Lecture 26 : Poisson Point Processes

STAT205 Lecturer: Jim Pitman

Scribe: Ben Hough <jbhough@math.berkeley.edu>

In this lecture, we consider a measure space (S, \mathcal{S}, μ) , where μ is a σ -finite measure (i.e. S may be written as a disjoint union of sets of finite μ -measure).

26.1 The Poisson Point Process

Definition 26.1 A Poisson Point Process (P.P.P.) with intensity μ is a collection of random variables $N(A, \omega)$, $A \in S$, $\omega \in \Omega$ defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that:

- 1. $N(\cdot, \omega)$ is a counting measure on (S, \mathcal{S}) for each $\omega \in \Omega$.
- 2. $N(A, \cdot)$ is Poisson with mean $\mu(A)$:

$$\mathbb{P}(N(A) = k) = \frac{e^{-\mu(A)}(\mu(A))^k}{k!} all A \in \mathcal{S}.$$

3. If A_1, A_2, \ldots are disjoint sets then $N(A_1, \cdot), N(A_2, \cdot), \ldots$ are independent random variables.

Theorem 26.2 P.P.P.'s exist.

Proof Sketch: It's not enough to quote Kolmogorov's Extension Theorem. The only convincing argument is to give an explicit constuction from sequences of independent random variables. We begin by considering the case $\mu(S) < \infty$.

- 1. Take $X_1, X_2, ...$ to be i.i.d. random variables so that $\mathbb{P}(X_i \in A) = \frac{\mu(A)}{\mu(S)}$.
- 2. Take N(S) to be a Poisson random variable with mean $\mu(S)$, independent of the X_i 's. Assume all random variables are defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- 3. Define $N(A) = \sum_{i=1}^{N(S)} \mathbf{1}_{(X_i \in A)}$, for all $A \in \mathcal{S}$.

Now verify that this $N(A, \omega)$ is a P.P.P. with intensity μ . If $\mu(S) = \infty$ we write $S = S_1 \bigcup_{i=1}^{\infty} S_i$ as a disjoint union where $\mu(S_i) < \infty$ and construct P.P.P.'s $N_i(\cdot)$ with intensity μ restricted to S_i . Make the $N_i(\cdot)$ independent and define $N(A) = \sum_{i=1}^{\infty} N_i(A)$ for all $A \in S$. The superposition and thinning properties of Poisson random variables now imply that $N(\cdot)$ has the desired properties¹.

The most common way to construct a P.P.P. is to define

$$N(A) = \sum_{i} \mathbf{1}_{(T_i \in A)} \tag{26.1}$$

for some sequence of random variables T_i which are called the points of the process.

¹For a reference, see *Poisson Processes*, Sir J.F.C. Kingman, Oxford University Press.

Example 26.3 Let μ be Lebesgue measure on $[0, \infty)$. Define random variables T_i so that $0 < T_1 < T_2 < T_3 < \dots$ with $T_1 = W_1$, and $T_r = W_1 + \dots + W_r$ where the W_i are i.i.d. exponential(λ) random variables. That is, $\mathbb{P}(W_i > t) = e^{-\lambda t}$ and if we define $N_t = N([0, t))$ we find that

$$\mathbb{P}(N_t = j) = \frac{e^{-\lambda t} (\lambda t)^j}{j!}$$
(26.2)

26.2 An Application

We now describe a general method for constructing a process with independent increments from a P.P.P. In particular, we wish to construct a process $(X_t; t \ge 0)$ of the form

$$X_t = \sum_{0 < s \le t} \Delta X_s \tag{26.3}$$

where the above sum has only countably many non-zero terms, and the collection $\{(s, \Delta X_s) : s > 0, \Delta X_s \neq 0\}$ is the set of points of a P.P.P. on $(0, \infty) \times \mathbb{R} - \{0\}$ with intensity measure $m \times L$ for some Levy-measure L on $\mathbb{R} - \{0\}$ (*m* denotes Lebesgue measure).

Example 26.4 A generalized Poisson Process may be constructed as follows. Let $N_1, N_2, ..., N_m$ be independent P.P.P.'s with rate λ_i . Define

$$X_t = \sum_{i=1}^m a_i N_i(t)$$
 (26.4)

so that X_t jumps by a_i whenever N_i jumps by 1. In this case $\Delta X_t = \sum_i a_i \Delta N_i(t)$ and the Levymeasure is

$$L(A) = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{(a_i \in A)}.$$
(26.5)

The familiar Poisson Process with parameter λ is obtained by letting m = 1, $\lambda_1 = \lambda$ and $a_1 = 1$.

This example illustrates the concept for a discrete Levy-measure L. From the previous lecture, we can handle a general finite measure L by setting

$$X_t = \sum_{i=1}^{\infty} Y_i \mathbb{1}_{(T_i \le t)}$$
(26.6)

where the T_i are the points of jumps of a standard Poisson Process with rate $L(\mathbb{R})$ and the Y_i are i.i.d. with $\mathbb{P}(Y_i \in A) = \frac{L(A)}{L(\mathbb{R})}$. If L is supported on $(0, \infty)$, i.e. we only allow positive jumps, we can compute:

$$E\left[e^{-\theta X_t}\right] = \sum_{i=1}^{\infty} \mathbb{P}(N_t = i) (E\left[e^{-\theta Y}\right])^i$$
(26.7)

$$= \sum_{i=1}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{i}}{i!} \left(E\left[e^{-\theta Y}\right] \right)^{i}$$
(26.8)

$$= e^{-\lambda t} exp \left[\lambda t E \left[e^{-\theta Y}\right]\right]$$
(26.9)

$$= e^{-\lambda t} exp\left[t \int_0^\infty e^{-\theta x} L(dx)\right]$$
(26.10)

$$E\left[e^{-\theta X_t}\right] = exp\left[t\int_0^\infty \left(e^{-\theta x} - 1\right)L(dx)\right].$$
(26.11)

To summarize: we have shown that if $(X_t, t \ge 0)$ is a process with independent increments where the set of jumps $((s, \Delta X_s), s > 0)$ is the set of points of a P.P.P. on $(0, \infty) \times \mathbb{R}$ with intensity distribution L(dx), then X_t has distribution specified by the Laplace Transform above (26.11). This formula is an instance of the Levy-Khintchine equation.

Example 26.5 Consider two independent processes X_t and Y_t which correspond to P.P.P.'s with measures $dt \times L(dx)$ and $dt \times M(dx)$ respectively. Then $X_t + Y_t$ is a P.P.P. with measure $dt \times (M + L)(dx)$ as one may check via direct computation using equation (26.11).

These results may also be extended to suitable infinite measures. Suppose we can write $L = \sum_i L_i$ where the L_i 's are finite and $\int_0^\infty x L(dx) < \infty$. Then we may define P.P.P.'s X_i according to the measures $dt \times L_i(dx)$ and sum them to obtain a process X with jumps according to the measure $dt \times L(dx)$.

Finally, it is of interest to ask for which measures L equation (26.11) give the Laplace Transform of a distribution on $[0, \infty]$? One may show that the following three conditions are equivalent:

- 1. Equation (26.11) is the Laplace Transform of a distribution on $[0,\infty]$
- 2. $\int_0^\infty \left(1-e^{-\theta x}\right) L(dx) < \infty$ for all $\theta < \infty$
- 3. $\int_0^\infty (1 e^{-\theta x}) L(dx) < \infty \text{ for some } \theta < \infty.$

Exercise 26.6 Check that if you make this Poisson construction of jumps with $L(dx) = x^{-1}e^{-x}dx$ then $X_t = gamma(t)$. That is:

$$\mathbb{P}(X_t \in dx) = \frac{1}{\Gamma(t)} e^{-x} x^{t-1} dx.$$
(26.12)