
Lecture 26 : Poisson Point Processes

STAT205 Lecturer: Jim Pitman Scribe: Ben Hough <jbhough@math.berkeley.edu>

In this lecture, we consider a measure space (S,S, µ), where µ is a σ-finite measure (i.e. S may be
written as a disjoint union of sets of finite µ-measure).

26.1 The Poisson Point Process

Definition 26.1 A Poisson Point Process (P.P.P.) with intensity µ is a collection of random
variables N(A, ω), A ∈ S, ω ∈ Ω defined on a probability space (Ω,F , P) such that:

1. N(·, ω) is a counting measure on (S,S) for each ω ∈ Ω.

2. N(A, ·) is Poisson with mean µ(A):

P(N(A) = k) = e−µ(A)(µ(A))k

k! all A ∈ S.

3. If A1, A2, ... are disjoint sets then N(A1, ·), N(A2, ·), ... are independent random variables.

Theorem 26.2 P.P.P.’s exist.

Proof Sketch: It’s not enough to quote Kolmogorov’s Extension Theorem. The only convincing
argument is to give an explicit constuction from sequences of independent random variables. We
begin by considering the case µ(S) < ∞.

1. Take X1, X2, ... to be i.i.d. random variables so that P(Xi ∈ A) = µ(A)
µ(S) .

2. Take N(S) to be a Poisson random variable with mean µ(S), independent of the Xi’s. Assume
all random varibles are defined on the same probability space (Ω,F , P).

3. Define N(A) =
∑N(S)

i=1 1(Xi∈A), for all A ∈ S.

Now verify that this N(A, ω) is a P.P.P. with intensity µ. If µ(S) = ∞ we write S = S1

⋃∞

i=1 Si

as a disjoint union where µ(Si) < ∞ and construct P.P.P.’s Ni(·) with intensity µ restricted to Si.
Make the Ni(·) independent and define N(A) =

∑∞

i=1 Ni(A) for all A ∈ S. The superposition and
thinning properties of Poisson random variables now imply that N(·) has the desired properties1.

The most common way to construct a P.P.P. is to define

N(A) =
∑

i

1(Ti∈A) (26.1)

for some sequence of random variables Ti which are called the points of the process.

1For a reference, see Poisson Processes, Sir J.F.C. Kingman, Oxford University Press.
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Example 26.3 Let µ be Lebesgue measure on [0,∞). Define random variables Ti so that 0 < T1 <

T2 < T3 < ... with T1 = W1, and Tr = W1 + ... + Wr where the Wi are i.i.d. exponential(λ) random
variables. That is, P(Wi > t) = e−λt and if we define Nt = N ([0, t)) we find that

P(Nt = j) =
e−λt(λt)j

j!
(26.2)

26.2 An Application

We now describe a general method for constructing a process with independent increments from a
P.P.P. In particular, we wish to construct a process (Xt; t ≥ 0) of the form

Xt =
∑

0<s≤t

∆Xs (26.3)

where the above sum has only countably many non-zero terms, and the collection {(s, ∆Xs) : s >

0, ∆Xs 6= 0} is the set of points of a P.P.P. on (0,∞) × R − {0} with intensity measure m × L for
some Levy-measure L on R − {0} (m denotes Lebesgue measure).

Example 26.4 A generalized Poisson Process may be constructed as follows. Let N1, N2, ..., Nm

be independent P.P.P.’s with rate λi. Define

Xt =

m
∑

i=1

aiNi(t) (26.4)

so that Xt jumps by ai whenever Ni jumps by 1. In this case ∆Xt =
∑

i ai∆Ni(t) and the Levy-
measure is

L(A) =

m
∑

i=1

λi1(ai∈A). (26.5)

The familiar Poisson Process with parameter λ is obtained by letting m = 1, λ1 = λ and a1 = 1.

This example illustrates the concept for a discrete Levy-measure L. From the previous lecture, we
can handle a general finite measure L by setting

Xt =

∞
∑

i=1

Yi1(Ti≤t) (26.6)

where the Ti are the points of jumps of a standard Poisson Process with rate L(R) and the Yi are

i.i.d. with P(Yi ∈ A) = L(A)
L(R) . If L is supported on (0,∞), i.e. we only allow positive jumps, we can

compute:

E
[

e−θXt
]

=

∞
∑

i=1

P(Nt = i)(E
[

e−θY
]

)i (26.7)

=
∞
∑

i=1

e−λt (λt)i

i!

(

E
[

e−θY
])i

(26.8)

= e−λtexp
[

λtE
[

e−θY
]]

(26.9)

= e−λtexp

[

t

∫ ∞

0

e−θxL(dx)

]

(26.10)

E
[

e−θXt
]

= exp

[

t

∫ ∞

0

(

e−θx − 1
)

L(dx)

]

. (26.11)
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To summarize: we have shown that if (Xt, t ≥ 0) is a process with independent increments where the
set of jumps ((s, ∆Xs), s > 0) is the set of points of a P.P.P. on (0,∞)×R with intensity distribution
L(dx), then Xt has distribution specified by the Laplace Transform above (26.11). This formula is
an instance of the Levy-Khintchine equation.

Example 26.5 Consider two independent processes Xt and Yt which correspond to P.P.P.’s with
measures dt×L(dx) and dt×M(dx) respectively. Then Xt +Yt is a P.P.P. with measure dt× (M +
L)(dx) as one may check via direct computation using equation (26.11).

These results may also be extended to suitable infinite measures. Suppose we can write L =
∑

i Li

where the Li’s are finite and
∫ ∞

0
xL(dx) < ∞. Then we may define P.P.P.’s Xi according to the

measures dt × Li(dx) and sum them to obtain a process X with jumps according to the measure
dt × L(dx).

Finally, it is of interest to ask for which measures L equation (26.11) give the Laplace Transform of
a distribution on [0,∞]? One may show that the following three conditions are equivalent:

1. Equation (26.11) is the Laplace Transform of a distribution on [0,∞]

2.
∫ ∞

0

(

1 − e−θx
)

L(dx) < ∞ for all θ < ∞

3.
∫ ∞

0

(

1 − e−θx
)

L(dx) < ∞ for some θ < ∞.

Exercise 26.6 Check that if you make this Poisson construction of jumps with L(dx) = x−1e−xdx

then Xt = gamma(t). That is:

P(Xt ∈ dx) =
1

Γ(t)
e−xxt−1dx. (26.12)


