
Stat205A: Probability Theory (Fall 2002) Lecture: 7

Almost sure limits for sums of independent random variables.

Lecturer: James W. Pitman Scribe: Animesh Kumar animesh@eecs.berkeley.edu

We first note a few general facts about the various types of convergence we know,

1. If Xn → X a.s. then Xn → X in P.

2. If Xn → X in P then there exists a fixed increasing subsequence nk such that Xnk
→ X a.s..

3. Xn → X in P iff for every subsequence nk there exists a further subsequebce n′
k

so that Xn′

k
→

X a.s..

Proof of 2 and 3 are in the textbook [1]. We first begin with a technique which uses the information about
almost sure convergence of subsequence of a sequence of random variables, and then somehow getting control
over a maximum. Let us start with the technique.

One can prove Xn → X a.s. by first showing Xnk
→ X a.s. for some nk (we choose nk) and then getting

control over

Mk = max
nk≤m<nk+1

|Xm − Xnk
|

In particular we must be able to show that Mk → 0 a.s. because if ω ∈ Ω is such that both Xnk
(ω) → 0 and

Mk(ω) → 0 then we get (using triangular inequality and max greater than the elements of set over which
maximum is taken)

Xm(ω) → X(ω)

for all ω in the set of significant probability. To illustrate how to use the technique and how easy it is to
use, we start with the example of SLLN with a second moment condition,

Theorem 7.1. If X, X1, X2, ... are IID1 random variables with E(X) = 0, E(X2) < ∞, and Sn :=
X1 + X2 + ... + Xn, then,

Sn

n
→ 0 a.s. (1)

Proof. First we find a subsequence converging almost surely to the mean. For that we use two tools,

• Convergence in Probability or P.

• Borel-Cantelli lemma.

WLOG2 we can assume that E(X) = 0. From Chebychev’s inequality we get,
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> ε
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<
E(X2)

nε2

1Independent and Identically Distributed.
2Without Loss of Generality.
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2 Almost sure limits for sums of independent random variables.

This means that Sn

n
→ 0 in P. Notice that

∑

k

1
k2 converges to a finite value, therefore for the subsequence

nk = k2 we get using Borel-Cantelli lemma

P
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> ε i.o.
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= 0

which means that
S

n2

n2 → 0 a.s..

Now let us try to control Mk as defined above. For convenience we define

Dn := max
n2≤k<(n+1)2

|Sk − Sn2 |

for n2 ≤ k < (n + 1)2, we have |Sk| ≤ |Sn2 | + Dn and 1
k
≤ 1

n2 . So we have the following inequality,
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Finally, using definition of Mk, we get the following,

Mk ≤ max
n2≤k<(n+1)2
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∣

∣
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So all we need to prove is that Dn

n2 → 0 a.s.. Let us define a new quantity Tm = Sn2+m − Sn2 . Therefore,

D2
n = max

1≤m≤2n
T 2

m

≤
2n
∑

m=1

T 2
m

Taking expectations on both sides, we get that,

E(D2
n) ≤

2n
∑

m=1

mσ2 = n(2n + 1)σ2

≤ 4n2σ2

where E(X2) = σ2. Hence we get that
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Again in conjunction with Borel-Cantelli lemma and

∑

n

P
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< ∞

we get that Dn

n2 → 0 a.s.. Which completes the proof.
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Now we proceed to the sums of independent random variables which may not be identically distributed.
We first start with Kronecker’s lemma (see text for proof)

Lemma 7.2 (Kronecker). Let {xn} be a sequence of reals and Sn = x1 + x2 + ... + xn, 0 ≤ an ↑ ∞,
then the lemma states that if

∑

n

xn

an

converges to a finite limit then sn

an

→ 0.

Now we start looking at sums like
∑∞

n=1 Xn where {Xn} is a sequence of independent random variables. The
first key fact that we will prove is Kolmogorov’s Zero-One law, which will be written henceforth as K’rov
0-1 law for brevity. First key fact that we prove is that

P

(

∞
∑

n=1

Xn converges

)

=

{

1
0

}

(2)

which says that the set of ω for which the sum converges is either of probability 0 or 1.

Definition. Given a sequence of random variables {Xn}, the tail sigma field is defined as

T :=
⋂

n

σ(Xn, Xn+1, ...)

With this definition in mind, the K’rov 0-1 law says that if X ′
is are independent then for any T ∈ T , we

have P (T ) = 0 or 1.

Proof. We start the proof of 0-1 law now. The trick is to show that any such T is independent of itself which
sounds pretty bizarre but it turns out to be true. With that aid one can show that P (T ) = P (T ∩T ) = P 2(T )
and hence the result will follow.

Take T ∈ T and let Fn ∈ σ(X1, X2, ..., Xn), and Tn ∈ σ(Xn+1, Xn+2, ...). Then Fn and Tn are independent.
So if T ∈ T then T ∈ σ(Xn+1, Xn+1, ...), and hence

P (T ∩ Fn) = P (T )P (Fn)

for all Fn ∈ σ(X1, X2, ..., Xn). Now consider the set F = {F ∈ σ(X1, X2, X3, ...) : P (T ∩ F ) = P (T )P (F )}.
This can be verified to be a λ system (use MCT for increasing sequences) and the λ system contains all sets
like

⋃

n
σ(X1, X2, X3, ..., Xn) which is a field (and hence a π system). Therefore, using the π − λ theorem,

we get this property to be true for σ(X1, X2, X3, ...) which completes the proof.

Finally we arrive at Kolmogorov’s inequality. We formally state it as follows,

Theorem 7.3 (Kolmogorov’s Inequality). Let X1, X2, ... be independent with E(Xi) = 0 and σ2
i =

E(X2
i ) < ∞, and define Sk = X1 + X2 + ... + Xk, then the inequality states that

P

(

max
1≤k≤n

|Sk| ≥ ε

)

≤
E(S2

n)

ε2
(3)

Proof. Decompose the event according to when we escape from the ±ε strip. Let

Ak = {|Sm| < εfor1 ≤ m < k; |Sk| ≥ ε}

Simply speaking or in words, Ak is the event of first escape out of ε strip and that too at the k-th step.
Also notice that all these events are disjoint, and as a final remark we have

⋃n

k=1 Ak = (max1≤k≤n |Sk| ≥ ε).
Finally we start for a chain of inequality, since we have all the pieces ready,

E(S2
n) ≥ E

(

S2
n1

(

n
⋃

k=1

Ak

))

=

n
∑

k=1

E
(

S2
n1Ak

)
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We can split S2
n = S2

k
+ (Sn − Sk)2 + 2Sk(Sn − Sk), and write the following,

E
(

S2
n1Ak

)

= E
(

S2
k1Ak

)

+ E
(

(Sn − Sk)21Ak

)

+ E (2(Sn − Sk)Sk1Ak
)

≥ ε2P (Ak)

where the first term is larger than ε2 second term is always positive, and the third term is expectation of
product of two independent random variables (and hence product of expectation which is zero).

Finally put into the summation to get,

E(S2
n) ≥

n
∑

k=1

P (Ak)ε2 = P

(

max
1≤k≤n

|Sk| ≥ ε

)

ε2

which easily leads to the result.

Hence the proof is complete.
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