is associated with a r.v. Te. Te is the time taken for a message to travel across the edge e. Let X(0, n)
be the shortest time taken for a message to travel from ~0 to n~v, where ~v = (1, 0, 0, . . . , 0). Then

X(0, n) = min
path ~0→n~v

∑
e∈path

Te (12.11)

and
X(m,n) = min

path m~0→n~v

∑
e∈path

Te. (12.12)

Since there may be a minimum path from ~0 to n~v without visiting m~v,

X(0, n) ≤ X(0,m) + X(m,n). (12.13)

Now assume Te are independent r.v.’s with an identical distribution. So Ω = {Te, e ∈ E}, where E is a set
of edges in Zd. Define a map T : Ω → Ω such that if ω = (te, e ∈ E) then T (ω) = (te+ , e ∈ E), where e+

is the edge on the right of e with the same orientation (see Figure 12.2). The subadditive ergodic theorem
tells that if T is ergodic then there is a constant limit Y = limn→∞

X(0,n)
n , meaning that a message moves

at a constant speed. For more about percolation, see Grimmett [2].

Figure 12.2: Z2 lattice
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12.3.3 Longest Increasing Subsequence

The problem of studying the behavior of the longest increasing subsequence of a random permutation is
known as a problem of Ulam and Hammersley[3] was first to study this problem analytically using the
subadditive ergodic theorem.

Let σn be a permutation of {1, 2, . . . , n} and assume that all n! permutations are equally likely. An increasing
subsequence of a permutation σn is a subsequence (σ(k1), σ(k2), . . . , σ(kl)) such that 1 ≤ k1 < k2 < · · · <
kl ≤ n and σn(k1) < σn(k2) < · · · < σn(kl), where l is the length of the increasing subsequence. Let Ln

be the length of the longest increasing subsequence. For example, if we are given a set {1, 2, 3, 4, 5} and
its permutation σn(1) = 1, σn(2) = 3, σn(3) = 5, σn(4) = 2, σn(5) = 4, then increasing subsequences are
(1, 2, 4), (1, 3, 5), (1, 3, 4), (1, 2), . . .. Thus L5 = 3.

The main difficulties with this problem is that it is hard to give any reasonable expression for either ELn

or V ar(Ln) and it is nontrivial to find the asymptotic behavior of Ln as n tends infinity. Hammersley [3]
has shown the existence of an a.s. limit of Ln/

√
n by ingeniously transforming the problem into a unit rate

Poisson process on a two dimensional plane and using the subadditive ergodic theorem. Later it has been
shown that limn→∞ Ln/

√
n = 2 a.s. See Durrett [1] for the references on this topic.

Instead of working with random permutations, we may as well work with a sequence of i.i.d. r.v.’s with a
continuous distribution. Let X1, X2, . . . be a sequence of i.i.d. r.v.’s with uniform distribution on [0, 1]. Let
L̂n be the length of the longest increasing subsequence in X1, X2, . . . , Xn. Then L̂n =d Ln since there is no tie
a.s. (each Xn has a continuous distribution) and the ranks of X1, X2, . . . , Xn corresponds to a permulation
of {1, 2, . . . , n}. By using i.i.d. r.v.’s we have randomized the vertical scale as shown in Figure 12.3.

Figure 12.3: An instance of X1, X2, . . . , X7 ∼ Unif [0, 1] i.i.d. and its longest increasing subsequence (in
circle), L7 = 4

Now consider a Poisson point process in (0,∞)× (0,∞) with unit intensity per unit area. See Figure 12.4.
Take an k × k box. Let M∗

k be the length of the longest inceasing subsequence of points in the k × k box.
Let Nk be the number of points in the k × k box. Say Nk = n. The vertical values are i.i.d. uniform on
[0, k] like the previous example with uniform i.i.d r.v.’s. Hence (M∗

k |Nk = n) = Ln in distribution. By
superadditivity, M∗

k+m ≥ M∗
k + M∗

m ◦ T k, where T k shifts the origin from (0, 0) to (k, k) and preserves the
measure (see Figure 12.4). Now apply the subadditive ergodic theorem to −M∗

n and conclude that

M∗
k

k

a.s.−→ Y ∈ [0,∞], (12.14)

where Y is invariant relative to T k and since T is ergodic Y is constant.

Lastly, let’s understand the relationship between Ln and
√

n. We have seen that given Nk = n, M∗
k behaves

like Ln. Now notice that for large k, Nk = n is approximately k2, the average number of points in k × k
box, so n ≈ k2. Hence M∗

k /k ≈ Ln/
√

n.
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Figure 12.4: A longest increasing subsequence from a Poisson process. The solid line shows the longest
increasing subsequence in M∗

k+m while the dotted line shows the longest increasing subsequence in M∗
k and

M∗
m ◦ T k.
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