
Stat205A: Probability Theory (Fall 2002) Lecture: 23-24

Recurrence and Transience of Random Walks

Lecturer: James W. Pitman Scribe: Tianbing Chen ctbing@math.berkeley.edu

In this lecture, let X1, X2, · · · be i.i.d. and Sn = X1 + X2 + · · · + Xn, Sn = 0. Sn is a random
walk.

Theorem 23.1 Let X1, X2, · · · be i.i.d. , Fn = σ(X1, · · · , Xn), τ is a stopping time. Conditional
on τ < ∞, Sτ , Sτ+1, · · · is a R.W.1 started at Sτ . i.e. Xτ+1, Xτ+2, · · · are i.i.d. and independent of
Fτ .

Proof Sketch: Conditional on τ

P(τ = n, (X1, · · · , Xτ ) ∈ A, (Xτ+1, · · · , Xτ+m) ∈ B)

= P(τ = n, (X1, · · · , Xn) ∈ A, (Xn+1, · · · , Xn+m ∈ B)

= P(τ = n, (X1, · · · , Xn) ∈ A)P((X1, · · · , Xm) ∈ B)

Summing over n gets the desired result.

Definition 23.1 The number x ∈ R is said to be a recurrent value for the R.W. Sn if for every
ε > 0, P(Sn ∈ (x ± ε)2) = 1.

Definition 23.2 We say F is Lattice with period d if F (Zd) = 1 and d is the greatest positive
number with this property. Otherwise, there is no such d, and it’s called Non-lattice.

Example 23.1 F = 1
2 (δe + δ1) is non-lattice.

Theorem 23.2 If R.W. Sn is lattice with range Zd as above, then either 1) or 2)

1) each x ∈ Zd is recurrent,

2) each x ∈ Zd is transient.

Proof Sketch: Just Markov chain theory.

Definition 23.3 y is said to be possible if for every open interval I, there exists k, s.t.
P(Sk ∈ I) > 0.

Lemma 23.3 If x is recurrent and y is possible, then x−y is recurrent.

1random walk
2
x ± ε := [x − ε, x + ε]
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Proof Sketch: Take ε > 0, then there exists k, s.t. P(|Sk − y| < ε) > 0. From Theorem 23.1

P(|Sn − x| < 3ε, f.o.3) ≥ P(|Sk − y| < ε, |S(k + n) − Sk − (x − y)| < 2ε, f.o.)

= P(|Sk − y| < ε) P(Sn − (x − y)| < 2ε, f.o.)

If P(Sn − (x − y)| < 2ε, f.o.) > 0, then P(|Sn − x| < 3ε, f.o.) > 0, which is a contradiction!

Theorem 23.4 If R.W. Sn is non-lattice, then similarly either 1) or 2)

1) each x ∈ R is recurrent,

2) each x ∈ R is transient.

Proof Sketch: Let G={x ∈ R: x is recurrent}. Suppose G 6= ∅, then

• It is clear that Gc is open, so G is closed4.

• From the above lemma, if x ∈ G and y ∈ G, then x − y ∈ G. Therefore, G is a group.

Since G is a closed subgroup of R and the R.W. is non-lattice, it follows that G=R.

Note: If E(X) is defined , finite and not 0, then the R.W. is transient (i.e. {recurrent points}=∅)
by S.L.L.N5.

Definition 23.4 U: potential measure. For any interval I , U (I):=
∑

n P(Sn ∈ I) = E(
∑

n 1(Sn∈I)).

Lemma 23.5 P(Sn ∈ (x ± ε/2) for some n) U(±ε/2) ≤ U(x ± ε) ≤ U(±2ε)

Proof Sketch: Let τ :=the first hit of (x± ε), then Sτ+n ∈ (x− ε, x + ε) ⇒ (Sτ+n − Sτ ) ∈ (±2ε).
Therefore from Theorem 23.1

U(x ± ε) = E[the number of times n that Sn ∈ (x ± ε)]

= E[the number of times n that(Sτ+n − Sτ ) ∈ (±ε)]

≤ E[the number of times n that Sn ∈ (±2ε)]

= U(±2ε)

Let τ1:=the first hit of (x ± ε/2). Use the same argument

P(Sn ∈ (x ± ε/2) for some n) U(±ε/2) = E[the number of times n that(Sτ1+n − Sτ1
) ∈ (±ε/2)]

≤ E[the number of times n that Sn ∈ (x ± ε)]

= U(x ± ε)

Corollary 23.6 U(±kε) ≤ (2k + 1) U(±ε), ∀ k ∈ N.

3finitely often
4topologically closed
5Strong Law of Large Numbers
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Proof Sketch: Cover (−kε, kε) with (2k+1) intervals of the form (x ± ε/2). Use the fact that U

is a measure.

Proposition 23.7 Either U(I) < ∞ for all bounded intervals I (transient case) or U(x ± ε) = ∞
for all possible x and all ε > 0.

Proof Sketch: Consider U(±δ):

1) If U(±δ) < ∞ for some δ > 0, then
U(±kδ) ≤ (2k + 1)U(±δ) < ∞, ∀ k ∈ N =⇒ U(I) < ∞ for all bounded intervals I.

2) If U(±δ) = ∞ for all δ > 0, then from Lemma 23.5
P(Sn ∈ (x ± δ/2) for some n) U(±δ/2) ≤ U(x ± δ) =⇒ U(x ± δ) = ∞ for all δ > 0 if x is
possible.

Theorem 23.8 Either U(±1) < ∞ and no x is recurrent or U(±1) = ∞ and every possible x is
recurrent.

Proof Sketch: If U(±1) < ∞, no x is recurrent by Borel-Cantelli lemma.
The other way:
If Sn is in an interval I only finitely often, consider τ := the last time that Sn ∈ I.
Careful: τ is not a stopping time since {τ = n} = {Sn ∈ I, Sn+1 ∈ I, Sn+2 ∈ I, · · · }
{τ = 0} = {Sn ∈ I, for all n}, {τ = ∞} = {Sn ∈ I, i.o.}.

Since U(±1) = ∞ by assumption, we know that U(±ε) = ∞, ∀ ε > 0 by estimate:
U(±kε) ≤ (2k + 1)U(±ε) for k ≥ 1

ε
.

Let τ :=last time that the R.W. is in (±ε), then P(Sn ∈ (±ε), f.o.) =
∑

n P(τ = n).

{τ = n} = {Sn ∈ (±ε)} ∩ {Sn+k 6∈ (±ε), ∀ k ≥ 1}

⊃ {Sn ∈ (±ε)} ∩ {Sn+k − Sn 6∈ (±2ε), ∀ k ≥ 1}

Therefore P(τ = n) ≥ P(Sn ∈ (±ε) P(|Sk| ∈ 2ε, ∀ k ≥ 1). Sum over n:

1 ≥ P(Sn ∈ ±ε, f.o.) ≥ U(±ε) P(|Sk| ≥ 2ε, ∀ k ≥ 1)

But U(±ε) = ∞, which forces the term P(|Sk| ≥ 2ε, ∀ k ≥ 1) to be 0.
Rewrite what we have proved:

U(±1) = ∞ =⇒ P(|Sn| ≥ δ, ∀ n ≥ 1) = 0 for all δ > 0

Finish the argument:
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P(Sn ∈ (±ε), f.o.) = P(τ < ∞ and Sτ ∈ (±ε))

= lim
k→∞

P(τ < ∞ and Sτ ∈ (±ε(1 −
1

k
)))

= lim
k→∞

∞∑

n=0

P(Sn ∈ (±ε(1 −
1

k
)) and Sn+j 6∈ (±ε), ∀ j ≥ 1)

≤ lim
k→∞

∞∑

n=0

P(Sn ∈ ±ε(1 −
1

k
)) P(|Sj | ≥

ε

k
, ∀ j ≥ 1)

= 0 since P(|Sn| ≥ δ, ∀ n ≥ 1) = 0 for all δ > 0.

Key idea here: Think about the last time in the trip.

Theorem 23.9 (Chung-Fuchs Theorem) Suppose E|X1| < ∞.

• If EX1 6= 0, then the R.W. is transient(by S.L.L.N.)

• If EX1 = 0, then all possible points are recurrent.

Proof Sketch: We’ll show U(±1) = ∞ when EX1 = 0. We know

U(±1) ≥ (
1

2k + 1
)U(±k)

= (
1

2k + 1
)

∞∑

n=0

P(Sn ∈ (±k))

Take ε > 0, and choose k so that

P( |Sn|
n

< ε) ≥ 1
2 for all n ≥ k (by W.L.L.N. 6)

For k ≤ n ≤ k
ε
, P(|Sn| < k) ≥ 1

2 . Hence

6Weak Law of Large Numbers
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∞∑

n=0

P(Sn ∈ (±1)) ≥ (
1

2k + 1
)

∞∑

n=0

P(Sn ∈ (±k))

≥ (
1

2k + 1
)

∑

k≤n≤ k

ε

P(Sn ∈ (±k))

≥ (
1

2k + 1
)

∑

k≤n≤ k

ε

1

2

≥
1

2
(

1

2k + 1
) (

k

ε
− k)

≥
1

2
(

1

3k
) (

k

ε
− k)

≥
1

6
(
1

ε
− 1)

→ ∞ as ε → 0.


