Stat 205A

September, 12, 2002

Convergence of random variables, and the Borel-Cantelli lemmas

Lecturer: James W. Pitman

Scribes: Jin Kim (jin@eecs)

1 Convergence of random variables

Recall that, given a sequence of random variables X_n , almost sure (a.s.) convergence, convergence in P, and convergence in L^p space are true concepts in a sense that $X_n \to X$. In this lecture, we will define weak convergence, or convergence in distribution, $P_{X_n} \to P_X$, which we write, by abuse of notation, $X_n \stackrel{d}{\longrightarrow} X$.

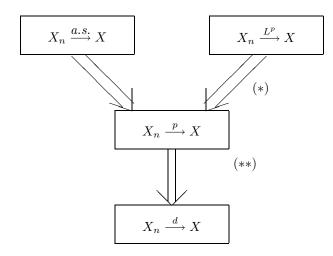
Definition 1.1 (Convergence in distribution) We say $X_n \xrightarrow{d} X$ if $P(X_n \le x) \longrightarrow P(X \le x)$ for all x at which the RHS is continuous.

This weak convergence appears in the central limit theorem.

Theorem 1.2 $X_n \xrightarrow{d} X \iff Ef(X_n) \longrightarrow Ef(X)$ for all bounded and continuous function f.

Proof See Durrett. \Box

Theorem 1.3 The following property holds among the types of convergence.



Proof (*) can be proven by Chebychev inequality (with usually p = 2):

$$\mathbf{P}(\mid X_n - X \mid > \epsilon) \le \frac{\mathbf{E} \mid X_n - X \mid^p}{\epsilon^p} ,$$

and (**) is proven in Durrett. \Box

Exercise. counter examples

- \xrightarrow{p} but not $\xrightarrow{\text{a.s.}}$: moving blip
- \xrightarrow{p} but not $\xrightarrow{L^{p}}$: try $X_{n} = n\mathbf{1}(0, 1/n)$. $X_{n} \xrightarrow{p} 0$ but $\mathbf{E} \mid X_{n} 0 \mid = 1$, thus $X \not\longrightarrow 0$ in L^{1} .

Proposition 1.4 (Inducing a Metric) $X_n \xrightarrow{a.s.} X$ cannot be metrized, but $X_n \xrightarrow{L^p} X$ and $X_n \xrightarrow{p} X$ can be metrized, e.g. using $E(|X_n - X| \land 1)$. Furthermore, when so metrized, the space of random variables are complete.

Proof See text (uses BCL).

Definition 1.5 (Infinitely Often (i.o.) and Eventually (ev.)) Let q_n be some statement, e.g., $|X_n - X| > \epsilon$. We say $(q_n \ i.o.)$ if for all $n, \exists m \ge n : q_m$ is true, and $(q_n \ ev.)$ if $\exists n :$ for all $m \ge n : q_m$ is true.

Exercise. Note that the following holds;

- $X_n \longrightarrow X \quad \iff \quad \forall \epsilon > 0, |X_n X| < \epsilon \text{ ev.}$
- $X_n \not\longrightarrow X \iff \forall \epsilon > 0, |X_n X| > \epsilon$ i.o.
- $(q_n \text{ i.o.})^{\sim} = (q_n \text{ ev.})$

Similarly, for a sequence of events A_n in a prob space (Ω, \mathcal{F}, P) , we can say the following;

- $(A_n \text{ i.o.}) = \{ \omega : \omega \in A_n \text{ i.o.} \} = \bigcap_n \bigcup_{m \ge n} A_m$
- $(A_n \text{ ev.}) = \{\omega : \omega \in A_n \text{ ev.}\} = \bigcup_n \cap_{m \ge n} A_m$
- $(A_n \text{ i.o.})^c = A_n^c \text{ ev.}$

Main application of the idea of i.o. and ev. is to the proof of a.s. convergence. For example, since

$$(X_n \longrightarrow X) = \bigcap_{\epsilon > 0} (|X_n - X| < \epsilon \text{ ev.}),$$

we have

$$P(X_n \longrightarrow X) = \lim_{\epsilon \longrightarrow 0} P(|X_n - X| < \epsilon \text{ ev.})$$

Since the basic criterion for a.s. convergence can be written as

 $(X_n \longrightarrow X) \quad \iff \quad \forall \epsilon > 0, \mathbb{P}(\mid X_n - X \mid > \epsilon \text{ i.o.}) = 0,$

we are interested in conditions in some sequence of events A_n so that $P(A_n)$ i.o. = 0.

2 Borel-Cantelli Lemma

Theorem 2.1 (Borel-Cantelli Lemma)

1. If
$$\sum_{n} P(A_n) < \infty$$
, then $P(A_n \ i.o.) = 0$.

2. If $\sum_{n} P(A_n) = \infty$ and A_n are independent, then $P(A_n \text{ i.o.}) = 1$.

There are many possible substitutes for independence in BCL II, including Kochen-Stone Lemma. Before prooving BCL, notice that

•
$$\mathbf{1}(A_n \text{ i.o.}) = \lim_{n \to \infty} \sup \mathbf{1}(A_n)$$

- $\mathbf{1}(A_n \text{ ev.}) = \lim_{n \to \infty} \inf \mathbf{1}(A_n)$
- $(A_n \text{ i.o.}) = \lim_{m \to \infty} \mathbb{P}(\bigcup_{n > m} A_n) \quad (\text{ as } m \uparrow, \bigcup_{n \ge m} A_n \downarrow)$
- $(A_n \text{ i.o.}) = \lim_{m \to \infty} \mathbb{P}(\cap_{n > m} A_n)$ (as $m \uparrow, \cap_{n \ge m} A_n \downarrow$).

Therefore,

$$\begin{split} \mathbf{P}(A_n \text{ ev.}) &\leq \lim \inf_{n \to \infty} \mathbf{P}(A_n) & \text{ by Fatou's lemma} \\ &\leq \lim \sup_{n \to \infty} \mathbf{P}(A_n) & \text{ obvious from definition} \\ &\leq \mathbf{P}(A_n \text{ i.o.}) & \text{ duel of Fatou's lemma (i.e. apply to } (\cdots)^{\sim}) \end{split}$$

Pf of BCL I

$$\begin{split} \mathbf{P}(A_n \text{ i.o.}) &= \lim_{m \to \infty} \mathbf{P}(\cup_{n \ge m} A_n) \\ &\leq \lim_{m \to \infty} \sum_{n \ge m}^{\infty} \mathbf{P}(A_n) \ = \ 0 \quad \text{since} \ \sum_{i=1}^{\infty} \mathbf{P}(A_n) < \infty. \ \Box \end{split}$$

Pf of BCL I (Alternative method)

Consider a random variable $N := \sum_{n=1}^{\infty} (A_n)$, i.e. the number of events that occur. Then $E[N] = \sum_{n=1}^{\infty} P(A_n)$ by the Monotone Convergence Theorem, and

$$\begin{split} \sum_{n=1}^{\infty} \mathbf{P}(A_n) < \infty \implies \mathbf{E}[N] < \infty \\ \implies \mathbf{P}(N < \infty) = 1 \\ \implies \mathbf{P}(N = \infty) = 0 \\ \implies \mathbf{P}(A_n \text{ i.o.}) = 0 \quad \text{because } (N = \infty) \equiv (A_n \text{ i.o.}). \ \Box \end{split}$$

Pf of BCL II We will show that $P(A_n^c \text{ ev.}) = 0$.

$$P(A_n^c \text{ ev.}) = \lim_{n \to \infty} P(\cap_{m \ge n} A_m^c) = \lim_{n \to \infty} \prod_{m \ge n} P(A_m^c)$$
(1)

$$= \lim_{n \to \infty} \prod_{m \ge n} (1 - P(A_m)) \le \lim_{n \to \infty} \prod_{m \ge n} \exp\left(-P(A_m^c)\right)$$
(2)
$$= \lim_{n \to \infty} \exp\left(-\sum_{m \ge n} P(A_m^c)\right) = 0$$

For (1) we used the following fact (due to the independence of A_n);

$$\mathbf{P}(\bigcap_{m \ge n} A_m^c) = \lim_{N \to \infty} \mathbf{P}(\bigcap_{n \le m \le N} A_m^c) = \lim_{N \to \infty} \prod_{n \le m \le N} \mathbf{P}(A_m^c) = \prod_{n \le m} \mathbf{P}(A_m^c)$$

and $1 - x \leq \exp(-x)$ was used in (2). \Box

As a trivial example, consider $A_n = (0, 1/n)$ in (0, 1). Then, $P(A_n) = 1/n$, $\sum P(A_n) = \infty$, but $P(A_n \text{ i.o.}) = P(\emptyset) = 0$.

Intuitive example Consider random walk in \mathbf{Z}^d , $d = 0, 1, \dots, S_n = X_1 + \dots + X_n$, $n = 0, 1, \dots$ where X_i are independent in \mathbf{Z}^d . In the simplest case, each X_i has uniform distribution on 2^d possible strings. i.e., if d = 3, we have $2^3 = 8$ neighbors

$$\left\{\begin{array}{c} (+1,+1,+1)\\ \vdots\\ (-1,-1,-1) \end{array}\right\}$$

Note that each coordinate of S_n does a simple coin-tossing walk independently. We can prove that

$$P(S_n = 0 \text{ i.o.}) = \begin{cases} 1 & \text{if } d = 1 \text{ or } 2 & (\text{recurrent}) \\ 0 & \text{if } d \ge 3 & (\text{transient}) \end{cases}$$
(3)

Sketch of Pf of (3)

Let us start with d = 1, then

$$\mathcal{P}(S_{2n} = 0) = \binom{2n}{n} 2^{-2n} \sim \frac{c}{\sqrt{n}} \text{ as } n \longrightarrow \infty$$

where we used the fact, $n! \sim {\binom{n}{e}}^n \sqrt{2\pi n}$.

Note

$$\sum \left(\frac{1}{\sqrt{n}}\right)^d = \begin{cases} \infty & d = 1, 2\\ < \infty & d = 3, 4, \cdots \end{cases}$$
(4)

BC II and (4) together gives (3). \Box

Because

 $X_n \longrightarrow X$ a.s. $\iff X_n - X \longrightarrow 0$ a.s.,

thus it is enough to understand as convergence to 0.

Proposition 2.2 The following are equivalent:

- 1. $X_n \longrightarrow 0$
- 2. $\forall \epsilon > 0, P(|X_n| > 0 \ i.o.) = 0$
- 3. $M_n \longrightarrow 0$ where $M_n := \sup_{n < k} |X_k|$
- 4. $\exists \epsilon_n \downarrow 0 : \mathbf{P}(\mid X_n \mid > \epsilon_n \ i.o.) = 0$

If we need to show $X_n \xrightarrow{\text{a.s.}} X$ but do not know X, then it might be easier to show instead that $P(X_n \text{ is a Cauchy sequence}) = 1$. This leads to the following;

Lemma 2.3 Let X_n be any sequence of random variables, and define $M_n := \sup_{n \le m} |X_n - X_m|$. Then

$$\exists X : X_n \longrightarrow X \ a.s. \iff M_n \stackrel{p}{\longrightarrow} 0$$

Proof Consider $M_n^* := \sup_{n \le m, p} |X_m - X_p|$. Notice $M_n^* \downarrow$. Thus

$$M_n^* \xrightarrow{p} 0 \qquad \Longleftrightarrow \qquad M_n^* \xrightarrow{\text{a.s.}} 0$$

Combine with the previous result to finish the proof. $\hfill\square$