Stat205A: Probability Theory (Fall 2002)

Lecture: 23-24

Recurrence and Transience of Random Walks

Lecturer: James W. Pitman

Scribe: Tianbing Chen ctbing@math.berkeley.edu

In this lecture, let X_1, X_2, \cdots be i.i.d. and $S_n = X_1 + X_2 + \cdots + X_n$, $S_n = 0$. S_n is a random walk.

Theorem 23.1 Let X_1, X_2, \cdots be *i.i.d.*, $\mathcal{F}_n = \sigma(X_1, \cdots, X_n), \tau$ is a stopping time. Conditional on $\tau < \infty, S_{\tau}, S_{\tau+1}, \cdots$ is a $R.W.^1$ started at S_{τ} . *i.e.* $X_{\tau+1}, X_{\tau+2}, \cdots$ are *i.i.d.* and independent of \mathcal{F}_{τ} .

Proof Sketch: Conditional on τ

$$\mathbb{P}(\tau = n, (X_1, \cdots, X_{\tau}) \in A, (X_{\tau+1}, \cdots, X_{\tau+m}) \in B)$$

= $\mathbb{P}(\tau = n, (X_1, \cdots, X_n) \in A, (X_{n+1}, \cdots, X_{n+m} \in B)$
= $\mathbb{P}(\tau = n, (X_1, \cdots, X_n) \in A) \mathbb{P}((X_1, \cdots, X_m) \in B)$

Summing over n gets the desired result.

Definition 23.1 The number $x \in \mathbb{R}$ is said to be a recurrent value for the R.W. S_n if for every $\epsilon > 0$, $\mathbb{P}(S_n \in (x \pm \epsilon)^2) = 1$.

Definition 23.2 We say F is Lattice with period d if $F(\mathbb{Z}d) = 1$ and d is the greatest positive number with this property. Otherwise, there is no such d, and it's called **Non-lattice**.

Example 23.1 $F = \frac{1}{2}(\delta_e + \delta_1)$ is non-lattice.

Theorem 23.2 If R. W. S_n is lattice with range $\mathbb{Z}d$ as above, then either 1) or 2)

- 1) each $x \in \mathbb{Z}d$ is recurrent,
- 2) each $x \in \mathbb{Z}d$ is transient.

Proof Sketch: Just Markov chain theory.

Definition 23.3 *y* is said to be **possible** if for every open interval *I*, there exists *k*, s.t. $\mathbb{P}(S_k \in I) > 0$.

Lemma 23.3 If x is recurrent and y is possible, then x-y is recurrent.

¹random walk ² $x \pm \epsilon := [x - \epsilon, x + \epsilon]$

^{. [.. ./.. .]}

Proof Sketch: Take $\epsilon > 0$, then there exists k, s.t. $\mathbb{P}(|S_k - y| < \epsilon) > 0$. From **Theorem 23.1**

$$\mathbb{P}(|S_n - x| < 3\epsilon, f.o.^3) \geq \mathbb{P}(|S_k - y| < \epsilon, |S_k + n) - S_k - (x - y)| < 2\epsilon, f.o.)$$
$$= \mathbb{P}(|S_k - y| < \epsilon) \mathbb{P}(S_n - (x - y)| < 2\epsilon, f.o.)$$

If $\mathbb{P}(S_n - (x - y)| < 2\epsilon, f.o.) > 0$, then $\mathbb{P}(|S_n - x| < 3\epsilon, f.o.) > 0$, which is a contradiction!

Theorem 23.4 If R. W. S_n is non-lattice, then similarly either 1) or 2)

- 1) each $x \in \mathbb{R}$ is recurrent,
- 2) each $x \in \mathbb{R}$ is transient.

Proof Sketch: Let $G = \{x \in \mathbb{R} : x \text{ is recurrent}\}$. Suppose $G \neq \emptyset$, then

- It is clear that G^c is open, so G is closed⁴.
- From the above lemma, if $x \in G$ and $y \in G$, then $x y \in G$. Therefore, G is a group.

Since G is a closed subgroup of \mathbb{R} and the R.W. is non-lattice, it follows that $G=\mathbb{R}$.

Note: If $\mathbb{E}(X)$ is defined, finite and not 0, then the R.W. is transient (i.e. {recurrent points}= \emptyset) by S.L.L.N⁵.

Definition 23.4 U: potential measure. For any interval I, $\mathbb{U}(I) := \sum_{n} \mathbb{P}(S_n \in I) = \mathbb{E}(\sum_{n} \mathbf{1}_{(S_n \in I)})$.

Lemma 23.5 $\mathbb{P}(S_n \in (x \pm \epsilon/2) \text{ for some } n) \mathbb{U}(\pm \epsilon/2) \leq \mathbb{U}(x \pm \epsilon) \leq \mathbb{U}(\pm 2\epsilon)$

Proof Sketch: Let τ :=the first hit of $(x \pm \epsilon)$, then $S_{\tau+n} \in (x - \epsilon, x + \epsilon) \Rightarrow (S_{\tau+n} - S_{\tau}) \in (\pm 2\epsilon)$. Therefore from **Theorem 23.1**

$$\mathbb{U}(x \pm \epsilon) = \mathbb{E}[\text{the number of times n that } S_n \in (x \pm \epsilon)] \\ = \mathbb{E}[\text{the number of times n that}(S_{\tau+n} - S_{\tau}) \in (\pm \epsilon)] \\ \leq \mathbb{E}[\text{the number of times n that } S_n \in (\pm 2\epsilon)] \\ = \mathbb{U}(\pm 2\epsilon)$$

Let τ_1 :=the first hit of $(x \pm \epsilon/2)$. Use the same argument

$$\mathbb{P}(S_n \in (x \pm \epsilon/2) \text{ for some n}) \mathbb{U}(\pm \epsilon/2) = \mathbb{E}[\text{the number of times n that}(S_{\tau_1+n} - S_{\tau_1}) \in (\pm \epsilon/2)] \\ \leq \mathbb{E}[\text{the number of times n that } S_n \in (x \pm \epsilon)] \\ = \mathbb{U}(x \pm \epsilon)$$

Corollary 23.6 $\mathbb{U}(\pm k\epsilon) \leq (2k+1) \mathbb{U}(\pm \epsilon), \forall k \in \mathbb{N}.$

-

³finitely often

⁴topologically closed

⁵Strong Law of Large Numbers

Proof Sketch: Cover $(-k\epsilon, k\epsilon)$ with (2k+1) intervals of the form $(x \pm \epsilon/2)$. Use the fact that \mathbb{U} is a measure.

Proposition 23.7 Either $\mathbb{U}(I) < \infty$ for all bounded intervals I (transient case) or $\mathbb{U}(x \pm \epsilon) = \infty$ for all possible x and all $\epsilon > 0$.

Proof Sketch: Consider $\mathbb{U}(\pm \delta)$:

- 1) If $\mathbb{U}(\pm \delta) < \infty$ for some $\delta > 0$, then $\mathbb{U}(\pm k\delta) \le (2k+1)\mathbb{U}(\pm \delta) < \infty, \forall k \in \mathbb{N} \implies \mathbb{U}(I) < \infty$ for all bounded intervals I.
- 2) If $\mathbb{U}(\pm\delta) = \infty$ for all $\delta > 0$, then from **Lemma 23.5** $\mathbb{P}(S_n \in (x \pm \delta/2) \text{ for some n}) \ \mathbb{U}(\pm \delta/2) \leq \mathbb{U}(x \pm \delta) \implies \mathbb{U}(x \pm \delta) = \infty \text{ for all } \delta > 0 \text{ if x is possible.}$

Theorem 23.8 Either $\mathbb{U}(\pm 1) < \infty$ and no x is recurrent or $\mathbb{U}(\pm 1) = \infty$ and every possible x is recurrent.

Proof Sketch: If $\mathbb{U}(\pm 1) < \infty$, no x is recurrent by **Borel-Cantelli lemma**. The other way:

If S_n is in an interval I only finitely often, consider $\tau :=$ the **last** time that $S_n \in I$. **Careful**: τ is not a stopping time since $\{\tau = n\} = \{S_n \in I, S_{n+1} \in I, S_{n+2} \in I, \cdots\}$ $\{\tau = 0\} = \{S_n \in I, \text{ for all } n\}, \quad \{\tau = \infty\} = \{S_n \in I, i.o.\}.$

Since $\mathbb{U}(\pm 1) = \infty$ by assumption, we know that $\mathbb{U}(\pm \epsilon) = \infty$, $\forall \epsilon > 0$ by estimate: $\mathbb{U}(\pm k\epsilon) \leq (2k+1)\mathbb{U}(\pm \epsilon) \text{ for } k \geq \frac{1}{\epsilon}$. Let τ :=last time that the R.W. is in $(\pm \epsilon)$, then $\mathbb{P}(S_n \in (\pm \epsilon), f.o.) = \sum_n \mathbb{P}(\tau = n)$.

$$\begin{aligned} \{\tau = n\} &= \{S_n \in (\pm \epsilon)\} \cap \{S_{n+k} \not\in (\pm \epsilon), \ \forall \ k \ge 1\} \\ &\supset \{S_n \in (\pm \epsilon)\} \cap \{S_{n+k} - S_n \not\in (\pm 2\epsilon), \ \forall \ k \ge 1\} \end{aligned}$$

Therefore $\mathbb{P}(\tau = n) \ge \mathbb{P}(S_n \in (\pm \epsilon) \mathbb{P}(|S_k| \in 2\epsilon, \forall k \ge 1))$. Sum over n:

$$1 \ge \mathbb{P}(S_n \in \pm \epsilon, f.o.) \ge \mathbb{U}(\pm \epsilon) \mathbb{P}(|S_k| \ge 2\epsilon, \forall k \ge 1)$$

But $\mathbb{U}(\pm \epsilon) = \infty$, which forces the term $\mathbb{P}(|S_k| \ge 2\epsilon, \forall k \ge 1)$ to be 0. Rewrite what we have proved:

$$\mathbb{U}(\pm 1) = \infty \implies \mathbb{P}(|S_n| \ge \delta, \forall n \ge 1) = 0 \text{ for all } \delta > 0$$

Finish the argument:

$$\begin{split} \mathbb{P}(S_n \in (\pm \epsilon), \ f.o.) &= \mathbb{P}(\tau < \infty \text{ and } S_\tau \in (\pm \epsilon)) \\ &= \lim_{k \to \infty} \mathbb{P}(\tau < \infty \text{ and } S_\tau \in (\pm \epsilon(1 - \frac{1}{k}))) \\ &= \lim_{k \to \infty} \sum_{n=0}^{\infty} \mathbb{P}(S_n \in (\pm \epsilon(1 - \frac{1}{k})) \text{ and } S_{n+j} \notin (\pm \epsilon), \ \forall \ j \ge 1) \\ &\leq \lim_{k \to \infty} \sum_{n=0}^{\infty} \mathbb{P}(S_n \in \pm \epsilon(1 - \frac{1}{k})) \ \mathbb{P}(|S_j| \ge \frac{\epsilon}{k}, \ \forall \ j \ge 1) \\ &= 0 \quad since \ \mathbb{P}(|S_n| \ge \delta, \ \forall \ n \ge 1) = 0 \ for \ all \ \delta > 0. \end{split}$$

Key idea here: Think about the **last** time in the trip.

Theorem 23.9 (Chung-Fuchs Theorem) Suppose $\mathbb{E}|X_1| < \infty$.

- If $\mathbb{E}X_1 \neq 0$, then the R.W. is transient(by S.L.L.N.)
- If $\mathbb{E}X_1 = 0$, then all possible points are recurrent.

Proof Sketch: We'll show $\mathbb{U}(\pm 1) = \infty$ when $\mathbb{E}X_1 = 0$. We know

$$\begin{split} \mathbb{U}(\pm 1) &\geq \quad (\frac{1}{2k+1})U(\pm k) \\ &= \quad (\frac{1}{2k+1})\,\sum_{n=0}^{\infty}\mathbb{P}(S_n\in(\pm k)) \end{split}$$

Take $\epsilon > 0$, and choose k so that

$$\mathbb{P}(\frac{|S_n|}{n} < \epsilon) \geq \frac{1}{2}$$
 for all $n \geq k$ (by W.L.L.N. $^6)$

For $k \leq n \leq \frac{k}{\epsilon}$, $\mathbb{P}(|S_n| < k) \geq \frac{1}{2}$. Hence

 $^{^6\}mathrm{Weak}$ Law of Large Numbers

$$\begin{split} \sum_{n=0}^{\infty} \mathbb{P}(S_n \in (\pm 1)) &\geq (\frac{1}{2k+1}) \sum_{n=0}^{\infty} \mathbb{P}(S_n \in (\pm k)) \\ &\geq (\frac{1}{2k+1}) \sum_{k \leq n \leq \frac{k}{\epsilon}} \mathbb{P}(S_n \in (\pm k)) \\ &\geq (\frac{1}{2k+1}) \sum_{k \leq n \leq \frac{k}{\epsilon}} \frac{1}{2} \\ &\geq \frac{1}{2} \left(\frac{1}{2k+1}\right) \left(\frac{k}{\epsilon} - k\right) \\ &\geq \frac{1}{2} \left(\frac{1}{3k}\right) \left(\frac{k}{\epsilon} - k\right) \\ &\geq \frac{1}{6} \left(\frac{1}{\epsilon} - 1\right) \\ &\to \infty \quad as \epsilon \to 0. \end{split}$$