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Lecture 14: Continuity Theorem

Lecturer: Jim Pitman Scribes: Songhwai Oh <sho@eecs.berkeley.edu>

We first make a few remarks about the characteristic functions. We have proven the uniqueness of a
characteristic function of a random variable in R. We can extend the same result to random vectors in
R

d by applying the same argument. Consider a random vector X = (X1, X2, . . . , Xd) ∈ R
d. The Cramér-

Wold device shown below implies that the distribution of X is uniquely identified by E(eiθ·X). Since the
characteristic function of X is

ϕ(t) = E(eit·X) = E(ei
∑

tkXk),

where t = (t1, . . . , td) ∈ R
d, the characteristic function of X determines the distribution of X. Furthermore

the characteristic function ϕ is determined by distributions of
∑

tkXk, so is the distribution of X.

Theorem 14.1 (Cramér-Wold device) Let Xn, 1 ≤ n ≤ ∞ be random vectors with characteristic func-

tion ϕn. A sufficient condition for Xn
d−→ X∞ is that θ · Xn

d−→ θ · X∞ for all θ ∈ R
d (see Durrett [1],

p.170).

Let us now discuss some issues with repect to the characteristic functions. Suppose you have a sequence of
random variables Xn with characteristic function ϕn and

ϕn(t) → ϕ(t) for all t ∈ R,

for some function ϕ(t). Thus ϕ(t) is a pointwise limit of ϕn(t) but it may not be a characteristic function.
So what are the conditions required to ensure that ϕ is a characteristic function of some X? If ϕ is indeed
a characteristic function, then

E(eitXn) → E(eitX) for all t ∈ R.

That is,
Ef(Xn) → Ef(X) for f(x) = eitx.

Hence
Ef(Xn) → Ef(X)

for every bounded continuous function f . Thus Xn
d−→ X (weak convergence).

Theorem 14.2 (Continuity theorem) (due to Paul Lévy) Assume we have Xn with E(eitXn) → ϕ(t) as
t → ∞, for all t ∈ R and some function ϕ(t). Then the followings are equivalent:

i. (Xn) is tight, i.e. limx→∞ supn P (|Xn| > x) = 0;

ii. Xn
d−→ X for some X ∈ R;

iii. ϕ is a characteristic function of some X ∈ R, i.e. ϕ(t) = EeitX ;

iv. ϕ is a continuous function of t;

v. ϕ is continuous at t = 0.

If all the conditions (i)-(v) hold, then Xn
d−→ X for X as in (iii).
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We first study two examples before proving the theorem. The first example illustrates the significance of
the condition (v) of Theorem 14.2. The second example shows the tightness of the i.i.d. sequence under the
setting of the central limit theorem for the i.i.d. case. So the alternative proof of the central limit theorem
using characteristic functions is an application of the continuity theorem.

Example 14.1 Let Z be a r.v. with the standard normal distribution. Let Xn = nZ. Then

E

(

eitXn

)

= e−
1

2
n2t2 → 1(t = 0) as n → ∞,

where t is held fixed (see Figure 14.1). But 1(t = 0) is not a characteristic function of any r.v. since it is
not continuous at 0 (see the proof of Theorem 14.2). So Xn does not weakly converge to any r.v. X ∈ R.

However Xn
d−→ X ∈ R̄. Now P (X = ∞) = 1/2 and P (X = −∞) = 1/2. It shows that Xn is not tight and

gives us an insight into the connection between the continuity at t = 0 and tightness.

n=1 

n=10 n=1 n=10 

(a) (b)

Figure 14.1: (a) Density function of Xn for n = 1 and n = 10; (b) Characteristic function of Xn for n = 1
and n = 10

Example 14.2 Let X1, X2, . . . , Xn be i.i.d. with EXi = 0 and EX2

i = σ2 < ∞. If Sn = X1 + · · · + Xn,
then

E

((

Sn√
n

)2)

= σ2.

So by Chebyshev’s inequality

P

(
∣

∣

∣

∣

∣

Sn√
n

∣

∣

∣

∣

∣

> x

)

≤ σ2

x2
.

Since it is true for all n,

sup
n

P

(
∣

∣

∣

∣

∣

Sn√
n

∣

∣

∣

∣

∣

> x

)

≤ σ2

x2
→ 0 as x → ∞,

hence the sequence (Xn) is tight.

Proof Sketch: (Theorem 14.2)

• (i) implies (ii): The complex exponentials of the form eitx are bounded and continuous and the
uniqueness theorem of characteristic functions implies that they are the determining class. Hence by
Helly’s selection theorem (Durrett [1] p.88) the tightness implies the existence of a distribution for a

r.v. X such that Xn
d−→ X.
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• (ii) implies (iii): Assume (ii) holds. Then Ef(Xn) → Ef(X) for all bounded continuous f . If we
take f(x) = eitx, then ϕn(t) → E(eitX). Hence E(eitX) = ϕ(t). Here we have assumed the uniqueness
of a limit.

• (iii) implies (iv): Notice that |ϕ(t + h)−ϕ(t)| ≤ E|eihX − 1| and eihX goes to 1 as h → 0. So by the
bounded convergence theorem, E|eihX − 1| → 0, so ϕ(t) is a continuous function of t.

• (iv) implies (v): If ϕ(t) is continuous everywhere, it is continuous at t = 0.

• (v) implies (i): The idea is to get a bound using the continuity of ϕ at t = 0 and show the sequence
in (i) is tight. The complete proof is shown in p.99 of Durrett [1].

In conclusion, the uniqueness theorem and tightness imply the continuity theorem.

Example 14.3 (Cauchy processes) Let C1 be a r.v. with the Cauchy distribution. Then the probability
measure of C1 is given by

P (C1 ∈ dx) =
dx

π(1 + x2)
.

Notice that E|C1| = ∞ and the Cauchy distribution has a heavy tail compared to other distributions. Using
the inversion formula the characteristic function of C1 is computed as

ϕ(θ) = E(eiθC1) = e−|θ|.

See Figure 14.2. Now let C1, . . . , Cn be i.i.d. with the Cauchy distribution and An = 1

n (C1 + · · · + Cn).
Then the characteristic function of An is

E

(

eiθAn

)

=
n
∏

i=1

E

(

eiθCi/n
)

=
n
∏

i=1

e−| θ

n
|

= e−|θ|.

Hence An has the same distribution as C1. Recall that with the Gaussian distribution the same property
holds with

√
n.

1 

Figure 14.2: e−|θ|, the characteristic function of the Cauchy distribution
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Theorem 14.3 (Polya’s criterion) Every convex, symmetric, continuous function ϕ with ϕ(0) = 1 is
ϕ(t) = E(eitX).

Proof Sketch: Here we give a graphical proof. See Durrett [1] for the formal proof of this theorem.

Let X be a r.v. uniformly distributed on (−1, 1). Its density function is shown in Figure 14.3 (a) and the
characteristic function of X is shown in Figure 14.3 (b). Let Y be another r.v. uniformly distributed on
(−1, 1) and independent of X. Then the density function for X + Y can be computed by convolution and
it is shown in Figure 14.3 (c)1. The characteristic function of X + Y is shown in Figure 14.3 (d). Now
the characteristic function shown in Figure 14.3 (d) is nonnegative and integrable so it can be defined as
a density function with appropriate normalizing constant, namely π. Then by the inversion formula the
tent function shown in Figure 14.3 (c) is the corresponding characteristic function upto a scaling factor. By
(3.1g) of Durrett [1], a finite mixture of tents is a characteristic function. For example, if ϕ1 and ϕ2 are two
different tent-shaped characteristic functions, then α1ϕ1 + α2ϕ2 with α1 + α2 = 1 is also a characteristic
function (Figure 14.4). Since any convex and symmetric function is a limit of mixtures of tents, the result
follows.

1 −1 

(a) (b)

2 −2 

(c) (d)

Figure 14.3: (a) Density function of a r.v. uniformly distributed on (−1, 1); (b) sin t
t , the characteristic

function for (a); (c) density function of the sum of two independent r.v.’s, each uniformly distributed on

(−1, 1); (d) sin
2 t

t2 , the characteristic function for (c).

1A function of this shape is known as a tent function.

tentT (x) =

{

1 −
|x|
T

if |x| < T,

0 otherwise
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Figure 14.4: Mixture of two tents
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