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Fubini’s Theorem, Independence and Weak Law of Large Numbers

Lecturer: James W. Pitman Scribe: Rui Dong ruidong@stat.berkeley.edu

First, we’ll prove the existence of product measure and general Fubini’s theorem for integration as to the
product measure. After that, we’ll know the joint distribution of independent random variables(r.v.’s) is
exactly the product of their distributions, so we get the Fubini’s formula for independent r.v.’s.

Finally, we’ll talk about the weak law of large numbers, and something about the a.s. convergence(
a.s.
−→) and

convergence in probability(
P
−→).

5.1 Product Measure and Fubini’s Theorem

(X,A, µ1) and (Y,B, µ2) are σ-finite measure space, we define the product space as

Ω = X × Y = {(x, y) : x ∈ X, y ∈ Y }

F = A× B = σ{A × B : A ∈ A, B ∈ B}

as to the measure of this space, we have

Theorem 5.1 (existence of product measure). There is a unique measure µ on F with

µ(A × B) = µ1(A) × µ2(B)

µ is the product of µ1 and µ2, it’s often denoted by µ1 × µ2.

Proof. Since
S = {A × B : A ∈ A, B ∈ B}

is a semialgebra, and F = σ(S), by (1.3) in the appendix of Durrett’s, it’s enough to show if A × B =∑
i(Ai × Bi), then

µ(A × B) =
∑

i

µ(Ai × Bi)

∀x ∈ A, let I(x) = {i : x ∈ Ai}, then B =
∑

i∈I(x) Bi by A × B =
∑

i(Ai × Bi), so

1A(x)µ2(B) =
∑

i

1Ai
(x)µ2(Bi)

Integration w.r.t. µ1, we have

µ1(A)µ2(B) =
∑

i

µ1(Ai)µ2(Bi)

As to the product space (Ω,F , µ), we have
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Theorem 5.2 (Fubini’s Theorem). If f ≥ 0 or
∫
|f |du < ∞, then

∫
X

∫
Y

f(x, y)µ2(dy)µ1(dx) =

∫
X×Y

fdµ =

∫
Y

∫
Xf(x, y)µ1(dx)µ2(dy) (∗)

to prove this theorem, we should verify the following two things first:

(1) for fixed x, y → f(x, y) is B measurable;

(2) x →
∫

Y
f(x, y)µ2(dy) is A measurable.

Lemma 5.3 and 5.4 will prove them, respectively, for indicator f = 1E , E ∈ F , after that, general result can
be got by the standard four-step procedure. Define Ex = {y : (x, y) ∈ E} to be the cross section of E at x.

Lemma 5.3. If E ∈ F , then Ex ∈ B.

Proof. Let
E = {E : E ∈ F , Ex ∈ B}

because
(Ec)x = (Ex)c

(∪iEi)x = ∪i(Ei)x

we know E is a σ-field. Moreover, E contains all the rectangles, which generate F , so F ⊂ E .

Lemma 5.4. If E ∈ F , then µ2(Ex) is A measurable and

∫
X

µ2(Ex)dµ1 = µ(E)

Proof. By the σ-finite of µ1, µ2, w.l.o.g., suppose Ω = A × B, with µ1(A) < ∞, µ2(B) < ∞. Let

L = {E : E ∈ F , µ2(Ex) ∈ A,

∫
X

µ2(Ex)dµ1 = µ(E)}

Since

(i) Ω ∈ L;

(ii) µ2((A − B)x) = µ2(Ax − Bx) = µ2(Ax) − µ2(Bx);

(iii) if En ∈ L, En ↑ E, then E ∈ L by MCT,

so L is a λ-system, and it contains the rectangles, a π-system generates F , then we have F ⊂ L by π-λ
theorem.

Proof of Theorem 5.2. Now, we come to prove Fubini’s theorem by the standard four-step procedure:

(i) If E ∈ F , f = 1E is a indicator function, then (∗) holds by Lemma 5.4;

(ii) by (i), (∗) holds for simple f ;

(iii) If f ≥ 0, let fn = ([2nf(x)]/2n)∧n, then fn’s are simple and fn ↑ f , by MCT, (∗) holds for nonnegative
f ;

(iv) For general f with
∫
|f |dµ < ∞, apply (iii) to f+, f− and |f |, (∗) follows from f = f+ − f−.
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5.2 Independce and Fubini’s Formula for Independent Random Variables

Collections of sets A1,A2, . . . ,An ⊂ F are said to be independent if for all Ai ∈ Ai and I ⊂ {1, . . . , n} we
have

P (∩i∈IAi) =
∏
i∈I

P (Ai)

σ-fields A1,A2, . . . ,An are said to be independent if

P (∩n
i=1Ai) =

n∏
i=1

P (Ai) ∀ Ai ∈ Ai

The r.v.’s X1, X2, . . . , Xn are said to be independent if the independence holds for σ(X1), σ(X2), . . . , σ(Xn).

To check the independence of σ-fields, the following theorem tells us it’s enough to see the generating
π-system:

Theorem 5.5. If π-systems A1,A2, . . . ,An are independent, then σ(A1), σ(A2), . . . , σ(An) are independent.

Proof. Let
L1 = {A : A ∈ σ(A1), P (A ∩ F ) = P (A)P (F ), ∀F = ∩n

i=2Ai, Ai ∈ Ai}

first, A1 ⊂ L1, then we want to verify L1 is a λ-system:

(i) Ω ∈ L1;

(ii) if B, A ∈ L1, A ⊂ B, P ((B \A)∩F ) = P (B∩F )−P (A∩F ) = (P (B)−P (A))P (F ) = P (B \A)P (F ),
so B \ A ∈ L1;

(iii) if Bk ∈ L1, Bk ↑ B, then B ∈ L1 by MCT.

so L1 is a λ-system, then σ(A1) ⊂ L1 by π-λ theorem.

Now, define

L2 = {A : A ∈ σ(A2), P (A ∩ F ) = P (A)P (F ), ∀F = A1 ∩ (∩n
i=3Ai), A1 ∈ σ(A1), Ai ∈ Ai}

by the previous reasoning, we know A2 ⊂ L2, then similarly we can show L2 is a λ-system, so σ(A2) ⊂ L2.
Repeat the arguments, the proof will be done.

Now we connect the previous general Fubini’s theorem with independent r.v.’s:

Theorem 5.6. X1, X2, . . . , Xn are independent r.v.’s and Xi has distribution µi, then (X1, X2, . . . , Xn) has
joint distribution µ1 × µ2 × · · ·µn.

Proof. By the independence,

P ((X1, X2, . . . , Xn) ∈ A1 × A2 × · · · × An) = P (X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An)

=

n∏
i=1

P (Xi ∈ Ai) =

n∏
i=1

µi(Ai)

= µ1 × µ2 × · · · × µn(A1 × A2 × · · · × An)

so the distribution of (X1, X2, . . . , Xn) and µ1 ×µ2 × · · ·×µn agree on rectangles, a π-system generates Rn,
by uniqueness of measure estension, or using π-λ theorem, we get the result.
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Then by Fubini’s theorem (5.2), we have

Theorem 5.7. X and Y are independent and have distributions µ and ν. If h : R2 → R is a measurable
function with h ≥ 0 or E|h(X, Y )| < ∞ then

Eh(X, Y ) =

∫ ∫
h(x, y)µ(dx)ν(dy)

in particular, if h(x, y) = f(x)g(y) where f, g : R → R are measurable functions with f, g ≥ 0 or E|f(X)|
and E|g(Y )| < ∞ then

Ef(X)g(Y ) = Ef(X) · Eg(Y )

Proof. By Fubini’s theorem (5.2), we have

Eh(X, Y ) =

∫
R2

fd(µ × ν) =

∫ ∫
h(x, y)µ(dx)ν(dy)

replace h(X, Y ) by f(X)g(Y ), we can get the second result.

5.3 Weak Law of Large Numbers

Laws of large numbers are the basic facts about sums of independent r.v.’s. On some (Ω,F , P ), we have a
sequence of X1, X2, . . . independent and identical distributed(i.i.d.) r.v.’s, taking value in R. Let

Sn = X1 + X2 + · · · + Xn

Suppose E|X1| < ∞, weak law of large numbers says

Sn

n

P
−→ EX1

and strong low of large numbers tells us
Sn

n

a.s.
−→ EX1

We begin with weak law of large numbers.

First, we should know convergence in probability(
P
−→) is weaker than convergence almost surely(

a.s.
−→). Yn

a.s.
−→

Y is defined as
P (ω : Yn(ω) → Y (ω)) = 1

Yn
P
−→ Y is defined as ∀ε > 0,

P (ω : |Yn(ω) − Y (ω)| > ε) → 0, n → ∞

Here is an example with Yn
P
−→ Y , but Yn

a.s.
−→ Y doesn’t hold:

Example (Moving Blip). Choose space ([0, 1],B,L). Let Yi to be indecator of an interval with length i−1,
and Yi+1’s indicating interval is on the right side of Yi’s. If any of these intervals exceeds 1, let the exceeded
part move length 1 to the left, which means making all the intervals recycling between 0 and 1. That is

Y1 = 1[0,1], Y2 = 1[0, 1

2
], Y3 = 1[ 1

2
, 5

6
], Y4 = 1[ 5

6
,1]∪[0, 1

12
], Y5 = 1[ 1

12
, 17

60
], . . .

Then for any ε < 1,

P (|Yn| > ε) =
1

n
→ 0
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so Yn
P
−→ 0. But

{ω : Yn(ω) = 1 infinitely often} = [0, 1]

so, ∀ ω ∈ [0, 1], Yn(ω) doesn’t converge to 0, that is

P (ω : Yn(ω) → 0) = 0

thus it’s clear that Yn
a.s.
−→ 0 doesn’t hold.

Now we come to prove the weak law of large numbers, in the proof, we first do it under the L2 condition,
then use truncation to get rid of the superfluous assumption.

Theorem 5.8 (Weak Law of Large Numbers). Let X1, X2, . . . be i.i.d. with E|X1| < ∞, define
Sn = X1 + X2 + · · · + Xn, then

Sn

n

P
−→ EX1

Proof. First, we assume EX2
1 < ∞, so

V ar(
Sn

n
) =

V ar(X1)

n

by Chebychev’s inequality, ∀ ε > 0,

P (|
Sn

n
− EX1| > ε) ≤

1

ε2
V ar(

Sn

n
) =

1

nε2
V arX1 → 0

that means Sn

n

P
−→ EX1.

Then, we relax the moment assumption, for some x, let

Sn

n
=

1

n

n∑
k=1

Xk1(|Xk|≤x) +
1

n

n∑
k=1

Xk1(|Xk|≥x)

= Unx + Vnx

We have

Unx
P
−→ EX11(|X1|≤x)

and by DCT,

E|X1|1(|X1|>x) → 0, x → ∞

So, ∀ ε > 0 small enough, choose xε, Nε, s.t.

E|X1|1(|X1|>xε) ≤
ε2

4

and ∀ n > Nε,

P (|Unxε
− EX11(|X1|≤xε)| >

ε

2
−

ε2

4
) ≤

ε

2

Now, by Chebychev’s inequality, we also have

P (|Vnxε
| >

ε

2
) ≤

2

ε
E|Vnxε

| ≤
2

ε
E|X1|1(|X1|>xε) ≤

ε

2
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So ∀ n > Nε,

P (|
Sn

n
− EX1| > ε) ≤ P (|Unxε

− EX11(|X1|≤xε)| + |Vnxε
| + |EX11(|X1|>xε)| > ε)

≤ P (|Unxε
− EX11(|X1|≤xε)| + |Vnxε

| > ε −
ε2

4
)

≤ P (|Unxε
− EX11(|X1|≤xε)| >

ε

2
−

ε2

4
) +

ε

2
≤ ε

thus we get
Sn

n

P
−→ EX1


