
Stat205A: Probability Theory (Fall 2002) Lecture: 26

Processes with Independent Increments

Lecturer: Jim Pitman Scribe: Jonathan Weare weare@math.berkeley.edu

26.1 Poisson Processes and Brownian Motion

Let (Ft)t≥0 be a filtration. Usually, but not necessarily, Ft = σ(Xs, 0 ≤ s ≤ t).

Definition 26.1 A real valued process Xt, t ≥ 0, is an Ft-Brownian Motion (BM) if

0) Xt is Ft-measurable.

1) The mapping t → Xt(w) is continuous for almost every w.

2) For s, t ≥ 0 the increment Xt+s − Xs is normally distributed with mean 0 and variance t.

3) Xt+s − Xs is independent of Fs.

Definition 26.2 A real valued process Xt, t ≥ 0, is an Ft-Poisson Process with rate λ or PP (λ)
if

0) Xt is Ft-measurable.

1) The mapping t → Xt(w) is increasing, right continuous, and takes nonnegative integer values.

2) For s, t ≥ 0 The increment, Xt+s − Xs, is a Poisson random variable with parameter λt.

3) Xt+s − Xs is independent of Fs.

Theorem 26.1 (Lévy) A real-valued process Xt, t ≥ 0 with X0 = 0 and continuous paths is an
Ft-Brownian Motion if and only if

1) Xt is an Ft-martingale.

2) X2
t − t is an Ft-martingale.

Theorem 26.2 (Watanabe) A process Xt, t ≥ 0 with X0 = 0 and increasing, right continuous step
function paths with all jumps of size 1 is an Ft-Poisson Process with rate λ if and only if Xt − λt is
an Ft-martingale.

The proofs of the above two theorems require stochastic calculus and are not given here.
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26.2 Construction of a Poisson Process

Let T0 = 0 and for r = 1, 2, . . . let

Tr = time of rth jump

and let

Nt =

∞∑
r=1

1(Tr≤t) and Wr = Tr − Tr−1

.

Theorem 26.3 Assuming (Nt)t≥0 is a simple counting process, it is a PP (λ) process if and only
if W1, W2, W3, . . . are i.i.d. with

P (Wr > t) = e−λt

.

Proof: See Durrett, Sec 2.6.

Definition 26.3 For any r > 0, a random variable, Γr, has gamma(r, λ) distribution if

P (Γr ∈ dt) =
1

Γ(r)
tr−1λre−λtdt

where Γ(r) is a constant of normalization, called the gamma function.

Claim 26.4 Fore r = 1, 2, . . ., the time Tr of the rth point in a PP (λ) has gamma(r, λ) distribution.

Proof: Using independence of increments of the Poisson process

P (Tr ∈ dt) = P (r − 1 arrivals in (0, t) and 1 arrival in dt)

= P (r − 1 arrivals in (0, t))P (1 arrival in dt)

= e−λt
(λt)r−1

(r − 1)!
λdt

Note that for each fixed λ > 0 the family of gamma(r, λ) distributions forms a convolution semigroup,
i.e., if Fr(t) = P (Γr ≤ t) is the c.d.f. of Γr then

Fr ∗ Fs = Fr+s

For r, s = 0, 1, 2, . . . this is obvious from the Poisson Process interpretation. That this is also true
for all real r, s > 0 can be shown by computation.

26.3 Compound Poisson Process

Compound Poisson Process are frequently used to model losses in the insurance industry. Let
J1, J2, J3, . . . be i.i.d. random variables with some c.d.f. F (x) = P (Ji ≤ x), and independent of a
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Poisson process (Nt)t≥0. The Ji are now the jumps in our process. They could be interpreted, for
example, as the losses associated with a sequence of automobile accidents.

Let

Xt =

Nt∑
i=1

Ji = loss accrued up to time t

Notice that (Xt)t≥0 has stationary independent increments. We can compute the characteristic
function for Xt as follows

φXt
(θ) = E[eiθXt ] = E[eiθ(J1+J2+···+JNt

)]

=

∞∑
n=0

P (Nt = n)E[eiθJ1 ]n

=

∞∑
n=0

e−λt
(λt)n

n!
E[eiθJ1 ]n

= e−λtexp(λtE[eiθJ1 ])

= exp(λtE[eiθJ1 − 1])

For t = 1 and letting F (dx) = P (J1 ∈ dx) we have

φX1
(θ) = exp(λ

∫
(eiθx

− 1)F (dx))

= exp(

∫
(eiθx

− 1)L(dx))

where L := λF is a positive measure on R with total mass λ.

If for any Borel set A we define

N(t, A) =

Nt∑
i=1

1(Ji∈A) = number of Ji in A up to time t

then N(t, A) is Poisson random variable with parameter λtF (A). Also, N(t, A) and N(t, Ac) are
independent. In fact if A1, A2, A3, . . . , An are disjoint Borel subsets then (N(t, Ai))

n
1 are independent

Poisson random variables with parameters λtF (Ai).


