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1 Convergence of random variables

Recall that, given a sequence of random variables X, almost sure (a.s.) convergence, convergence in P, and
convergence in LP space are true concepts in a sense that X,, — X. In this lecture, we will define weak

e . . . d
convergence, or convergence in distribution, Px, — Px, which we write, by abuse of notation, X,, — X.

Definition 1.1 (Convergence in distribution) We say X,, L X if P(X, <z) —P(X <«z) foralz
at which the RHS is continuous.

This weak convergence appears in the central limit theorem.

Theorem 1.2 X, X = Ef(X,) — Ef(X) for all bounded and continuous function f.

Proof See Durrett. O

Theorem 1.3 The following property holds among the types of convergence.

X, %5 x X, 25 x
(*)
X, - X
()
X, -5 X

Proof (%) can be proven by Chebychev inequality (with usually p = 2):

ElX,—-X|P
P(1X, - X [> < L XT
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and (x%) is proven in Durrett. [J

Exercise. counter examples

o = but not &% . moving blip

o -2 but not - : try X, =n1(0,1/n). X,, 25 0but E | X,, — 0 |= 1, thus X /- 0in L.

Proposition 1.4 (Inducing a Metric) X, 95 X cannot be metrized, but X, X and X, 2 X can
be metrized, e.g. using E(| X,, — X | Al). Furthermore, when so metrized, the space of random variables are

complete.

Proof See text (uses BCL).

Definition 1.5 (Infinitely Often (i.o.) and Eventually (ev.)) Let g, be some statement, e.g., | X, —

X |>e. We say (qn i.0.) if for allm, Im >n : qn is true, and (g, ev.) if In : forallm>mn :

true.

Exercise. Note that the following holds;

e X, — X <= Ve>0,|X,—X|<cev.
e X, /I~ X <= Ve>0,|X,—X|>cio.

e (¢, 1.0.)~ = (g, ev.)
Similarly, for a sequence of events A4,, in a prob space (2, F,P), we can say the following;

o (Ayio0)={w:we A, .0} =N, Up>n An
o (A ev.)={w:we A, ev.} =U,Np>n Anm

o (A4, 1.0.)¢ = AS ev.

Main application of the idea of i.0. and ev. is to the proof of a.s. convergence. For example, since

(X, —X) = Neo(| Xn—X|<e€ev.),
we have
P(X, —X) = limOP(|Xn—X\<eeV.).

Since the basic criterion for a.s. convergence can be written as
(X, —X) <= Ve>0,P(|X,—X|>€i0.)=0,

we are interested in conditions in some sequence of events A,, so that P(4,) i.o. = 0.
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2 Borel-Cantelli Lemma

Theorem 2.1 (Borel-Cantelli Lemma)

1. If 3, P(A,) < oo, then P(A,, i.0.) = 0.
2. If >, P(Ay) = 00 and A, are independent, then P(A,, i.0.) = 1.

There are many possible substitutes for independence in BCL II, including Kochen-Stone Lemma.

Before prooving BCL, notice that

e 1(A, i.0.) =lim, o sup1(A4,)
e 1(A, ev.) =lim, o inf 1(4,)
o (A, 10) =limy oo P(Upsmdn) (asm T, Upsmd, |)

o (A, 10) =limy oo P(Mp>mdn)  (asm T, Np>mAn | ).

Therefore,
P(A, ev.) <lim inf P(A4,) by Fatou’s lemma
< lim sup P(4,) obvious from definition
n—oo
<P(4, io0.) duel of Fatou’s lemma (i.e. apply to (---)~)
Pfof BCL 1

P(4, i.0.) = lim P(Up>mA4s)

< lim Z P(A,) = 0 since ZP(AH) < oo0.U
i=1

n>m

Pf of BCL I (Alternative method)

Consider a random variable N := Y~ (4,), i.e. the number of events that occur. Then E[N] = 3" P(4,)
by the Monotone Convergence Theorem, and

3 P(4,) < 0o = E[N] < 0

n=1

= P(N<o0)=1
= P(N = x0)

=0
= P(4,10.)=0 because (N = o0) = (4, i.0.). O



Convergence of random variables, and the Borel-Cantelli lemmas 4

Pf of BCL II We will show that P(AS ev.) = 0.

P(A ev.) = lim P(NpnzaAS) = lim [ P(AZ) (1)
m>n
= lim J] 0 -P(4n)) < lim [ exp(-P(47)) (2)
m>n m>n

= lim exp (— Z P(4%)) =0
m>n

For (1) we used the following fact (due to the independence of A,,);

P(Omznds,) = Jim P(McmenAy,) = lim IT Pc) =] Pas)

N—o00
n<m<N n<m
and 1 — z < exp(—z) was used in (2). O

As a trivial example, consider A,, = (0,1/n) in (0,1). Then, P(A,) =1/n, > P(A4,) = oo, but P(4, i.0.) =
P(0) = 0.

Intuitive example Consider random walk in Z%, d=0,1,--- S, = X1 +---+X,,, n=0,1,--- where X,
are independent in Z?. In the simplest case, each X; has uniform distribution on 2¢ possible strings. i.e., if
d = 3, we have 23 = 8 neighbors

(+1,41,+1)

(-1,-1,-1)
Note that each coordinate of \S,, does a simple coin-tossing walk independently. We can prove that
. v _J 1 ifd=1or2 (recurrent)
P(Sn =0i0) = { 0 ifd>3 (transient) . (3)

Sketch of Pf of (3)
Let us start with d = 1, then

2
P(Szn_())_<:>2_2”~%asn—>oo.

where we used the fact, n! ~ (:)n 2mn.

Note

BC IT and (4) together gives (3). O

Because
X, — X as. <= X,—X —0as.,

thus it is enough to understand as convergence to 0.

Proposition 2.2 The following are equivalent:
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1. X,, — 0

2. Ye > 0,P(| X, [> 0 i.0) =0

3. M,, — 0 where M,, := sup, < | Xy |
4. 3en 10 - P(| X |> €p 1.0.) =0

If we need to show X, 25 X but do not know X , then it might be easier to show instead that
P(X,, is a Cauchy sequence) = 1. This leads to the following;

Lemma 2.3 Let X,, be any sequence of random variables, and define My, := sup,,<,, | Xn — Xp |. Then
X X, — X as. = M, 50
Proof Consider M;; := sup, <, , | Xm — X, |. Notice M;; |. Thus
Mp 50 = MpES0

Combine with the previous result to finish the proof. [



