Lecture 26 : Poisson Point Processes

STAT?205 Lecturer: Jim Pitman Scribe: Ben Hough <jbhough@math.berkeley.edu>

In this lecture, we consider a measure space (S, S, i), where p is a o-finite measure (i.e. S may be
written as a disjoint union of sets of finite u-measure).

26.1 The Poisson Point Process

Definition 26.1 A Poisson Point Process (P.P.P.) with intensity p is a collection of random
variables N(A,w), A€ S, w € Q defined on a probability space (Q, F,P) such that:

1. N(-,w) is a counting measure on (S,S) for each w € Q.

2. N(4,-) is Poisson with mean p(A):
P(N(A) = k) = 220" gy g e s.

3. If Ay, Ao, ... are disjoint sets then N(A1,-), N(As,-), ... are independent random variables.

Theorem 26.2 P.P.P.’s exist.

Proof Sketch: It’s not enough to quote Kolmogorov’s Extension Theorem. The only convincing
argument is to give an explicit constuction from sequences of independent random variables. We
begin by considering the case u(S) < oo.

1. Take X1, Xo, ... to be i.i.d. random variables so that P(X; € A) = %.

I

2. Take N(5) to be a Poisson random variable with mean y(.5), independent of the X;’s. Assume
all random varibles are defined on the same probability space (2, F,P).

3. Define N(A) = vaz(ls) 1(x,ca), forall A€ S.

Now verify that this N(A,w) is a P.P.P. with intensity p. If x(S) = oo we write S = 51 U2, S
as a disjoint union where p(S;) < oo and construct P.P.P.’s N;(-) with intensity u restricted to S;.
Make the N;(-) independent and define N(A) = 32, N;(A) for all A € S. The superposition and
thinning properties of Poisson random variables now imply that N(-) has the desired properties!. B

The most common way to construct a P.P.P. is to define
N(A)=> 1iea (26.1)

for some sequence of random variables T; which are called the points of the process.

1For a reference, see Poisson Processes, Sir J.F.C. Kingman, Oxford University Press.
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Example 26.3 Let p be Lebesgue measure on [0,00). Define random variables T; so that 0 < Ty <
Ty < T3 < ... withTy =Wy, and T, = W1 + ... + W,. where the W are i.i.d. exponential(\) random
variables. That is, P(W; > t) = e~ and if we define Ny = N ([0,t)) we find that

e M(At)I

P(N; = j) = —r (26.2)

26.2 An Application

We now describe a general method for constructing a process with independent increments from a
P.P.P. In particular, we wish to construct a process (X¢;t > 0) of the form

X, = Z AX, (26.3)
0<s<t

where the above sum has only countably many non-zero terms, and the collection {(s,AXy) : s >
0, AX; # 0} is the set of points of a P.P.P. on (0,00) x R — {0} with intensity measure m x L for
some Levy-measure L on R — {0} (m denotes Lebesgue measure).

Example 26.4 A generalized Poisson Process may be constructed as follows. Let Ny, Na, ..., Np,
be independent P.P.P.’s with rate \;. Define

s0 that X; jumps by a; whenever N; jumps by 1. In this case AX; = ), a;AN;(t) and the Levy-
measure 1§

L(A) =) Ail(g,eq)- (26.5)
i=1
The familiar Poisson Process with parameter X\ is obtained by letting m =1, Ay = X and a; = 1.

This example illustrates the concept for a discrete Levy-measure L. From the previous lecture, we
can handle a general finite measure L by setting

Xy = Vilir,<y (26.6)
=1

where the T; are the points of jumps of a standard Poisson Process with rate L(R) and the Y; are
iid. with P(Y; € A) = # If L is supported on (0,00), i.e. we only allow positive jumps, we can

L(R) "
compute:

Ele "] = i_o:P(Nt:z’)(E[eeY])i (26.7)

2

- ie_’\t (A_t!)i (E[e]) (26.8)
i=1
= e Mexp [\E [e_eyﬂ (26.9)

= e Mexp [t/oooe"%(dx)] (26.10)

Ele™ ] = exp {t/ooo (e —1) L(dx)] . (26.11)
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To summarize: we have shown that if (X, ¢t > 0) is a process with independent increments where the
set of jumps ((s, AX;), s > 0) is the set of points of a P.P.P. on (0, c0) x R with intensity distribution
L(dz), then X; has distribution specified by the Laplace Transform above (26.11). This formula is
an instance of the Levy-Khintchine equation.

Example 26.5 Consider two independent processes X; and Y; which correspond to P.P.P.’s with
measures dt x L(dzx) and dt x M (dzx) respectively. Then X +Y; is a P.P.P. with measure dt x (M +
L)(dz) as one may check via direct computation using equation (26.11).

These results may also be extended to suitable infinite measures. Suppose we can write L = Y. L;
where the L;’s are finite and fooo xL(dr) < co. Then we may define P.P.P.’s X; according to the
measures dt X L;(dx) and sum them to obtain a process X with jumps according to the measure
dt x L(dz).

Finally, it is of interest to ask for which measures L equation (26.11) give the Laplace Transform of
a distribution on [0, 00]? One may show that the following three conditions are equivalent:

1. Equation (26.11) is the Laplace Transform of a distribution on [0, 00]
2. [77(1—e%) L(dx) < oo for all § < 0o
3. fy7 (1 =€) L(dx) < oo for some 6 < co.

Exercise 26.6 Check that if you make this Poisson construction of jumps with L(dz) = 2 e %dx
then X; = gamma(t). That is:

P(X; € dr) = ﬁe*“’xt*ldm (26.12)



