
Lecture 18 : Stopping Times and Martingales

STAT205 Lecturer: Jim Pitman Scribe: Sridhar Machiraju <machi@cs>

18.1 Stopping Times

Assume that {Fn} is an increasing set of σ−fields. Recall that a stopping time T is a random
variable T : Ω← Z

+ such that ∀ n <∞, one of the following equivalent conditions holds -

1. {T = n} ∈ Fn

2. {T ≤ n} ∈ Fn

3. {T ≥ n} ∈ Fn

Walds Identity - Let X1, X2, X3, ... be i.i.d. random variables with E|Xi| < ∞ and T be a
stopping time of {Fn} where Fn = σ(X1, X2, ..., Xn) with E(T ) <∞. Let Sn = X1 +X2 + ...+Xn.
Then EST = EX1ET .

Proof:

EST = E(

T∑

1

Xi) =

∞∑

1

E(Xi1T≥i) =

∞∑

1

E(Xi1T>i−1) =

∞∑

1

EXiE1T>i−1 = EX1ET

The final step is because Xi and 1T>i−1 are independent �.

While it seems as if common means for the Xis suffices instead of identical distribitions. However
this is not true. The reason for this is that we need E|Xi| <∞ to hold without which the summation
and integral (in the calculation of expected value of ST ) cannot be exchanged. The following example
illustrates this.

Define Xi as P (Xi = ±2i) = 1

2
. Let T = {inf n : Sn ≥ 1}. Clearly, P (T = n) = 1

2

n
, ET = 2 < ∞

and EST ≥ 1. However, EXi = 0 which clearly violates Walds identity.

We now derive the classic Gamblers Ruin formula using Walds identity. The problem is that of a
random walk that starts at X0 = a > 0 and Xi is a symmetric simple random walk i.e., a probability
of 1

2
for both 1 and −1. Define T = {infn : a + Sn = 0 or a + Sn = b}. A practical explanation of

this problem is that of a gambler starting with a capital of a. We are interested in the probability
that the gambler wins b before going broke. Formally, we want to calculate P (a + ST = b). Now,
E(a + ST ) = bP (a + ST = b) is also given by a + EST which is a by Walds identity. Hence, the
gambler earns b before getting broke with a probability of a

b
.

18.2 Martingales

Martingales are defined for a filtration i.e., an increasing sequence of σ−fields, Fn (n = 1, 2....). A
sequence of random variables Mn is adapted to this filtration of Mn ∈ Fn (n = 1, 2 . . . ). Such a

18-1



Lecture 18: Stopping Times and Martingales 18-2

filtration is a martingale (MG) (w.r.t. Fn) if

• E|Mn| <∞ and

• E(Mn+1|Fn) = Mn∀n.

We define M0 = 0 for convenience and use this definition unless explicitly mentioning otherwise in
the rest of the course. The filtration with finite means is a sub-martingale if E(Mn+1|Fn) ≥ Mn

and a super-martingale if E(Mn+1|Fn) ≤ Mn∀n. Note that in the case of martingales, the second
condition implies that Mn is a filtration whereas this is not true in the case of sub-martingales and
super-martingales. Another definition that will be used later is that of a predictable sequence. A
predictable sequence of random variables Mn such that Mn ∈ Fn−1.

An example of a MG is Sn =
∑n

i=1
Xi − nEX1 where Xi is a sequence of i.i.d random variables.

This is because

E(Sn+1−(n+1)EX1|Fn) = E(Sn−(n+1)EX1|Fn)+E(Xn+1|Fn) = Sn−(n+1)EX1+EXn+1 = Mn

Also notice that if Xn = Mn −Mn−1 then E(Xn|Fn−1) = 0. Similar results can easily be derived
for super-martingales and sub-martingales. We will be considering two kinds of results involoving
MGs. These are optional stopping theorems (maximal inequalities) and convergence theorems.

Martingales and predictable sequences can be used in a natural way in gambling systems. If Xn is
the outcome of the nth bet and Hn is the multiplier that the gambler places for this bet his/her
earnings on this bet are Xn ·Hn. Since gamblers can place bets at time n based upon the outcomes
at times 1...n− 1, Hn ∈ Fn−1 i.e., Hn is predictable and Sn is a martingale. Denoting the gamblers
earnings after n bets as a new variable Yn we get, assuming X0 = 0,

Yn = H1 ·X1 + . . . Hn ·Xn = H1(S1 − S0) + · · ·+ Hn(Sn − Sn−1) = (H · S)n (18.1)

which is the MG-transform. Yn is an Fn-martingale if E(Yn − Yn−1|Fn) = 0. But,

E(Yn − Yn−1|Fn) = E(HnXn|Fn) = HnE(Xn|Fn) (18.2)

The last equality holds only if Xn and XnHn are integrable. Since we assume that Xn is integrable,
XnHn is integrable if either Hn is bounded or Xn, Hn are in L2 (Cauchy Shwartz implies that XnHn

is integrable in this case).

Martingales in conjunction with stopping times are a neat way of modeling gamblers strategies. A
martingale Mn whose differences represent the outcomes at time n may be bet upon by a gambler
until he stops at some time. This time is intuitively a stopping time T because (by definition of
stopping times) T = n is measurable w.r.t Fn. We can thus define a new process Mn∧T .

Theorem 18.1 If Mn is an Fn−martingale and T is a stopping time, then Mn∧T is also an

Fn−martingale.

Proof: Using Hn = 1T>n−1 ∈ Fn−1 in the MG-transform formula the result is achieved (note that
H is bounded).

Now, if Mn is a martingale and T is a stopping time bounded by b, then

E(MT ) = E(MT∧b) = E(M0) (18.3)
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In the case of an unbounded stopping time T , we have that MT∧n →MT a.s. Hence, if expectations
and limits can be swapped as in

E(limMT∧n) = limE(MT∧n) = E(M0) (18.4)

we can calculate the L.H.S. But, this is not possible always. For instance, in case of a random
symmetric walk starting at S0 = 1 and T = (inf n : Sn = 0), we have EST = 0 because P (T <

∞) = 1. However, 1 = ES0 = EST∧n! As we will see later, uniform integrability is enough to justify
the swapping of the expectations and limits.


