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Basic L2 Convergence Theorem and Kolmogorov’s Law of Large Numbers
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Theorem 8.1 (Basic L2 Convergence Theorem). [2, p. 63, (8.3)] Let X1 X2, . . . be independent
random variables with E(Xi) = 0 and E(X2

i ) = σ2
i < ∞, i = 1, 2, . . ., and Sn = X1 + X2 + · · · + Xn. If

∑∞
i=1 σ2

i < ∞, then Sn converges a.s. and in L2 to some S∞ with E(S2
∞) =

∑∞
i=1 σ2

i

Proof. First note that L2 convergence and existence of S∞ is implied by orthogonality of Xi’s: E(XiXj) =
0, i 6= j

E(S2
n) =

n
∑

i=1

σ2
i

E((Sn − Sm)2) =

n
∑

i=m+1

σ2
i → 0 as m, n → ∞

∴ Sn is Cauchy in L2. Since L2 is complete, there is a unique S∞ (up to a.s. equivalence) such that
Sn → S∞ in L2.

Turning to a.s convergence, the method is to show the sequence (Sn) is a.s. Cauchy. The limit of Sn

then exists a.s. by completeness of the set of real numbers. The same argument applies more generally to
martingale differences Xi [2, p. 252 (4.5) for p = 2]. Note that this method gives S∞ more explicitly, and
does not appeal to completeness of L2.

Recall that Sn is Cauchy a.s. means Mn := supp,q≥n |Sp − Sq| → 0 a.s. Note that 0 ≤ Mn(ω) ↓ implies
that Mn(ω) converges to a limit in [0,∞]. So, if P (Mn > ε) → 0, ∀ ε > 0, then Mn ↓ 0 a.s.

Let M∗
n := supp≥n |Sp − Sn|. Since by triangle inequality,

|Sp − Sq| ≤ |Sp − Sn| + |Sq − Sn| ⇒ M∗
n ≤ Mn ≤ 2M∗

n

it is sufficient to show that M∗
n

P
→ 0

For all ε > 0,

P

(

sup
p≥n

|Sp − Sn| > ε

)

= lim
N→∞

P

(

max
n≤p≤N

|Sp − Sn| > ε

)

≤ lim
N→∞

N
∑

i=n+1

σ2
i

ε2
=

∞
∑

i=n+1

σ2
i

ε2

where the inequality is Kolmogorov’s [2, p. 62, (8.2)].
Since

∑∞
i=1 σ2

i < ∞,

lim
n→∞

P

(

sup
p≤n

|Sp − Sn| > ε

)

= 0
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Remark: Just orthogonality rather than independence of the Xi is not enough to get an a.s. limit. Counter
examples are hard [1]. According to a classical results of Rademacher-Menchoff [3, Theorems 2.3.2 and 2.3.3],
for orthogonal Xi the condition

∑

i(log
2 i)σ2

i < ∞ is enough for a.s. convergence of Sn, whereas if bi ↑ with
bi = o(log2 i) there exist orthogonal Xi such that

∑

i biσ
2
i < ∞ and Sn diverges almost surely.

An easy consequence of the Basic L2 Convergence Theorem is the sufficiency part of Kolmogorov’s three-
series theorem:

Theorem 8.2 (Kolmogorov). [2, p.64, (8.4)] Let X1, X2, . . . be independent. Fix b > 0. Convergence of
the following three series

•
∑

n P (|Xn| > b) < ∞

•
∑

n E(Xn1(|Xn|<b)) converges to a finite limit

•
∑

n var(Xn1(|Xn|<b)) < ∞

is equivalent to P (
∑

n Xn converges to a finite limit) = 1

Note. If any one of the three series diverges then

P

(

∑

n

Xn converges to a finite limit

)

= 0

by Kolmogorov’s zero-one law [2, p. 62, (8.1)]. Note also that if one or more of the series diverges for some
b, then one or more of the series must diverge for every b, but exactly which of the three series diverge may
depend on b. Examples can be given of 8 possible combinations of convergence/divergence.

Proof of sufficiency. That is, convergence of all 3 series implies
∑

n Xn converges a.s.. Let X ′
n = Xn1(|Xn|≤b).

Since
∑

n P (X ′
n 6= Xn) =

∑

n P (|Xn| > b) < ∞, Borel-Cantelli lemma gives P (X ′
n 6= Xn i.o.) = 0 which

implies P (X ′
n = Xn ev.) = 1. Also if X ′

n(ω) = Xn(ω) ev., then
∑

n Xn(ω) converges ⇔
∑

n X ′
n(ω) converges.

∴ it is enough to show that

P

(

∑

n

X ′
n converges to a finite limit

)

= 1

Now
N
∑

n=1

X ′
n =

N
∑

n=1

(X ′
n − E(X ′

n)) +

N
∑

n=1

E(X ′
n).

∑N

n=1 E(X ′
n) has a limit as N → ∞ by hypothesis, and

∞
∑

n=1

E((X ′
n − E(X ′

n))2) =
∞
∑

n=1

var(X ′
n) < ∞

implies that
∑∞

n=1(X
′
n − E(X ′

n)) converges a.s. by the basic L2 convergence theorem. For proof of the
converse, see [2, p. 118, Example 4.7].

Recall Kronecker’s lemma [2, p. 64, (8.5)]: If an ↑ ∞ and
∑∞

n=1 Xn/an converges a.s., then (
∑n

m=1 Xm)/an →
0 a.s.

Let X1, X2, . . . be independent with mean 0 and Sn = X1 + X2 + · · · + Xn. If
∑∞

n=1 E(X2
n)/a2

n < ∞, then
by basic L2 convergence theorem,

∑∞
n=1 Xn/an converges a.s. Then Sn/an → 0 a.s.
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Example. Let X1, X2, . . . be i.i.d., E(Xi) = 0, and E(X2
i ) = σ2 < ∞.

Take an = n,
∞
∑

n=1

σ2

n2
< ∞ ⇒

Sn

n

a.s.
→ 0

Now take an = n
1
2+ε, ε > 0

∞
∑

n=1

σ2

n1+2ε
< ∞ ⇒

Sn

n
1
2+ε

a.s.
→ 0

The definitive result of this kind is the Law of the iterated logarithm [2, p. 434].

Theorem 8.3 (Kolmogorov’s Law of Large Numbers). Let X, X1, X2, . . . be i.i.d. with E(|X|) < ∞.
Let Sn = X1 + X2 + · · · + Xn, then Sn/n → E(X) a.s. as n → ∞

Note. The theorem is true with just pairwise independence instead of the full independence assumed here
[2, p. 56 (7.1)]. The theorem also has an important generalization to stationary sequences (The Ergodic
Theorem [2, p. 341]).

Proof. Step 1: Without loss of generality, we can assume E(X) = 0.

Step 2: Truncated variables
Define

X̂n := Xn1(|Xn|≤n)

Note that X̂n are independent. Define their centered versions X̃n := X̂n − E(X̂n)
Plan: We will show that

(
Sn

n
→ 0)

a.s.
=
(a) (

Ŝn

n
→ 0)

a.s.
=
(b) (

S̃n

n
→ 0),

where Ŝn = X̂1 + X̂2 + · · · + X̂n and S̃n = X̃1 + X̃2 + · · · + X̃n.

Then using Kronecker’s lemma we will show that P
(

S̃n/n → 0
)

= 1.

(a) P (Xn = X̂n ev.) = 1 because P (Xn 6= X̂n i.o.) = 0 which follows from

∞
∑

n=1

P (Xn 6= X̂n) =
∞
∑

n=1

P (|Xn| > n) =
∞
∑

n=1

P (|X| > n) ≤ E(|X|) < ∞

by Borel-Cantelli lemma. So, Sn and Ŝn differ only at a finite number of terms.

∴ (
Sn

n
→ 0)

a.s.
= (

Ŝn

n
→ 0)

(b)

S̃n − Ŝn

n
=

1

n

n
∑

m=1

E(X̂m) → 0

since

E(X̂n) = E(X1(|X|≤n)) → E(X) = 0

by dominated convergenece theorem. (Dominate by |X| and note E(|X|) < ∞.)
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To finish, by Kronecker’s lemma and basic L2 convergence theorem, it is enough to show that

∞
∑

n=1

E(X̃2
n)

n2
< ∞.

E(X̃2
n) = var(X̂n) ≤ E(X̂2

n) = E(X21(|X|≤n))

But, (a fact about real numbers)1
∞
∑

n=1

X21(|X|≤n)

n2
≤ 2|X|

Take expectations to complete the proof.
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1This fact can be shown roughly as follows

∞
∑

n=1

x
21(|x|≤n)

n
2

u x
2

∞
∑

n=|x|

1

n
2

u x
2 1

|x|
u |x|

.


