
Lecture 10 : Setup for the Central Limit Theorem

STAT205 Lecturer: Jim Pitman Scribe: David S. Rosenberg <drosen@stat.berkeley.edu>

See Durrett 2nd ed pages 116-118 for an equivalent formulation and a proof using characteristic
functions. That proof leans on the continuity theorem for characteristic functions, (3.4) on page 99,
which in turn relies on the Helly selection theorem (2.5) on page 88. The present approach, due to
Lindeberg, is more elementary in that it does not require these tools. But note that the basic idea
in both arguments is to estimate the expected value of a smooth function of a sum of independent
variables using a Taylor expansion with error bound.

10.1 Triangular Arrays

Roughly speaking, a sum of many small independent random variables will be nearly normally
distributed. To formulate a limit theorem of this kind, we must consider sums of more and more
smaller and smaller random variables. Therefore, throughout this section we shall study the sequence
of sums

Si =
∑

j

Xij ,

obtained by summing the rows of a triangular array of random variables

X11, X12, . . . , X1n1

X21, X22, . . . . . . , X2n2

X31, X32, . . . . . . . . . , X3n3

...
...

...
...

It will be assumed throughout that triangular arrays satisfy 3 Triangular Array Conditions1:

1. for each i, the ni random variables Xi1, Xi2, . . . , Xini
in the ith row are mutually independent,n

2. E(Xij) = 0 for all i, j, and

3.
∑

j EX2
ij = 1 for all i.

Here the row index i should always be taken to range over 1, 2, 3, . . ., while the column index j
ranges from 1 to ni. It is not assumed that the r.vs in each row are identically distributed. And it is
not assumed that different rows are independent. (Different rows could even be defined on different
probability spaces.) For motivation, see section ********** below for how such a triangular array
is set up in the most important application to partial sums X1 + X2 + · · · + Xn obtained from a
sequence of independent r.v.s X1, X2, . . .

It will usually be the case that n1 < n2 < · · · , whence the term triangular. It is not necessary to
assume this however.

1This is not standard terminology, but is used here as a simple referent for these conditions.
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10.2 The Lindeberg Condition and Some Consequences

We will write L(X) to denote the law or distribution of a random variable X. N (0, σ2) is the normal
distribution with mean 0 and variance σ2.

Theorem 10.1 (Lindebergs Theorem) Suppose that in addition to the Triangular Array Con-
ditions, the triangular array satisfies Lindebergs Condition:

∀ε > 0, lim
i→∞

ni
∑

j=1

E[X2
ij1 (|Xij | > ε)] = 0 (10.1)

Then, as i → ∞, L(Si) → N (0, 1).

This theorem will be proved in Section ********* below. For an alternative proof using characteristic
functions, see Billingsley Sec. 27.

The Lindeberg condition makes precise the sense in which the r.v.s must be small. It says that for
arbitrarily small ε > 0, the contribution to the total row variance from the terms with absolute
value greater than ε becomes negligible as you go down the rows. The Lindeberg condition implies
that the maximum contribution to the variance from any of the individual terms in a row becomes
negligible as you go down the rows. We see this as follows:

X2
ij ≤ ε2 + X2

ij1 (|Xij | > ε) (10.2)

EX2
ij ≤ ε2 + E[X2

ij1 (|Xij | > ε)] (10.3)

EX2
ij ≤ ε2 +

∑

j

E[X2
ij1 (|Xij | > ε)], which is independent of j, so... (10.4)

max
j

EX2
ij ≤ ε2 +

∑

j

E[X2
ij1 (|Xij | > ε)] (10.5)

The Lindeberg condition says that, as we go down the rows (i.e. i → ∞), the summation on the
RHS tends to zero. Since inequality (10.5) holds for all ε > 0, we get

lim
i→∞

max
j

EX2
ij = 0, (10.6)

A consequence of (10.6) and condition 3 (
∑

j EX2
ij = 1 for all i) is that ni → ∞ as i → ∞. Another

consequence follows from the application of (10.6) to Chebychevs inequality. We have for all ε > 0,

P(|Xij | > ε) ≤
E(X2

ij)

ε2

Taking the maximum over j and i → ∞, we get

∀ε > 0, lim
i→∞

max
j

P(|Xij | > ε) = 0. (10.7)

An array with property (10.7) is said to be uniformly asymptotically negligible (UAN), and there is
a striking converse to Lindebergs theorem:

Theorem 10.2 (Fellers Theorem) If a triangular array satisfies the the Triangular Array Con-
ditions and is UAN, then L(Si) → N (0, 1) [if and] only if Lindebergs condition (10.1) holds.
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Proof: See Billingsley, Theorem 27.4.

For UAN arrays there is a more elaborate CLT with infinitely divisible laws as limits - well return
to this in later lectures.

Just note for now that

1. it is possible to get normal limits from UAN triangular arrays with infinite variances, and that

2. it is possible to get a N (0, σ2) limit with σ2 < 1 for an array satisfying the Triangular Array
Conditions.

10.3 The Lyapounov Condition

A condition stronger than Lindebergs that is often easier to check is the Lyapounov condition:

∃δ > 0 such that lim
i→∞

∑

j

E|Xij |2+δ = 0 (10.8)

Lemma 10.3 Lyapounovs condition implies Lindebergs condition.

Proof: Fix any ε, δ > 0. For any r.v. |X| > ε, we have

X2 =
|X|2+δ

|X|δ ≤ |X|2+δ

εδ
(10.9)

Thus for any r.v. X we have

E[X21 (|X| > ε)] ≤ E|X|2+δ

εδ
.

Take X = Xij to be the elements of our triangular array, and take δ to be the value from Lyapounovs
condition. Then we can sum over j on the RHS and take the limit as i → ∞ on both sides to get
Lindebergs condition.

Theorem 10.4 (Lyapounovs Theorem) If a triangular array satisfies the Triangular Array Con-
ditions and the Lyapounov condition (10.8), then L(Si) → N (0, 1).

10.4 Preliminaries to the proof of Lindebergs Theorem

The key property of the normal distribution is

Theorem 10.5 If X and Y are independent with L(X) = N (0, σ2) and L(Y ) = N (0, τ 2), then
L(X + Y ) = N (0, σ2 + τ2).

Proof Sketch: Either

1. use the formula for the convolution of densities, or

2. use characteristic or moment generating functions, or
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3. use the radial symmetry of the joint density function of i.i.d. N (0, σ2 + τ2) r.v.s U and V to

argue that L(U sin θ + V cos θ) = L(U). Take sin(θ) = σ2

σ2+τ2

The key characterization of convergence in distribution is

Theorem 10.6 L(Si) → L(Z) if and only if limi→∞ Ef(Si) = Ef(Z) for all f ∈ C3(−∞,∞), the
set of functions from reals to reals with three bounded continuous derivatives.

Proof: Mimic the proof of Theorem 6 on page 4.2 of notes on the convergence of probability laws.
????????????????????????????????????????????????????????????

10.5 Proof of Lyapounovs Theorem for δ = 1

This illustrates the general idea and avoids a few tricky details. With n fixed, let X1, X2, . . . , Xn

be independent random variables, not necessarily identically distributed. Suppose EXj = 0 and let
σ2

j = E(X2
j ) < ∞. Then for S = X1 + · · · + Xn we have VarS =

∑n
j=1 σ2

j . Let σ2 = VarS. Note:

1. If L(Xj) is N (0, σ2
j ), then L(S) is N (0, σ2) by Theorem 10.5.

2. Given independent r.v.s X1, . . . , Xn with arbitrary distributions, we can always construct a
new sequence Z1, . . . , Zn of normal r.v.s with matching means and variances so that

Z1, Z2, . . . , Zn, X1, X2, . . . , Xn

are mutually independent. This may involve changing the basic probability space, but that
doesnt matter because the distribution of S is determined by the joint distribution of (X1, . . . , Xn),
which remains the same.

Let

S := S0 := X1 + X2 + X3 + · · · + Xn,

S1 := Z1 + X2 + X3 + · · · + Xn,

S2 := Z1 + Z2 + X3 + · · · + Xn,

...
...

...

T := Sn := Z1 + Z2 + Z3 + · · · + Zn.

We want to show that L(S) is “close to L(T ), which is N (0, σ2), i.e., that Ef(S) is “close to Ef(T )
for all f ∈ C3(−∞,∞) with uniform bound K on |f (i)|, i = 0, 1, 2, 3.

Clearly,

|Ef(S) − Ef(T )| ≤
n

∑

j=1

|Ef(Sj) − Ef(Sj−1)|. (10.10)

Let Rj be the sum of the common terms in Sj−1 and Sj . Then Sj−1 = Rj + Xj and Sj = Rj + Zj .
Note that by construction

Rj and Xj are independent, as are Rj and Zj (10.11)
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We need to compare Ef(Rj + Xj) and Ef(Rj + Zj). By the Taylor series expansion up to the third
term,

f(Rj + Xj) = f(Rj) + Xjf
(1)(Rj) +

X2
j

2!
f (2)(Rj) +

X3
j

3!
f (3)(α),

where α ∈ (Rj , Rj + Xj). And the same is true with Zj instead of Xj . So, assuming that the Xs
have third moments, we can take expectations in each of these identites and subtract the resulting
equations. We get the following:

1. Since EXj = 0 = EXj , and by the independence of Xj , Rj , and Zj (10.11), we have E(Xjf
(1)(Rj)) =

0 = E(Zjf
(1)(Rj)).

2. Since VarXj = VarZj , and by (10.11), we have E(X2
j f (2)(Rj)) = E(Z2

j f (2)(Rj)).

Thus the first and second order terms cancel, so we are left with the last inequality below (the first
two equalities summarize the previous paragraphs):

|Ef(Sj) − Ef(Sj−1)| = |Ef(Rj + Xj) − Ef(Rj + Zj)| (10.12)

=

∣

∣

∣

∣

∣

E
X3

j

3!
f (3)(α) − E

Z3
j

3!
f (3)(α)

∣

∣

∣

∣

∣

(10.13)

≤ K

6
(E|Xj |3 + E|Zj |3) (10.14)

where K is the bound on the derivatives of f . Now

E|Zj |3 = 2

∫ ∞

0

z3 1√
2πσj

exp{−z2/(2σ2
j )} dz (10.15)

= 2

∫ ∞

0

σ3
j x3 1√

2π
exp{−x2/2} dx (10.16)

= cσ3
j (10.17)

where

c = 2

∫ ∞

0

x3 1√
2π

exp{−x2/2} dx = 2 · 2√
2π

< ∞

and since (E|X|2) 1

2 ≤ (E|X|3) 1

3 for any random variable X, we have σ3
j ≤ E|Xj |3 for each j. Thus

E|Zj |3 = cσ3
j ≤ cE|Xj |3, for each j. Applying this to (10.14), we get

K

6
(E|Xj |3 + E|Zj |3) ≤

K

6
E|Xj |3(1 + c).

Now, from (10.10), we get

|Ef(S) − Ef(T )| ≤ (c + 1)K

6

n
∑

j=1

E|Xj |3. (10.18)

To summarize, we have proved:

Lemma 10.7 Let X1, . . . , Xn be independent random variables with EXj = 0 and E|Xj |3 < ∞. Let
S = X1 + · · · + Xn and let T be N (0, σ2), where σ2 is the variance of S. Then (10.18) holds for
every function f with three continuous derivatives bounded by ±K.

Now check using 10.6 that Lyapounovs theorem for δ = 1 is obtained by applying the Lemma to
the rows of a triangular array satisfying the the Triangular Array Conditionsand the Lyapounov
condition (10.8) for δ = 1.
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10.6 Proof of Lindebergs Central Limit Theorem

For Lyapounovs version of the CLT, we looked at a triangular array {Xij} with EXij = 0, EX2
ij =

σ2
ij ,

∑ni

j=1 σ2
ij = 1. Taking Si = Xi1 + Xi2 + · · ·+ Xin, we saw that we could prove L(Si) → N (0, 1)

assuming that limi→∞

∑ni

k=1 E|Xij |3 = 0

This is a condition on third moments - we would like to see if a weaker condition will suffice. We
used third moments in a Taylor series expansion as follows:

f(R + X) = f(R) + Xf (1)(R) +
X2

2!
f (2)(R) +

X3

3!
f (3)(α), (10.19)

where α ∈ (R, R + X).

Roughly, without the third moments assumption, the above expression is “bad when X is large –
although the first two moments exist, we might have E|X|3 = ∞. The idea now is to use the form
in equation (10.19) when X is small and to make use of

f(R + X) = f(R) + Xf (1)(R) +
X2

2!
f (2)(β) (10.20)

where β ∈ (R, R + X), when X is large.

Equating these expansions (10.19) and (10.20) for f(R + X), we get an alternative form for the
remainder in (10.19):

X3

6
f (3)(α) =

X2

2
f (2)(β) − X2

2
f (2)(R) (10.21)

=
X2

2
[f (2)(β) − f (2)(R)]1 (|X| > ε) +

X3

6
f (3)(α)1 (|X| ≤ ε) (10.22)

for ε > 0. Thus, for f with |f (i)| ≤ K for i = 2, 3, we get

∣

∣

∣

∣

X3

6
f (3)(α)

∣

∣

∣

∣

≤ KX21 (|X| > ε) +
K

6
|X|31 (|X| ≤ ε) (10.23)

≤ KX21 (|X| > ε) +
K

6
εX2, (10.24)

an alternative to the upper bound K
6 |X|3, which we used in (10.14).

Now we return to the setup of section 10.5 and use our new result to get more refined bounds. From
(10.10) and (10.13), we had

|Ef(S) − Ef(T )| ≤
nj
∑

j=1

∣

∣

∣

∣

∣

E
X3

j

6
f (3)(α) − E

Z3
j

6
f (3)(α)

∣

∣

∣

∣

∣

Using the triangle inequality, the new bound for X3
j (10.24), the assumption that |f (3)| < K, and

E|Zj |3 = cσ3
j (10.17), we get

|Ef(S) − Ef(T )| ≤
n

∑

j=1

[

KEX2
j 1 (|Xj | > ε) +

K

6
εEX2

j

]

+
n

∑

j=1

K

6
cσ3

j (10.25)

= K
n

∑

j=1

EX2
j 1 (|Xj | > ε) +

K

6
εσ2 +

cK

6

n
∑

j=1

σ3
j (10.26)
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As i → ∞ (i.e. we go down the rows of the triangular array), the first term goes to zero by the
Lindeberg condition. The last term goes to zero since

n(i)
∑

j=1

σ3
ij ≤

(

max
1≤j≤n(i)

σij

) n(i)
∑

j=1

σ2
ij = σ2 max

1≤j≤n(i)
σij ,

which tends to zero by (10.6). Only K
6 εσ2 remains, and letting ε → 0 finishes the argument.

10.7 Applications

Let Sn = X1 +X2 + · · ·+Xn where X1, X2, . . . is a sequence of independent, possibly non-identically
distributed r.v.s, each with mean 0. Let VarX = σ2

j and s2
n = σn

j=1σ
2
j . We want to know when

L(Si/si) → N (0, 1). Check Lindebergs condition for the triangular array Xij = Xj/si, j =
1, 2, . . . , i. Then Si in the Lindeberg CLT is replaced by Si/si, and the Lindeberg condition be-
comes

lim
n→∞

n
∑

j=1

E

[

X2
j

s2
n

1

(
∣

∣

∣

∣

Xj

sn

∣

∣

∣

∣

> ε

)

]

= 0, for all ε > 0, (10.27)

i.e. lim
n→∞

1

s2
n

n
∑

j=1

E
[

X2
j 1 (|Xj | > εsn)

]

= 0, for all ε > 0, (10.28)

Examples where the Lindeberg condition holds:

1. The i.i.d. case where s2
n = nσ2:

1

nσ2

n
∑

j=1

E[X2
j 1

(

|Xj | > εσ
√

n
)

] =
1

σ2
E[X2

11
(

|X1| > εσ
√

n
)

],

and since EX2
1 < ∞, we can use the dominated convergence theorem to conclude that the

Lindeberg condition holds.

2. Lyapounovs condition

lim
n→∞

1

s2+δ
n

n
∑

j=1

E|Xj |2+δ = 0 for some δ > 0

implies Lindebergs condition. The proof of this is given (essentially) in Lemma 10.3.

3. If X1, X2, . . . are uniformly bounded: |Xj | ≤ M for all j, and sn ↑ ∞. Fix ε > 0. For n so
large that sn ≥ M/ε, we have

1 (|Xj | > εsn) = 1 (|Xj | > M) = 0 for all j.

Hence the Lindeberg condition is satisfied.


