Stat205A: Probability Theory (Fall 2002)

Characteristic Functions: Basic Ideas

Lecturer: James W. Pitman

Scribe: Bo Li boli@stat.berkeley.edu

Lecture: 12

We'll begin with a question from last lecture: $X_n \xrightarrow{P} X$ implies $X_n \xrightarrow{d} X$

In fact, we can see that from the following inequalities:

$$P(X_n \le x) = P(X_n \le x, |X_n - X| \le \epsilon) + P(X_n \le x, |X_n - X| > \epsilon) \le P(X \le x + \epsilon) + P(|X_n - X| > \epsilon)$$

$$P(X \le x - \epsilon) = P(X \le x - \epsilon, |X_n - X| \le \epsilon) + P(X \le x - \epsilon, |X_n - X| > \epsilon) \le P(X_n \le x) + P(|X_n - X| > \epsilon)$$

An application of Helly's Selection Theorem

Theorem 12.1. Suppose we have a collection ζ of bounded continuous functions $f : \mathbb{R} \to \mathbb{R}$, and this collection ζ is a determining class, i.e.

$$Ef(X) = Ef(Y)$$
 for $\forall f \in \zeta \Rightarrow X \stackrel{d}{=} Y$

and we have a sequence of r.v's X_n s.t.

- $Ef(X_n)$ has a limit as $n \to \infty \forall f \in \zeta$
- (X_n) is tight. (i.e. $lim_{x\to\infty}sup_n P(|X_n| > x) = 0)$

Then \exists a distribution for r.v. X s.t. $X_n \xrightarrow{d} X$.

Proof. Helly and tightness tell us we can find a subsequence of $\{X_n\}$, which is $\{X_{n_k}\}$, s.t. $X_{n_k} \Rightarrow X$. Noticing the condition (1), we know

$$Ef(X_n) \to Ef(X) \quad \forall f \in \zeta$$

If $X_n \Rightarrow X$, then there exists a subsequence of $\{X_n\}$, which is $\{X_{n_j}\}$, s.t. $X_{n_j} \Rightarrow Y$, where $Y \neq X$. (This statement will involve the use of Helly's Select Theorem and tightness again). However, from $X_{n_j} \Rightarrow Y$, we get

$$Ef(X_n) \to Ef(Y) \quad \forall f \in \zeta$$

 So

$$Ef(X) = Ef(Y) \quad \forall f \in \zeta$$

Since ζ is a determining class, we get $X \stackrel{d}{=} Y$, then we have a contradiction! So the proof is finished.

Important Method: Characteristic Functions

Definition:

$$\varphi_X(t) = Ee^{itX} = E\cos tX + iE\sin tX$$

Fact: 1) $|\varphi_X(t)| \le 1$ 2) $t \mapsto \varphi_X(t)$ is continuous. (using DCT), but not necessarily differentiable. More generally, 3) If $EX < \infty$, then φ_X has n-continuous derivatives then

$$\varphi_X(t) = 1 + itEX + \dots + \frac{(it)^n}{n!}EX^n + o(t), ast \to 0$$

4) $\varphi_{-X}(t) = \varphi_X(-t) = \overline{\varphi_X(t)}$

5) Key fact (Uniqueness): If $\varphi_X(t) = \varphi_Y(t)$ for all $t \in \mathbb{R}$, then $X \stackrel{d}{=} Y$.

One proof is by using Fejer's theorem in Fourier Series. And we will show another approach by getting the inversion formula in next lecture.

Note: Mixture of c.f.'s are c.f.'s.

If we have $n \ c.f.$'s, $\varphi_1, \varphi_3, \cdots, \varphi_n$, which are the c.f. of F_1, F_2, \cdots, F_n respectively. Then $\sum_{i=1}^n p_i \varphi_i(t)$ is the c.f. of

$$F(x) = \sum_{i=1}^{n} p_i F_i(x)$$

where $p_i \ge 0$ and $\sum_i = 0^n p_i = 1$.