Lecture 0 : Notation

STAT205 Lecturer: Jim Pitman

Scribe: Charless C. Fowlkes <fowlkes@eecs.berkeley.edu>

We will use the following notation

- \mathbb{Z} the integers
- \mathbb{Q} the rational numbers
- \mathbb{R} the real numbers
- \mathbb{R}^n product of n copies of \mathbb{R}
- \mathbb{P} probability measure
- \mathbb{E} expectation
- $\mathbf{1}_X$ indicator of X
- Var Variance
- $\mathcal{B}(\mathbb{R})$ the borel sigma field
- $\mathcal{G}, \mathcal{F}, \mathcal{H} \quad \mathrm{some \ other \ sigma \ fields}$
 - \mathbf{L}^2 the space of square integrable functions
- $X_n \xrightarrow{a.s.} X$ almost sure convergence
- $X_n \xrightarrow{\mathbb{P}} X$ convergence in probability
- $X_n \xrightarrow{\mathbf{L}^2} X$ convergence in \mathbf{L}^2
- $X \perp\!\!\!\perp_A Y$ conditional independence

Definitions will look like

Definition 0.1 We define one to equal 1

theorems like

Theorem 0.2 one and one is 1.

and proofs

Proof: one and one $= 1 \land 1 = 1$ and one $= 1 \land 1 = 1$

with the traditional \blacksquare denoting the end of the proof.