Lecture 10 : Conditional Expectation

STAT205 Lecturer: Jim Pitman Scribe: Charless C. Fowlkes <fowlkes@cs.berkeley.edu>

10.1 Definition of Conditional Expectation

Recall the “undergraduate” definition of conditional probability associated with Bayes’ Rule

P(AlB) = "

For a discrete random variable X we have

A) =) PAX =x)=) PAX =2)PX =2

and the resulting formula for conditional expectation
E(Y|X = z) / Y (w)P(dw|X = x)
IE”(X x)

(Yl(X :c))
P(X = z)

We would like to extend this to handle more general situations where densities don’t exist or we
want to condition on very “complicated” sets.

Definition 10.1 Given a random variable Y with E|Y| < oo on the space (Q, F,P) and some sub-
o-field G C F we will define the conditional expectation as the almost surely unique random
variable E(Y'|G) which satisfies the following two conditions

E(Y|G) is G-measurable
2. E(YZ)=E(E(Y|9)Z) for all Z which are bounded and G-measurable

For G = 0(X) when X is a discrete variable, the space € is simply partitioned into disjoint sets
Q = UG,. Our definition for the discrete case gives

E(Y|e(X)) = E(Y[X)
= ZPYlf; 1X:mn

B E(Y1lg,)
BT AR

n

which is clearly G-measurable.
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Exercise 10.2 Show that the discrete formula satisfies condition 2 of Definition 10.1. (Hint: show
that the condition is satisfied for random variables of the form Z = 15 where G € C is a collection
closed under intersection and G = o(C) then invoke Dynkin’s m — X)

10.2 Conditional Expectation is Well Defined

Proposition 10.3 E(X|G) is unique up to almost sure equivalence.

Proof Sketch: Suppose that both random variables Y and Y satisfy our conditions for being the

conditional expectation E(Y|X). Let W =Y —Y. Then W is G-measurable and E(W Z) = 0 for all
Z which are G-measurable and bounded. If we let Z = 1y~ (which is bounded and measurable)
then

eP(W >¢e) < E(Wlws.) =0

for all € > 0. A similar argument applied to P(W < —e¢) allows us to conclude that P(|W]| > ¢€) =0
holds for all € and hence W = 0 almost surely making E(Y|X) almost surely unique. [ |

Proposition 10.4 E(X|G) exists

We've shown that E(Y|G) exists in the discrete case by writing out an explicit formula so that
“E(Y|X) to integrates like Y over G-measurable sets.” We give three different approaches for
attacking the general case.

10.2.1 “Hands On” Proof

The first is a hands on approach by extending the discrete case via limits. We will make use of

Lemma 10.5 William’s Tower Property Suppose G C H C F are nested o-fields and E(:|G)
and E(-|H) are both well defined then E(E(Y|H)|G) =E(Y|G) = E(E(Y|G)|H)

A special case is when G = {0, Q} then E(Y|G) = EY is a constant so it’s easy to see E(E(Y|H)|G) =
E(E(Y)[H) = E(Y) and E(E(Y|G)[H) = E(E(Y)[H) = E(Y)

Proof Sketch: Existence via Limits For a disjoint partition UG; = Q and G € G = 0({G;})
define
E(Y]‘Gi)

FYEI=2. "5,

1¢,
where we deal appropriately with the niggling possibility of P(G;) = 0 by either throwing out the
offending sets or defining % =0.

We now consider an arbitrary but countably generated o-field G. This situation is not too restrictive,
for example the o-field associated with an R-valued random variable X is generated by the countable
collection {B; = (X < r;) : r € Q}. If we set G, = 0(B1, Ba,...,By) then G, is increasing to the
limit G C G C ... C G = 0(UG,,). For a given n the random variable Y,, = E(Y|G,) exists by our
explicit definition above since we can decompose the generating set into a disjoint partition of the
space.
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Now we show that Y,, converges in some appropriate manner to a Y., which will then function as a
version of E(Y|G). We will assume that E|Y|? < oo

Write V,, = E(Y|G,) =Y1 + (Yo —Y1)+ (Y5-Y2)+...4+ (Y, — Y,,—1). The terms in this summation
are orthogonal in L2 so we can compute the variance as

$2 = E(Y?) = E(?) + E(Ys — Y1)%)... + E((Yy — Yo1)?)

where the cross terms are zero. Let s? = E(Y?) = E(Y,,+ (Y —Y,,)) < co. Then s2 1 s2, < s* < oc.
For n > m we know again by orthogonality that E((Y,, — ¥;,,)?) = s2 — 52, — 0 as m — oo since s2
is just a bounded real sequence. This means that the sequence Y, is Cauchy in L? and invoking the

completeness of L? we conclude that Y;, — Y.

All that remains is to check that Y, is a conditional expectation. It satisfies requirement (1)
since as a limit of G-measurable variables it is G-measurable. To check (2) we need to show that
E(YG) = E(Y5G) for all G which are bounded and G-measurable. As usual, it suffices to check for
a much smaller set {14, : A; € A} where A is an intersection closed collection and o(A) = G. Take
this collection to be A = U,,,G,,.

E(YGp) = E(Y;nGn) = E(Y,Gon)

holds by the tower property for any n > m. Noting that E(Y,Z) — E(Y,Z) is true for all Z € L?
by the continuity of inner product this sequence must go to the desired limit which gives E(YG,,) =
E(YacGrm) n

Exercise 10.6 Remove the countably generated constraint on G. (Hint: Be a bit more clever ...
forY € L? look at E(Y|G) for G C F with G finite. Then as above supg E(E(Y|G)?) < EY? so we
can choose G,, with E(E(Y|G,)?) increasing to this supremum. The G, may not be nested but argue
that C,, = 0(G1UGaU...UG,) are and let Y = lim, E(Y|Cn))).

Exercise 10.7 Remove the L? constraint on Y. (Hint: Consider Y > 0 and show convergence of
E(Y An | G) then turn crank on the standard machinery)

10.2.2 Measure Theory Proof

Here we pull out some power tools from measure theory.

Theorem 10.8 Lebesgue-Radon-Nikodym [2/(p.121) If p and X are non-negative o-finite mea-
sures on a collection G and p(G) =0 = A(G) = 0 (written A\ << p, pronounced "X is absolutely

continuous with respect to w”) for all G € G then there exists a non-negative G measurable function
Y such that

MNG) = / Ydu
G
forallG € g.

Proof Sketch: Existence via Lebesgue-Radon-Nikodym Assume Y > 0 and define the prob-
ability measure

Q(C) = /C YdP = EY1c

which is non-negative and finite because E[Y| < oo and @ is absolutely continuous with respect to
P. LRN implies the existence of ¥ which satisfies our requirements to be a version of the conditional
expectation Y = E(Y|G). For general Y we can employ E(YT|G) — E(Y ~|G). [ |
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10.2.3 Functional Analysis Proof

This gives a nice geometric picture for the case when Y € L2

Lemma 10.9 Every nonempty, closed, convex set E in a Hilbert space H contains a unique element
of smallest norm

Lemma 10.10 Existence of Projections in Hilbert Space Given a closed subspace K of a
Hilbert space H and element x € H, there exists a decomposition v = y + z where y € K and
z € Kt (the orthogonal complement).

The idea for the existence of projections is to let y be the element of smallest norm in x + K and
z=x —y. See [2](p.79) for a full discussion of Lemma 10.9.

Proof Sketch: Existence via Hilbert Space Projection Suppose Y € L?(F) and X € L2(G).
Requirement (2) demands that for all X

E((Y —E(Y]9))X) =0
which has the geometric interpretation of requiring Y — E(Y'|G) to be orthogonal to the subspace

L?(G). Requirement (1) says that E(Y|G) € L2(G) so E(Y|G) is just the orthogonal projection of Y’
onto the closed subspace L?(G). The lemma above shows that such a projection is well defined. m

10.3 Properties of Conditional Expectation

It’s helpful to think of E(-|G) as an operator on random variables that transforms F-measurable
variables into G-measurable ones.

We isolate some useful properties of conditional expectation which the reader will no doubt want to
prove before believing

e E(:|G) is positive:
Y >0—-E(Y|G) >0)

e E(-|G) is linear:
E(aX +bY|G) = aE(X|G) + bE(Y'|G)

e E(-|G) is a projection:
E(E(X|9)[9) = E(X]9)

e More generally, the “tower property”. If H C G then

E(E(X[G)H) = E(E(X[H)G) = E(X[H)
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E(:|G) commutes with multiplication by G-measurable variables:

E(XY|G) = E(X|G)Y for E[XY|<occand Y € G

E(:|G) respects monotone convergence:

0< X, 1 X = E(X,|G) 1 E(X|G)

If ¢ is convex and E|¢(X)| < oo then a conditional form of Jensen’s inequality holds:

P(E(X[G) < E(6(X)[G)

E(:|G) is a continuous contraction of L? for p > 1:
IEXI9) > < 11Xl

and
X, =2 X implies E(X,,|G) = E(X|G)

Repeated Conditioning. For Gy C G1 C ..., Goo = 0(UG;), and X € L? with p > 1 then

E(X|Gn) == E(X|Ge0)

E(X|Gn) == E(X|Gox)

10.4 Regular Conditional Distributions

Definition 10.11 Given random wvariable X : (Q,F) — (5,S) and sub-o-field G C F we define
the Markov kernel Q(w,A) : Q x § — [0,1] as a (carefully chosen) version of the conditional
probability P(X € A|G) which has the properties

1. w— Q(w, A) is a (G-measurable) version of P(X € A|G) for fized choice of A
2. A Q(w, A) is a probability measure on (S,S)

When S = Q and X is the identity map we call @ a regular conditional probability

For G € G we have that
P(X € A,G) =E(P(X € A|G)1¢) = / Q(w, A)P(dw)
G

and in the case when G = o(Y") the kernel takes the form

Q(wv A) = Q(Y(w)a A)
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for some Q : R x B(R) — R which we write as P(X € A|Y = y) and gives the slick formula
P(X €AY eB)= / P(X € AlY =y)P(Y € dy)
B

reminiscent of Bayes’ rule for discrete variables.

Regular conditional probabilities do not always exist. However, if we are dealing with a random
variable whose range is a “nice” space (one for which there exists a measurable 1-1 map to R whose
inverse is also measurable) the following sketch shows we are ok. ([1](p.230) gives full details)

Proof Sketch: Existence of “Regular” Conditional Probabilities First construct P(X € A|G)
for Borel sets so that it behaves as a probability with respect to A almost surely. Use intervals
{(=00,q) : ¢ € Q}. We can then choose P(X < ¢|G) for ¢ € Q to be increasing and take on values
of 0 and 1 at —oo and oo respectively. Uniquely extend this increasing function defined on Q to all
of R in a right continuous manner by setting

P(X <110) = limP(@ < ¢l9)
qlr
for any almost every w. [ ]

Corollary 10.12 For every joint distribution (X,Y) where Y ’s range is a nice space, say (X,Y) €
R? then
P(X €dx,Y €dy) = Q(z,dy)P(X € dx)

for some Markov kernel Q.

It is important to note that while even when both Qy and @Qx exist so that
P(X €dz,Y € dy) = Qx(y,dz)P(Y € dy) = Qy (z,dy)P(X € dx)

there is no general way to go from Qx and P(Y € dy) to Qy unless we restrict ourselves to the case
where X and Y have well defined densities.

10.5 A Word About E(Y|X = z)

Suppose that P(X € [a,b]) > 0 then using the naive definition of conditional expectations we have

E(Y1(xe[ap))

E(Y|X € [a,b]) = P(X € [a,b])

and we hope that this will give meaning to E(Y|X = z) in the context

b =T
mnXe@m:/’mwX*)

; mdp()( S dI)

Using our new definition of conditional expectation we have

EEX|Y)L(xe@s) E(Y1(xean))

P(X € [a,0])  P(X € [a,b])

which gives us
b

E(Y1(xelap)) :/ E(Y|X =z)P(X € dx)

a
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This is enough to define conditional expectations since the class of intervals [a, b] is rich enough to
extend the formula to each Borel set B so that

However, it is important not to attribute too much meaning to the notation E(A|X = z) since it is
usually the case that P(X = z) = 0 and so different versions of the conditional expectation may not
agree.

This is highlighted by the following simple version of Borel’s
paradox:

Let (X,Y) be uniformly chosen on the half disc so that X =
Rcos(©) and Y = Rsin(O) with 0 < R < 1 and © € [0, 7]. // \\

We should certainly believe the set equivalence L N
T
(X=0} = {0=7} / I \

Now P(Y > 1|X = 0) = ; has real meaning as there is a
version of P(Y > $|X = x) which is continuous in X and it’s
value at 0 is % On the other hand, there is a unique version
of P(Y > %|© = ) whose value at § = Z is 3. Slicing
up a space in different ways can clearly give us surprisingly
incommensurate! null sets!
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